Influence of a Municipal Solid Waste Landfill on the Surrounding Environment: Landfill Vegetation as a Potential Risk of Allergenic Pollen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation Study and Plant Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Bourn, M.; Robinson, R.; Innocenti, F.; Scheutz, C. Regulating landfills using measured methane emissions: An English perspective. Waste Manag. 2019, 85, 860–869. [Google Scholar] [CrossRef] [PubMed]
- Tansel, B.; Inanloo, B. Odor impact zones around landfills: Delineation based on atmospheric conditions and land use characteristics. Waste Manag. 2019, 88, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Koda, E.; Sieczka, A.; Osiński, P. Ammonium concentration and migration in groundwater in the vicinity of waste management site located in the neighborhood of protected areas of Warsaw, Poland. Sustainability 2016, 8, 1253. [Google Scholar] [CrossRef] [Green Version]
- Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.C.; Fujiwara, T.; Houng, H.J.; Sun, C.H.; Li, W.Y.; Kuo, Y.W. Management of landfill reclamation with regard to biodiversity preservation, global warming mitigation and landfill mining: Experiences from the Asia–Pacific region. J. Clean. Prod. 2015, 104, 364–373. [Google Scholar] [CrossRef]
- Do, Y.; Kim, J.Y.; Kim, G.Y.; Joo, G.J. Importance of closed landfills as green space in space in urbanized areas: Ecological assessment using carabid beetles. Landsc. Ecol. Eng. 2014, 10, 277–284. [Google Scholar] [CrossRef] [Green Version]
- He, S.; Qin, T.; Liu, F.; Liu, S.; Dong, B.; Wang, J.; Nie, H. Eects of Slope Ecological Restoration on Runo and Its Response to Climate Change. Int. J. Environ. Res. Public Health 2019, 16, 4017. [Google Scholar] [CrossRef] [Green Version]
- Koda, E.; Pachuta, K.; Osiński, P. Potential of Plant Applications in the Initial Stage of the Landfill Reclamation Process. Pol. J. Environ. Stud. 2013, 22, 1731–1739. [Google Scholar]
- Salt, M.; Yuen, S.T.S.; Ashwath, N.; Sun, J.; Benaud, P.; Zhu, G.X.; Jaksa, M.B.; Ghadiri, H.; Greenway, M.; Fourie, A.B. Phytocapping of Landfills. In Solid Waste Landfilling: Concepts, Processes, Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 677–688. [Google Scholar]
- Cossu, R.; Garbo, F. Landfill Covers: Principles and Design. In Solid Waste Landfilling. Concepts, Processes, Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 649–676. [Google Scholar]
- Seshadri, B.; Bolan, N.S.; Thangarajan, R.; Jena, U.; Das, K.C.; Wang, H.; Naidu, R. Biomass Energy from Revegetation of Landfill Sites. In Bioremediation and Bioeconomy; Elsevier: Amsterdam, The Netherlands, 2016; pp. 99–109. [Google Scholar]
- Phillips, I.R.; Greenway, M.; Robertson, S. Use of phytocaps in remediation of closed landfills—Correct selection of soil materials. Land Contam. Reclam. 2004, 12, 339–348. [Google Scholar] [CrossRef]
- Scaparrotta, A.; Verini, M.; Consilvio, N.P.; Cingolani, A.; Rapino, D.; Attanasi, M.; Cerasa, M.; Di Pillo, S.; Chiarelli, F. Sensitization to timothy grass pollen allergenic molecules in children. Multidiscip. Respir. Med. 2013, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Plaza, M.P.; Alcázar, P.; Hernández-Ceballos, M.A.; Galán, C. Mismatch in aeroallergens and airborne grass pollen concentrations. Atmos. Environ. 2016, 144, 361–369. [Google Scholar] [CrossRef]
- Romero-Morte, J.; Rojo, J.; Rivero, R.; Fernández-González, F.; Pérez-Badia, R. Standardised index for measuring atmospheric grass-pollen emission. Sci. Total Environ. 2018, 612, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Bogawski, P.; Grewling, Ł.; Nowak, M.; Smith, M.; Jackowiak, B. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland). Int. J. Biometeorol. 2014, 58, 1759–1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buters, J.; Prank, M.; Sofiev, M.; Pusch, G.; Albertini, R.; Annesi-Maesano, I.; Antunes, C.; Behrendt, H.; Berger, U.; Brandao, R.; et al. Variation of the group 5 grass pollen allergen content of airborne pollen in relation to geographic location and time in season. J. Allergy Clin. Immunol. 2015, 136, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Plaza, P.I.; Speziale, K.L.; Lambertucci, S.A. Rubbish dumps as invasive plant epicentres. Biol. Invasions 2018, 20, 2277–2283. [Google Scholar] [CrossRef]
