Psychological Risk Factors that Predict Social Networking and Internet Addiction in Adolescents
Abstract
:1. Introduction
1.1. Risk of Internet Addiction and Social Media Use
1.2. Body Self-Esteem and the Relationship with Problematic Social Media and Internet Use
1.3. Personality Traits and the Association with Social Networking and Internet Addiction
1.4. Rationale for the Study
1.5. Purpose of the Study
2. Materials and Methods
2.1. Participants
2.2. Variables and Instruments
2.2.1. Demographic Variables
2.2.2. Social Networking and Internet Addiction
2.2.3. Body Self-Esteem
2.2.4. Personality Factors
2.3. Procedure
2.4. Data Analysis
3. Results
3.1. Descriptive Analysis and Relationships Between Variables Studied
3.2. Demographic and Psychological Predictors of Social Networking and Internet Addiction
3.3. Combined Contribution of Body Self-Esteem, Personality Traits and Personal Predictors of Social Networking and Internet Addiction
4. Discussion
4.1. Risk Factors of Addiction Symptoms
4.2. Risk Factors of Social Media Use
4.3. Risk Factors of Geek Behaviour
4.4. Risk Factors of Nomophobia
4.5. Strengths, Limitations and Further Research
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Buctot, D.B.; Kim, N.; Kim, J.J. Factors associated with smartphone addiction prevalence and its predictive capacity for health-related quality of life among Filipino adolescents. Child. Youth Serv. Rev. 2020, 110, 104758. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D. Social networking sites and addiction: Ten lessons learned. Int. J. Environ. Res. Public Health 2017, 14, 311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laconi, S.; Kaliszewska-Czeremska, K.; Gnisci, A.; Sergi, I.; Barke, A.; Jeromin, F.; Groth, J.; Gamez-Guadix, M.; Ozcan, N.K.; Demetrovics, Z.; et al. Cross-cultural study of problematicinternet use in nine European countries. Comput. Human Behav. 2018, 84, 430–440. [Google Scholar] [CrossRef] [Green Version]
- Machimbarrena, J.M.; González-Cabrera, J.; Ortega-Barón, J.; Beranuy-Fargues, M.; Álvarez-Bardón, A.; Tejero, B. Profiles of problematic internet use and its impact on adolescents’ health-related quality of life. Int. J. Environ. Res. Public Health 2019, 16, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer-Grote, L.; Kothgassner, O.D.; Felnhofer, A. Risk factors for problematic smartphone use in children and adolescents: A review of existing literature. Neuropsychiatrie 2019, 33, 179–190. [Google Scholar] [CrossRef] [Green Version]
- Peris, M.; Maganto, C.; Garaigordobil, M. Escala de riesgo de adicción-adolescente a las redes sociales e internet: Fiabilidad y validez (ERA-RSI) [Scale of risk of addiction to medias and Internet for adolescents: Reliability and validity (ERA-RSI)]. Rev. Psic Clin. con Niños y Adolesc 2018, 5052, 30–36. [Google Scholar]
- Aparicio-Martínez, P.; Ruiz-Rubio, M.; Perea-Moreno, A.J.; Martínez-Jiménez, M.P.; Pagliari, C.; Redel-Macías, M.D.; Vaquero-Abellán, M. Gender differences in the addiction to social networks in the Southern Spanish university students. Telemat Inform. 2020, 46, 101304. [Google Scholar] [CrossRef]
- Lopez-Fernandez, O. Generalised versus specific internet use-related addiction problems: A mixed methods study on internet, gaming, and social networking behaviours. Int. J. Environ. Res. Public Health 2018, 15, 2913. [Google Scholar] [CrossRef] [Green Version]
