Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measurements
2.3. Procedure
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Klostermann, A.; Vater, C.; Kredel, R.; Hossner, E.-J. Perception and action in sports. on the functionality of foveal and peripheral vision. Front. Sports Act. Living 2020, 1, 1. [Google Scholar] [CrossRef]
- Williams, A.M.; Davids, K.; Williams, J.G. Visual Perception and Action in Sport; E & FN Spon: London, UK, 1999. [Google Scholar]
- Piras, A.; Lobietti, R.; Squatrito, S. Response time, visual search strategy, and anticipatory skills in volleyball players. J. Ophthalmol. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zwierko, T.; Jedziniak, W.; Florkiewicz, B.; Stępiński, M.; Buryta, R.; Kostrzewa-Nowak, D.; Nowak, R.; Popowczak, M.; Woźniak, J. Oculomotor dynamics in skilled soccer players: The effects of sport expertise and strenuous physical effort. Eur. J. Sport Sci. 2019, 19, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Vera, J.; Rodríguez, R.J.; Cárdenas, D.; Redondo, B.; García, J.A. Visual function, performance, and processing of basketball players versus sedentary individuals. J. Sport Health Sci. 2017. [Google Scholar] [CrossRef]
- Mann, D.T.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-cognitive expertise in sport: A meta-analysis. J. Sport Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef]
- Ryu, D.; Abernethy, B.; Mann, D.; Poolton, J.M. The contributions of central and peripheral vision to expertise in basketball: How blur helps to provide a clearer picture. J. Exp. Psychol. Hum. Percept. Perform. 2015, 41, 167–185. [Google Scholar] [CrossRef]
- Ryu, D.; Abernethy, B.; Mann, D.; Poolton, J.M.; Gorman, A. The role of central and peripheral vision in expert decision making. Percepion 2013, 42, 591–607. [Google Scholar] [CrossRef]
- Voss, M.W.; Kramer, A.F.; Basak, C.; Prakash, R.S.; Roberts, B. Are expert athletes ‘expert’ in the cognitive laboratory? A meta-analytic review of cognition and sport expertise. Appl. Cogn. Psychol. 2009, 24, 812–826. [Google Scholar] [CrossRef]
- Zwierko, T.; Głowacki, T.; Osiński, W. The effect of specific anaerobic exercises on peripheral perception in handball players. Kinesiol. Slov. 2008, 14, 68–76. [Google Scholar]
- Stone, S.; Baker, J.; Olsen, R.; Gibb, R.; Doan, J.; Hoetmer, J.; Gonzalez, C.L.R. Visual field advantage: Redefined by training? Front. Psychol. 2019, 9, 9. [Google Scholar] [CrossRef]
- Lesiakowski, P.; Lubiński, W.; Zwierko, T. Analysis of the relationship between training experience and visual sensory functions in athletes from different sports. Pol. J. Sport Tour. 2017, 24, 110–114. [Google Scholar] [CrossRef][Green Version]
- Zwierko, T.; Osinski, W.; Lubiński, W.; Czepita, D.; Florkiewicz, B. Speed of visual sensorimotor processes and conductivity of visual pathway in volleyball players. J. Hum. Kinet. 2010, 23, 21–27. [Google Scholar] [CrossRef]
- Hülsdünker, T.; Strüder, H.; Mierau, A. The athletes’ visuomotor system—Cortical processes contributing to faster visuomotor reactions. Eur. J. Sport Sci. 2018, 18, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Hülsdünker, T.; Strüder, H.; Mierau, A. Visual but not motor processes predict simple visuomotor reaction time of badminton players. Eur. J. Sport Sci. 2017, 18, 190–200. [Google Scholar] [CrossRef]
- Hülsdünker, T.; Ostermann, M.; Mierau, A. The speed of neural visual motion perception and processing determines the visuomotor reaction time of young elite table tennis athletes. Front. Behav. Neurosci. 2019, 13, 165. [Google Scholar] [CrossRef] [PubMed]
- Zwierko, T.; Lubiński, W.; Lesiakowski, P.; Steciuk, H.; Piasecki, L.; Krzepota, J. Does athletic training in volleyball modulate the components of visual evoked potentials? A preliminary investigation. J. Sports Sci. 2014, 32, 1519–1528. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, N.; Schmidt, M.; Reer, R.; Braumann, K.-M. Peripheral vision tests in sports: Training effects and reliability of peripheral perception test. Int. J. Environ. Res. Public Health 2019, 16, 5001. [Google Scholar] [CrossRef]
- Jones, P.; Bampouras, T.M.; Marrin, K. An investigation into the physical determinants of change of direction speed. J. Sport. Med. Phys. Fit. 2009, 49, 97–104. [Google Scholar] [CrossRef]
- Young, W.B.; Henry, G.; Dawson, B. Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. Int. J. Sports Sci. Coach. 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Mackala, K.; Vodicar, J.; Žvan, M.; Križaj, J.; Stodolka, J.; Rauter, S.; Čoh, M. Evaluation of the pre-planned and non-planed agility performance: Comparison between individual and team sports. Int. J. Environ. Res. Public Health 2020, 17, 975. [Google Scholar] [CrossRef]
- Šimonek, J.; Horička, P.; Hianik, J. Differences in pre-planned agility and reactive agility performance in sport games. Acta Gymnica 2016, 46, 68–73. [Google Scholar] [CrossRef]
- Horička, P.; Hianik, J.; Simonek, J. The relationship between speed factors and agility in sport games. J. Hum. Sport Exerc. 2014, 9, 49–58. [Google Scholar] [CrossRef]
- Armstrong, N.; Welsman, J.R.; Chia, M.Y.H. Short term power output in relation to growth and maturation. Br. J. Sports Med. 2001, 35, 118–124. [Google Scholar] [CrossRef] [PubMed]
- Pojskic, H.; Åslin, E.; Krolo, A.; Jukic, I.; Uljevic, O.; Spasić, M.; Sekulic, D. Importance of reactive agility and change of direction speed in differentiating performance levels in junior soccer players: Reliability and validity of newly developed soccer-specific tests. Front. Physiol. 2018, 9, 506. [Google Scholar] [CrossRef]
- Fiorilli, G.; Mitrotasios, M.; Iuliano, E.; Pistone, E.M.; Aquino, G.; Calcagno, G.; Di Cagno, A. Agility and change of direction in soccer: Differences according to the player ages. J. Sport. Med. Phys. Fit. 2016, 57, 1597–1604. [Google Scholar]
- Lloyd, R.S.; Oliver, J.L.; Radnor, J.M.; Rhodes, B.C.; Faigenbaum, A.D.; Myer, G.D. Relationships between functional movement screen scores, maturation and physical performance in young soccer players. J. Sports Sci. 2014, 33, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Krolo, A.; Gilic, B.; Foretic, N.; Pojskic, H.; Hammami, R.; Spasić, M.; Uljevic, O.; Versic, S.; Sekulic, D. Agility testing in youth football (soccer)players; evaluating reliability, validity, and correlates of newly developed testing protocols. Int. J. Environ. Res. Public Health 2020, 17, 294. [Google Scholar] [CrossRef]
- Popowczak, M.; Rokita, A.; Struzik, A.; Cichy, I.; Dudkowski, A.; Chmura, P. Multi-directional sprinting and acceleration phase in basketball and handball players aged 14 and 15 years. Percept. Mot. Ski. 2016, 123, 543–563. [Google Scholar] [CrossRef]
- Schuhfried, G. Vienna Test sSystem: Psychological Assessment; Schuhfried: Moedling, Austria, 2013. [Google Scholar]