- Yudes-Gómez, C.; Baridon-Chauvie, D.; González-Cabrera, J.-M. Cyberbullying and problematic Internet use in Colombia, Uruguay and Spain: Cross-cultural study. Comunicar 2018, XXXVI, 49–58. [Google Scholar] [CrossRef]
- Munno, D.; Cappellin, F.; Saroldi, M.; Bechon, E.; Guglielmucci, F.; Passera, R.; Zullo, G. Internet addiction disorder: Personality characteristics and risk of pathological overuse in adolescents. Psychiatry Res. 2017, 248, 1–5. [Google Scholar] [CrossRef]
- Gómez, P.; Rial, A.; Braña, T.; Golpe, S.; Varela, J. Screening of problematic internet use among Spanish adolescents: Prevalence and related variables. Cyberpsychogy Behav. Soc. Netw. 2017, 20, 259–267. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, X.; Chamarro, A.; Oberst, U.; Rodrigo, B.; Prades, M. Problematic use of the internet and smartphones in university students: 2006–2017. Int. J. Environ. Res. Public Health 2018, 15, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durán, M.; Guerra, J.M. Spanish university students’ uses of the social network Tuenti and their addiction levels: The protective role of the positive attitude toward mothers’ presence as contact. Anal. Psicol. 2015, 31, 260–267. [Google Scholar]
- Ostovar, S.; Allahyar, N.; Aminpoor, H.; Moafian, F.; Binti, M.; Griffiths, M.D. Internet addiction and its psychosocial risks (depression, anxiety, stress and loneliness) among Iranian adolescents and young adults: A structural equation model in a cross-sectional study. Int. J. Ment. Health Addict. 2016, 14, 157. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender differences in factors associated with smartphone addiction: A cross-sectional study among medical college students. BMC Psychiatry 2017, 17, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cimadevilla, R.; Jenaro, C. Impact on psychological health of internet and mobile phone abuse in a spanish sample of secondary students. Rev. Argentina Clin. Psicol. 2019, XXVIII, 339–347. [Google Scholar]
- Bischof-Kastner, C.; Kuntsche, E.; Wolstein, J. Identifying problematic internet users: Development and validation of the Internet Motive Questionnaire for Adolescents (IMQ-A). J. Med. Internet Res. 2016, 16, e230. [Google Scholar] [CrossRef] [Green Version]
- Brenley, D.B.; Covey, J. Risky behavior via social media: The role of reasoned and social reactive pathways. Comput. Hum. Behav. 2018, 78, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Wiederhold, B.K. VR Online dating: The new safe sex. Cyberpsychogy Behav. Soc. Netw. 2016, 19, 297–298. [Google Scholar] [CrossRef]
- Kokkinakis, A.V.; Lin, J.; Pavlas, D.; Wade, A.R. What’s in a name? Ages and names predict the valence of social interactions in a massive online game. Comput. Hum. Behav. 2016, 55, 605–613. [Google Scholar] [CrossRef] [Green Version]
- Escario, J.J.; Wilkinson, A.V. Exploring predictors of online gambling in a nationally representative sample of Spanish adolescents. Comput. Hum. Behav. 2020, 102, 287–292. [Google Scholar] [CrossRef]
- Salonen, A.H.; Alho, H.; Castrén, S. Attitudes towards gambling, gambling participation, and gambling-related harm: Cross-sectional Finnish population studies in 2011 and 2015. BMC Public Health 2017, 17, 122. [Google Scholar] [CrossRef] [PubMed]
- Wittek, C.T.; Finseras, T.R.; Pallesen, S.; Mentzoni, R.A.; Hanss, D.; Molde, H. Prevalence and predictors of video fame addiction: A study based on a national representative sample of gamers. Int. J. Ment. Health Addict. 2015, 14, 672–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, A.L.; Valença, A.; Nardi, A.E. Nomophobia: The mobile phone in panic disorder with agoraphobia: Reducing phobias or worsening of dependence? Cogn. Behav. Neurol. 2010, 23, 52–54. [Google Scholar] [CrossRef]
- Barnes, S.J.; Pressey, A.D.; Scornavacca, E. Mobile ubiquity: Understanding the relationship between cognitive absorption, smartphone addiction and social network services. Comput. Hum. Behav. 2019, 90, 246–258. [Google Scholar] [CrossRef] [Green Version]
- Cha, S.S.; Seo, B.K. Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychol. Open 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Sohn, S.; Rees, P.; Wildridge, B.; Kalk, N.J.; Carter, B. Correction to: Prevalence of problematic smartphone usage and associated mental health outcomes amongst children and young people: A systematic review, meta-analysis and GRADE of the evidence. BMC Psychiatry 2019, 19, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Andreassen, C.S.; Pallesen, S.; Griffiths, M.D. The relationship between addictive use of social media, narcissism, and self-esteem: Findings from a large national survey. Addict. Behav. 2017, 64, 287–293. [Google Scholar] [CrossRef]
- Maganto, C.; Peris, M. La corporalidad de los adolescentes en las redes sociales [The body image in adolescents in social network]. Cuadernos de Psiquiatría y Psicoterapia del Niño y del Adolescente 2013, 55, 53–62. [Google Scholar]
- De Vries, D.A.; Peter, J.; de Graaf, H.; Nikken, P. Adolescents’ social network site use, peer appearance-related feedback, and body dissatisfaction: Testing a mediation model. J. Youth Adolesc. 2016, 45, 211–224. [Google Scholar] [CrossRef] [Green Version]
- Peris, M. Adicción y erotización en las redes sociales e internet: Diseño y estandarización de la batería En-Red-A2 [Addiction and eroticization in social networks and the internet: Design and standardization of the En-Red-A2 battery]; Universidad del País Vasco: País Vasco, Spain, 2017. [Google Scholar]
- Wang, D. A study of the relationship between narcissism, extraversion, body-esteem, social comparison orientation and selfie-editing behavior on social networking sites. Personal. Individ. Differ. 2019, 146, 127–129. [Google Scholar] [CrossRef]
- Kircaburun, K.; Alhabash, S.; Tosuntaş, Ş.B.; Griffiths, M.D. Uses and gratifications of problematic social media use among university students: A simultaneous examination of the Big Five of personality traits, social media platforms, and social media use motives. Int. J. Ment. Health Addict. 2018, 18, 525–547. [Google Scholar] [CrossRef] [Green Version]
- Peris, M.; Maganto, C.; Arigita, A.; Barrientos, A.; León, A.; Sánchez-Cabrero, R. El derecho al olvido digital la imagen corporal virtual en adolescentes jóvenes. In Intervención e Investigación en Contextos Clínicos de la Salud; Pérez-Fuentes, M.C., Molero, M.M., Gázquez, J.J., Martos, A., Barragán, A.B., Simón, M.M., Oropesa, N.F., Pino, R.M., Eds.; ASUNIVEP: Murcia, Spain, 2019; pp. 135–143. [Google Scholar]