- Sabatowski, R.; Scharnagel, R.; Gyllensvärd, A.; Steigerwald, I. Driving ability in patients with severe chronic low back or osteoarthritis knee pain on stable treatment with tapentadol prolonged release: A multicenter, open-label, phase 3b trial. Pain Ther. 2014, 3, 17–29. [Google Scholar] [CrossRef][Green Version]
- Cole, T.J.; Flegal, K.M.; Nicholls, D.; Jackson, A.A. Body mass index cut offs to define thinness in children and adolescents: International survey. BMJ 2007, 335, 194. [Google Scholar] [CrossRef]
- McKenzie, T.L.; Sallis, J.F.; Broyles, S.L.; Zive, M.M.; Nader, P.R.; Berry, C.C.; Brennan, J.J. Childhood movement skills: Predictors of physical activity in anglo american and mexican american adolescents? Res. Q. Exerc. Sport 2002, 73, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Yanci, J.; Arcos, A.L.; Grande, I.; Gil, E.; Cámara, J. Correlation between agility and sprinting according to student age. Coll. Antropol. 2014, 38, 533–538. [Google Scholar] [PubMed]
- Roriz, M.S.; Seabra, A.; Freitas, D.; Eisenmann, J.C.; Maia, J. Physical fitness percentile charts for children aged 6–10 from Portugal. J. Sport. Med. Phys. Fit. 2014, 54, 780–792. [Google Scholar]
- Golle, K.; Muehlbauer, T.; Wick, D.; Granacher, U. Physical fitness percentiles of german children aged 9–12 years: Findings from a longitudinal study. PLoS ONE 2015, 10, e0142393. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, R.S.; Read, P.; Oliver, J.L.; Meyers, R.W.; Nimphius, S.; Jeffreys, I. Considerations for the development of agility during childhood and adolescence. Strength Cond. J. 2013, 35, 2–11. [Google Scholar] [CrossRef]
- Ljac, V.; Witkowski, Z.; Gutni, B.; Samovarov, A.; Nash, D. Toward effective forecast of professionally important sensorimotor cognitive abilities of young soccer players. Percept. Mot. Ski. 2012, 114, 485–506. [Google Scholar] [CrossRef]
- Vänttinen, T.; Blomqvist, M.; Nyman, K.; Häkkinen, K. Changes in body composition, hormonal status, and physical fitness in 11-, 13-, and 15-year-old finnish regional youth soccer players during a two-year follow-up. J. Strength Cond. Res. 2011, 25, 3342–3351. [Google Scholar] [CrossRef]
- Malina, R. Growth and Maturation of Young Athletes: Is Training for Sport a Factor. In Sports and Children; Kai-Ming, C., Micheli, L.J., Eds.; Williams and Wilkins Asia-Pacific: Hong Kong, China, 1998; pp. 133–161. [Google Scholar]
- Iacono, A.D.; Eliakim, A.; Meckel, Y. Improving fitness of elite handball players: Small-sided games vs. high-intensity intermittent training. J. Strength Cond. Res. 2015, 29, 835–843. [Google Scholar] [CrossRef]
- Falch, H.N.; Rædergård, H.G.; Tillaar, R.V.D. Effect of different physical training forms on change of direction ability: A systematic review and meta-analysis. Sports Med. Open 2019, 5, 1–37. [Google Scholar] [CrossRef]
- Zwierko, T.; Puchalska-Niedbal, L.; Krzepota, J.; Markiewicz, M.; Woźniak, J.; Lubiński, W. The effects of sports vision training on binocular vision function in female university athletes. J. Hum. Kinet. 2015, 49, 287–296. [Google Scholar] [CrossRef]
- Wabbels, B.K.; Wilscher, S. Feasibility and outcome of automated static perimetry in children using continuous light increment perimetry (CLIP) and fast threshold strategy. Acta Ophthalmol. Scand. 2005, 83, 664–669. [Google Scholar] [CrossRef]