- Liu, Q.; Sun, J.; Li, Q.; Zhou, Z. Body dissatisfaction and smartphone addiction among Chinese adolescents: A moderated mediation model. Child. Youth Serv. Rev. 2020, 108, 104613. [Google Scholar] [CrossRef]
- Blachnio, A.; Przepiorka, A.; Senol-Durak, E.; Durak, M.; Sherstyuk, L. The role of personality traits in Facebook and internet addictions: A study on Polish, Turkish, and Ukrainian samples. Comput. Hum. Behav. 2017, 68, 269–275. [Google Scholar] [CrossRef]
- Hussain, Z.; Pontes, H.M. Personality, internet addiction, and other technological addictions: A psychological examination of personality traits and technological addictions. In Psychological, Social, and Cultural Aspects of Internet Addiction; Bozoglan, B., Ed.; IGI Global: Hershey, PA, USA, 2018; pp. 45–71. [Google Scholar]
- Cheng, C.; Wang, H.; Sigerson, L.; Chau, C.I. Do the socially rich get richer? A nuanced perspective on social network site use and online social capital accrual. Psychol. Bull. 2019, 145, 734–764. [Google Scholar] [CrossRef]
- Dieris-Hirche, J.; Pape, M.; te Wildt, B.T.; Kehyayan, A.; Esch, M.; Aicha, S.; Herpertz, S.; Bottel, L. Problematic gaming behavior and the personality traits of video gamers: A cross-sectional survey. Comput. Hum. Behav. 2020, 106, 106272. [Google Scholar] [CrossRef]
- Pivetta, E.; Harkin, L.; Billieux, J.; Kanjo, E.; Kuss, D. Problematic smartphone use: An empirically validated model. Comput. Hum. Behav. 2019, 100, 105–117. [Google Scholar] [CrossRef]
- Mitchell, L.; Hussain, Z. Predictors of problematic smartphone use: An examination of the Integrative Pathways Model and the role of age, gender, impulsiveness, excessive reassurance seeking, extraversion, and depression. Behav. Sci. 2018, 8, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marengo, D.; Poletti, I.; Settanni, M. The interplay between neuroticism, extraversion, and social media addiction in young adult Facebook users: Testing the mediating role of online activity using objective data. Addict. Behav. 2020, 102, 106150. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, B.; Sindermann, C.; Sariyska, R.Y.; Luo, R.; Melchers, M.C.; Becker, B.; Cooper, A.J.; Montag, C. The role of empathy and life satisfaction in internet and smartphone use disorder. Front. Psychol. 2018, 9, 398. [Google Scholar] [CrossRef]
- Hussain, Z.; Griffiths, M.D.; Sheffield, D. An investigation into problematic smartphone use: The role of narcissism, anxiety, and personality factors. J. Behav. Addict. 2017, 6, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gervasi, A.M.; La Marca, L.; Lombardo, E.M.C.; Mannino, G.; Iacolino, C.; Schimmenti, A. Maladaptive personality traits and internet addiction symptoms among young adults: A study based on the alternative DSM-5 model for personality disorders. Clin. Neuropsychiatry 2017, 14, 20–28. [Google Scholar]
- Clancy, E.M.; Klettke, B.; Hallford, D.J. The dark side of sexting—Factors predicting the dissemination of sexts. Comput. Hum. Behav. 2019, 92, 266–272. [Google Scholar] [CrossRef]
- Sarabia, I.; Estévez, A. Sexualized behaviors on Facebook. Comput. Hum. Behav. 2016, 61, 219–226. [Google Scholar] [CrossRef]
- Hawk, S.T.; van den Eijnden, J.J.M.; van Lissa, C.J.; ter Bogt, T.F.M. Narcissistic adolescents’ attention-seeking following social rejection: Links with social media disclosure, problematic social media use, and smartphone stress. Comput. Hum. Behav. 2019, 92, 65–75. [Google Scholar] [CrossRef]
- Yildiz Durak, H. Investigation of nomophobia and smartphone addiction predictors among adolescents in Turkey: Demographic variables and academic performance. Soc. Sci. J. 2019, 56, 492–517. [Google Scholar] [CrossRef]
- Eng, S.; Woodside, A.G. Configural analysis of the drinking man: Fuzzy-set qualitative comparative analyses. Addict. Behav. 2012, 37, 541–543. [Google Scholar] [CrossRef]
- Ragin, C.C. Redesigning Social Inquiry. Fuzzy Sets and Beyond; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Calabuig, F.; Prado-Gascó, V.; Crespo-Hervás, J.; Núñez-Pomar, J.; Añó, V. Predicting future intentions of basketball spectators using SEM and fsQCA. J. Bus. Res. 2016, 69, 1396–1400. [Google Scholar] [CrossRef]
- Legewie, N. An introduction to applied data analysis with Qualitative Comparative Analysis (QCA). Forum Qual. Soc. Res. 2013, 14, 1–45. [Google Scholar]
- De la Barrera, U.; Schoeps, K.; Gil-Gómez, J.-A.; Montoya-Castilla, I. Predicting adolescent adjustment and well-being: The interplay between socio-emotional and personal factors. Int. J. Environ. Res. Public Health 2019, 16, 4650. [Google Scholar] [CrossRef] [Green Version]
- Giménez-Espert M del, C.; Valero-Moreno, S.; Prado-Gascó, V.J. Evaluation of emotional skills in nursing using regression and QCA models: A transversal study. Nurse Educ. Today 2019, 74, 31–37. [Google Scholar] [CrossRef] [PubMed]
- De la Barrera, U.; Villanueva, L.; Prado-Gascó, V. Emotional and personality predictors that influence the appearance of somatic complaints in children and adults. Psicothema 2019, 31, 407–413. [Google Scholar] [PubMed]
- Peris, M.; Maganto, C.; Garaigordobil, M. Escala de Autoestima Corporal: Datos psicométricos de fiabilidad y validez. Rev. Psicol. Clínica con Niños y Adolesc. 2016, 3, 51–58. [Google Scholar]
- Costa, P.T.; McCrae, R.R. Inventario de Personalidad NEO Revisado (NEO PIR) e Inventario NEO Reducido de Cinco Factores (NEO-FFI); TEA Ediciones: Madrid, Spain, 2008. [Google Scholar]
- Zuckerman, M.; Eysenck, S.B.G.; Eysenck, H.J. Sensation seeking in England and America: Cross-cultural, age, and sex comparisons. J. Consult. Clin. Psychol. 1978, 46, 139–149. [Google Scholar] [CrossRef]
- Pérez, J.; Torrubia, R. Fiabilidad y validez de la versión española de la Escala de Búsqueda de Sensaciones (Forma V). Rev. Latinoam Univ. 1986, 18, 7–22. [Google Scholar]
- Raskin, R.; Terry, H. Principal-components analysis of the narcissistic personality inventory and further evidence of its construct validity. J. Pers. Soc. Psychol. 1988, 54, 890–902. [Google Scholar] [CrossRef]
- Trechera, J.L.; Millán, G.; Fernández-Morales, E. Estudio empírico del trastorno narcisista de la personalidad (TNP). Acta Colomb. Psicol. 2008, 11, 25–36. [Google Scholar]
- Villanueva, L.; Montoya-Castilla, I.; Prado-Gascó, V. The importance of trait emotional intelligence and feelings in the prediction of perceived and biological stress in adolescents: Hierarchical regressions and fsQCA models. Stress 2017, 20, 355–362. [Google Scholar] [CrossRef]
- Woodside, A.G. Moving beyond multiple regression analysis to algorithms: Calling for adoption of a paradigm shift from symmetric to asymmetric thinking in data analysis and crafting theory. J. Bus. Res. 2013, 66, 463–472. [Google Scholar] [CrossRef]