- Gonçalves, E.; Noce, F.; Barbosa, M.A.M.; Figueiredo, A.J.; Hackfort, D.; Teoldo, I. Correlation of the peripheral perception with the maturation and the effect of the peripheral perception on the tactical behaviour of soccer players. Int. J. Sport Exerc. Psychol. 2017, 1–13. [Google Scholar] [CrossRef]
- Vater, C.; Luginbühl, S.; Magnaguagno, L. Testing the functionality of peripheral vision in a mixed-methods football field study. J. Sports Sci. 2019, 37, 2789–2797. [Google Scholar] [CrossRef] [PubMed]
- Piras, A.; Vickers, J.N. The effect of fixation transitions on quiet eye duration and performance in the soccer penalty kick: Instep versus inside kicks. Cogn. Process. 2011, 12, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Notarnicola, A.; Maccagnano, G.; Pesce, V.; Tafuri, S.; Novielli, G.; Moretti, B. Visual-spatial capacity: Gender and sport differences in young volleyball and tennis athletes and non-athletes. BMC Res. Notes 2014, 7, 57. [Google Scholar] [CrossRef] [PubMed]
- Kiss, B.; Balogh, L. A study of key cognitive skills in handball using the Vienna test system. J. Phys. Educ. Sport 2019, 19, 733–741. [Google Scholar] [CrossRef]
- Silverman, I.; Choi, J.; Peters, M. The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Arch. Sex. Behav. 2007, 36, 261–268. [Google Scholar] [CrossRef]
- Mueller, S.C.; Jackson, C.P.; Skelton, R.W. Sex differences in a virtual water maze: An eye tracking and pupillometry study. Behav. Brain Res. 2008, 193, 209–215. [Google Scholar] [CrossRef]
- Hojka, V.; Stastny, P.; Rehak, T.; Gołaś, A.; Mostowik, A.; Zawart, M.; Musalek, M. A systematic review of the main factors that determine agility in sport using structural equation modeling. J. Hum. Kinet. 2016, 52, 115–123. [Google Scholar] [CrossRef]
- Jeffreys, I. Utilising motor learning methods in the development of physical skills. UKSCA 2011, 23, 33–35. [Google Scholar]
Variables | Sport | Girls (n = 157) | Boys (n = 149) | ||||
---|---|---|---|---|---|---|---|
Volleyball (n = 59) | Basketball (n = 45) | Handball (n = 53) | Volleyball (n = 47) | Basketball (n = 48) | Handball (n = 54) | ||
Age (yr) | mean ± SD | 14.0 ± 0.9 | 14.2 ± 0.8 | 14.3 ± 0.8 | 14.4 ± 0.7 | 14.4 ± 0.9 | 14.8 ± 0.8 |
(95% CI) | (13.8–14.3) | (14.0–14.4) | (14.1–14.6) | (14.2–14.7) | (14.1–14.6) | (14.5–15.0) | |
Training per week (n) | mean ± SD | 3.83 ± 1.18 | 5.09 ± 1.68 | 4.06 ± 1.32 | 5.19 ± 1.71 | 4.58 ± 0.96 | 4.41 ± 1.21 |
(95% CI) | (3.52–4.14) | (4.59–5.59) | (3.69–4.42) | (4.69–5.69) | (4.30–4.86) | (4.08–4.74) | |
Training experience (months) | mean ± SD | 49.53 ± 19.74 | 48.96 ± 23.59 | 47.57 ± 19.83 | 43.28 ± 18.53 | 49.27 ± 23.59 | 44.03 ± 18.79 |
(95% CI) | (44.38–54.67) | (41.87–56.04) | (42.10–53.03) | (37.83–48.72) | (42.43–56.11) | (38.91–49.17) | |
Body mass [kg] | mean ± SD | 58.5 ± 6.1 | 57.0 ± 6.3 | 55.2 ± 6.9 | 64.4 ± 9.1 | 67.0 ± 11.1 | 63.9 ± 10.2 |
(95% CI) | (56.9–60.1) | (55.1–58.9) | (53.3–57.1) | (61.7–67.1) | (63.8–70.2) | (61.1–66.7) | |
Body height [cm] | mean ± SD | 172.6 ± 5.9 | 169.4 ± 7.3 | 165.0 ± 6.9 | 180.2 ± 8.0 | 182.4 ± 12.2 | 177.9 ± 10.3 |
(95% CI) | (171.1–174.2) | (167.3–171.6) | (163.1–166.8) | (177.8–182.5) | (178.8–186.0) | (175.1–180.7) | |
CRPP (n) | mean ± SD | 28.31 ± 4.91 | 29.27 ± 6.24 | 28.81 ± 5.56 | 30.04 ± 5.40 | 29.06 ± 5.68 | 28.81 ± 5.85 |
(95% CI) | (27.02–29.59) | (27.39–31.14) | (27.28–30.34) | (28.46–31.53) | (27.41–30.71) | (27.22–30.41) | |