- Su, W.; Han, X.; Jin, C.; Yan, Y.; Potenza, M.N. Are males more likely to be addicted to the internet than females? A meta-analysis involving 34 global jurisdictions. Comput. Hum. Behav. 2019, 99, 86–100. [Google Scholar] [CrossRef]
- Di Blasi, M.; Giardina, A.; Lo Coco, G.; Giordano, C.; Billieux, J.; Schimmenti, A. A compensatory model to understand dysfunctional personality traits in problematic gaming: The role of vulnerable narcissism. Personal. Individ. Differ. 2020, 160, 109921. [Google Scholar] [CrossRef]
- Matthews, N.L.; Lynch, T.; Martins, N. Real ideal: Investigating how ideal and hyper-ideal video game bodies affect men and women. Comput. Hum. Behav. 2016, 59, 155–164. [Google Scholar] [CrossRef]
- Anshari, M.; Alas, Y.; Sulaiman, E. Smartphone addictions and nomophobia among youth. Vulnerable Child. Youth Stud. 2019, 14, 242–247. [Google Scholar] [CrossRef]
- Peris, M.; Maganto, C.; Kortabarria, L. Body self-esteem, virtual image in social networks and sexuality in adolescent. Eur. J. Investig. Health Psychol. Educ. 2013, 3, 171–180. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
1. Age | − | ||||||||||
2. IAS | −0.07 | − | |||||||||
3. SMU | −0.17 *** | 0.56 *** | − | ||||||||
4. GB | −0.02 | 0.29 *** | 0.30 *** | − | |||||||
5. NP | −0.16 ** | 0.61 *** | 0.55 *** | 0.32 *** | − | ||||||
6. NT | −0.12 * | 0.36 *** | 0.29 *** | 0.03 | 0.25 *** | − | |||||
7. EX | −0.11 * | 0.12 *** | 0.20 *** | 0.04 | 0.09 *** | −0.19 *** | − | ||||
8. DI | 0.16 *** | 0.40 *** | 0.23 *** | 0.16 *** | 0.23 *** | 0.12 ** | 0.20 *** | − | |||
9. NA | 0.11 * | 0.21 *** | 0.02 | 0.18 *** | 0.18 *** | 0.06 | −0.11 * | 0.20 *** | − | ||
10. BS | −0.01 | −0.15 *** | −0.02 | 0.06 | −0.03 | −0.32 *** | 0.20 *** | −0.03 | 0.10 * | − | |
11. PA | 0.06 | 0.13 ** | 0.11 ** | 0.15 *** | 0.13 ** | −0.20 *** | 0.25 *** | 0.22 *** | 0.26 *** | 0.66 *** | − |
M | 14.90 | 19.05 | 21.17 | 9.31 | 12.62 | 32.89 | 46.27 | 14.73 | 40.45 | 6.58 | 6.18 |
SD | 0.81 | 5.77 | 4.86 | 2.77 | 4.21 | 7.31 | 6.33 | 2.13 | 10.13 | 1.32 | 1.67 |
Variable | Internet Addiction Symptoms | Social Media Use | Geek Behaviour | Nomophobia | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ΔR2 | ΔF | β | t | ΔR2 | ΔF | β | t | ΔR2 | ΔF | β | t | ΔR2 | ΔF | β | t | |
Step 1 | 0.09 | 21.93 *** | 0.23 | 64.84 *** | 0.01 | 1.62 | 0.08 | 20.43 *** | ||||||||
Gender | 0.27 | 6.50 *** | 0.45 | 10.67 *** | −0.06 | −1.08 | 0.26 | 5.51 *** | ||||||||
Age | −0.06 | −1.45 | −0.08 | −2.07 * | −0.07 | −1.34 | −0.14 | −3.12 ** | ||||||||
Step 2 | 0.10 | 28.34 *** | 0.05 | 12.47 *** | 0.03 | 5.77 ** | 0.05 | 13.08 *** | ||||||||
Body satisfaction | −0.18 | −3.34 *** | 0.04 | 0.76 | −0.04 | −0.54 | −0.05 | −0.87 | ||||||||
Physical attractiveness | 0.21 | 3.89 *** | 0.11 | 1.99 * | 0.12 | 1.76 | 0.16 | 2.59 ** | ||||||||
Step 3 | 0.19 | 33.64 *** | 0.10 | 16.51 *** | 0.03 | 3.52 ** | 0.09 | 12.66 *** | ||||||||
Neuroticism | 0.23 | 5.44 *** | 0.18 | 4.16 *** | 0.03 | 0.59 | 0.15 | 3.20 *** | ||||||||
Extraversion | 0.09 | 2.11 * | 0.15 | 3.44 *** | 0.01 | 0.18 | 0.05 | 1.15 | ||||||||
Disinhibition | 0.30 | 7.06 *** | 0.20 | 4.63 *** | 0.10 | 2.02 * | 0.17 | 3.56 *** | ||||||||
Narcissism | 0.16 | 3.93 *** | 0.04 | 1.00 | 0.13 | 2.57 * | 0.17 | 3.68 *** | ||||||||
Durbin-Watson | 1.27 | 1.26 | 1.61 | 1.33 | ||||||||||||
R2 | 0.37 *** | 0.35 *** | 0.05 ** | 0.21 *** |
IAS | SMU | GB | NP | NT | EX | DI | NA | BS | PA | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 5164.83 | 6055.23 | 32.66 | 181.55 | 13973.16 | 210162.93 | 69.35 | 746999.25 | 2261.04 | 113609.19 | |
Standard deviation | 19216.76 | 10541.97 | 93.71 | 328.93 | 54894.57 | 336946.74 | 112.60 | 4809591.82 | 1705.54 | 156534.70 | |
Minimum | 1.00 | 1.00 | 1.00 | 1.00 | 0.01 | 0.25 | 1.00 | 0.02 | 21.96 | 1.00 | |
Maximum | 262144.00 | 65536.00 | 972.00 | 2304.00 | 703125.00 | 2441406.25 | 1024.00 | 84375000.00 | 10000.00 | 1000000.00 | |
Calibration scores | |||||||||||
Percentile | 10 | 5.60 | 70.40 | 1.00 | 1.00 | 11.52 | 6635.52 | 4.00 | 6.48 | 439.84 | 1896.00 |
50 | 384.00 | 1944.00 | 6.00 | 48.00 | 518.40 | 78643.20 | 32.00 | 2764.80 | 1837.68 | 63504.00 | |
90 | 10368.00 | 15552.00 | 72.00 | 524.80 | 22413.31 | 562500.00 | 128.00 | 813957.12 | 4724.43 | 290304.00 |
Frequency Cutoff: 1 | High Internet Addiction Symptoms | High Social Media Use | High Geek Behaviour | High Nomophobia | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Consistency Cutoff: 0.90 | Consistency Cutoff: 0.90 | Consistency Cutoff: 0.90 | Consistency Cutoff: 0.90 | |||||||||
1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 | |
Gender | ● | ● | ● | ● | ● | ● | ● | ● | ○ | ● | ||
Age | ● | ● | ● | ● | ○ | |||||||
Body satisfaction | ● | ○ | ○ | |||||||||
Physical attractiveness | ● | ● | ● | ○ | ● | |||||||
Neuroticism | ● | ● | ● | ○ | ● | ● | ● | ● | ● | |||
Extraversion | ● | ● | ● | ● | ● | ● | ||||||
Disinhibition | ● | ● | ● | ● | ● | ● | ● | |||||
Narcissism | ● | ● | ● | ● | ● | ● | ● | ● | ||||
Raw Coverage | 0.24 | 0.23 | 0.23 | 0.29 | 0.28 | 0.26 | 0.13 | 0.12 | 0.12 | 0.21 | 0.17 | 0.17 |
Unique Coverage | 0.012 | 0.044 | 0.010 | 0.017 | 0.020 | 0.004 | 0.026 | 0.015 | 0.008 | 0.042 | 0.028 | 0.016 |
Consistency | 0.88 | 0.90 | 0.91 | 0.91 | 0.88 | 0.91 | 0.89 | 0.89 | 0.89 | 0.85 | 0.94 | 0.90 |
Overall Solution Coverage | 0.46 | 0.56 | 0.33 | 0.41 | ||||||||
Overall Solution Consistency | 0.86 | 0.83 | 0.85 | 0.85 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris, M.; de la Barrera, U.; Schoeps, K.; Montoya-Castilla, I. Psychological Risk Factors that Predict Social Networking and Internet Addiction in Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 4598. https://doi.org/10.3390/ijerph17124598
Peris M, de la Barrera U, Schoeps K, Montoya-Castilla I. Psychological Risk Factors that Predict Social Networking and Internet Addiction in Adolescents. International Journal of Environmental Research and Public Health. 2020; 17(12):4598. https://doi.org/10.3390/ijerph17124598
Chicago/Turabian StylePeris, Montserrat, Usue de la Barrera, Konstanze Schoeps, and Inmaculada Montoya-Castilla. 2020. "Psychological Risk Factors that Predict Social Networking and Internet Addiction in Adolescents" International Journal of Environmental Research and Public Health 17, no. 12: 4598. https://doi.org/10.3390/ijerph17124598
APA StylePeris, M., de la Barrera, U., Schoeps, K., & Montoya-Castilla, I. (2020). Psychological Risk Factors that Predict Social Networking and Internet Addiction in Adolescents. International Journal of Environmental Research and Public Health, 17(12), 4598. https://doi.org/10.3390/ijerph17124598