FOVPP (o) | mean ± SD | 171.46 ± 7.89 | 172.99 ± 9.46 | 173.53 ± 6.82 | 172.31 ± 8.64 | 171.84 ± 7.05 | 173.58 ± 8.39 |
(95% CI) | (169.40–173.52) | (170.15–175.83) | (171.65–175.42) | (169.77–174.84) | (169.79–173.88) | (171.29–175.87) | |
PRPP [s] | mean ± SD | 0.70 ± 0.07 | 0.68 ± 0.08 | 0.70 ± 0.08 | 0.66 ± 0.08 | 0.64 ± 0.07 | 0.65 ± 0.07 |
(95% CI) | (0.68–0.72) | (0.65–0.70) | (0.67–0.72) | (0.64–0.69) | (0.61–0.66) | (0.62–0.67) | |
RA [s] | mean ± SD | 19.99 ± 1.15 | 19.66 ± 1.16 | 19.58 ± 1.26 | 18.83 ± 1.36 | 18.70 ± 1.36 | 18.55 ± 1.11 |
(95% CI) | (19.69–20.29) | (19.31–20.01) | (19.23–19.92) | (18.43–19.22) | (18.30–19.10) | (18.25–18.86) |
Model | Unstandardized Coefficients | Standardized Coefficients | Sig. | ||
---|---|---|---|---|---|
B | (ß) | 95% CI | p | ||
Gender | −1.24 | −0.46 | −0.58 | −0.34 | 0.000 |
Age | −0.48 | −0.30 | −0.42 | −0.18 | 0.000 |
Training per week | −0.05 | −0.05 | −0.15 | 0.05 | 0.315 |
Training experience | −0.01 | −0.11 | −0.21 | −0.01 | 0.038 |
Body mass | 0.04 | 0.31 | −1.02 | 1.64 | 0.645 |
Body height | 0.00 | 0.01 | −1.03 | 1.04 | 0.990 |
CRPP | −0.02 | −0.07 | −0.20 | 0.06 | 0.283 |
FOVPP | 0.00 | 0.02 | −0.10 | 0.15 | 0.719 |
PRPP | 0.62 | 0.04 | −0.09 | 0.16 | 0.582 |
Models | Girls | Boys | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
B | ß | 95% CI | p | B | ß | 95% CI | p | |||
Age | −0.26 | −0.18 | −0.37 | 0.00 | 0.049 | −0.79 | −0.50 | −0.73 | −0.27 | 0.000 |
Training per week | −0.14 | −0.18 | −0.35 | 0.00 | 0.045 | −0.03 | −0.04 | −0.20 | 0.13 | 0.674 |
Training experience | −0.01 | −0.18 | −0.34 | −0.03 | 0.017 | 0.00 | −0.05 | −0.21 | 0.11 | 0.548 |
Body mass | 0.05 | 0.28 | 0.04 | 0.51 | 0.021 | 0.01 | 0.11 | −0.26 | 0.49 | 0.553 |
Body height | 0.00 | 0.03 | −0.22 | 0.27 | 0.837 | 0.04 | 0.29 | −0.08 | 0.66 | 0.123 |
CRPP | 0.02 | 0.07 | −0.12 | 0.27 | 0.463 | −0.06 | −0.25 | −0.46 | −0.04 | 0.020 |
FOVPP | 0.00 | −0.01 | −0.20 | 0.18 | 0.929 | 0.02 | 0.10 | −0.10 | 0.30 | 0.308 |
PRPP | 2.73 | 0.17 | −0.01 | 0.36 | 0.067 | −1.47 | −0.08 | −0.29 | 0.12 | 0.423 |
Reference group: volleyball | ||||||||||
R: Basketball group | −0.01 | −0.01 | −0.19 | 0.17 | 0.911 | 0.19 | 0.14 | −0.05 | 0.33 | 0.149 |
R: Handball group | 0.06 | 0.05 | −0.14 | 0.24 | 0.627 | 0.04 | 0.03 | −0.17 | 0.22 | 0.779 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popowczak, M.; Domaradzki, J.; Rokita, A.; Zwierko, M.; Zwierko, T. Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 5322. https://doi.org/10.3390/ijerph17155322
Popowczak M, Domaradzki J, Rokita A, Zwierko M, Zwierko T. Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents. International Journal of Environmental Research and Public Health. 2020; 17(15):5322. https://doi.org/10.3390/ijerph17155322
Chicago/Turabian StylePopowczak, Marek, Jarosław Domaradzki, Andrzej Rokita, Michał Zwierko, and Teresa Zwierko. 2020. "Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents" International Journal of Environmental Research and Public Health 17, no. 15: 5322. https://doi.org/10.3390/ijerph17155322
APA StylePopowczak, M., Domaradzki, J., Rokita, A., Zwierko, M., & Zwierko, T. (2020). Predicting Visual-Motor Performance in a Reactive Agility Task from Selected Demographic, Training, Anthropometric, and Functional Variables in Adolescents. International Journal of Environmental Research and Public Health, 17(15), 5322. https://doi.org/10.3390/ijerph17155322