- Canova, C.; Heinrich, J.; Anto, J.M.; Leynaert, B.; Smith, M.; Kuenzli, N.; Zock, J.P.; Janson, C.; Cerveri, I.; de Marco, R.; et al. The influence of sensitisation to pollens and moulds on seasonal variations in asthma attacks. Eur. Respir. J. 2019, 42, 935–994. [Google Scholar] [CrossRef]
- Efstathiou, C.; Isukapalli, S.; Georgopoulos, P. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos. Environ. 2011, 45, 2260–2276. [Google Scholar] [CrossRef] [Green Version]
- Jones, A.; Harrison, R. The effects of meteorological factors on atmospheric bioaerosol concentrations e a review. Sci. Total Environ. 2004, 326, 151–180. [Google Scholar] [CrossRef]
- Kuparinen, A. Mechanistic models for wind dispersal. Trends Plant Sci. 2006, 11, 296–301. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Rantio-Lehtimäki, A. Towards numerical forecasting of long-range air transport of birch pollen: Theoretical considerations and a feasibility study. Int. J. Biometeorol. 2006, 50, 392. [Google Scholar] [CrossRef]
- Ranta, H.; Kubin, E.; Siljamo, P.; Sofiev, M. Long distance pollen transport cause problems for determining the timing of birch pollen season in Fenno-scandia by using phenological observations. Grana 2006, 45, 297–304. [Google Scholar] [CrossRef]
- Skjøth, C.; Sommer, J.; Stach, A.; Smith, M.; Brandt, J. The long-range transport of birch Betula pollen from Poland and Germany causes significant pre-season concentrations in Denmark. Clin. Exp. Allergy 2007, 37, 1204–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Mozo, H. Poaceae pollen as the leading aeroallergen worldwide: A review. Allergy 2017, 72, 1849–1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holgate, S.T.; Thomas, M. Chapter 7—Asthma. In Middleton’s Allergy Essentials, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 151–204. [Google Scholar]
- Radauer, C.; Breiteneder, H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J. Allergy Clin. Immunol. 2006, 117, 141–147. [Google Scholar] [CrossRef]
- Lichovníková, V.; Šťastná, M.; Kotovicová, J.; Vaverková, M.D.; Adamcová, D. The Influence of the Solid Waste Landfill Existence on the Environmental and Economic Situation of Petrůvky Village (Czechia). Eur. Countrys. 2015, 4, 179–194. [Google Scholar] [CrossRef]
- Gworek, B.; Hajduk, A.; Koda, E.; Grochowalski, A.; Jeske, A. Influence of a municipal waste landfill on the spatial distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/Fs) in the natural environment. Chemosphere 2013, 92, 753–759. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Elbl, J.; Radziemska, M.; Adamcová, D.; Kintl, A.; Baláková, L.; Bartoň, S.; Hladký, J.; Kynický, J.; Brtnický, M. Environmental risk assessment and consequences of MSW disposal. Chemosphere 2018, 208, 569–578. [Google Scholar] [CrossRef]
- Tintner, I.; Klug, B. Can vegetation indicate landfill cover features? Fuel Energy Abstr. 2011, 206, 559–566. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Winkler, J.; Adamcová, D.; Raziemska, M.; Uldrjan, D.; Zloch, J. Municipal solid waste landfill—Vegetation succession in an area transformed by human impact. Ecol. Eng. 2019, 129, 109–114. [Google Scholar] [CrossRef]
- Danihelka, J.; Chrtek, J.; Kaplan, Z. Checklist of vascular plants of the Czech Republic. Preslia 2012, 84, 647–811. [Google Scholar]
- Department of Botany and Zoology Faculty of Science Masaryk University. Database of the Czech Flora and Vegetation. 2018. Available online: https://pladias.cz/en/ (accessed on 2 December 2019).
- Pollen Information Service. Meditorial+. 2018. Available online: http://www.pylovasluzba.cz/ (accessed on 2 July 2019).
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination (Version 5.0); Microcomputer Power: Ithaca, NY, USA, 2012. [Google Scholar]
- ČSN 83 8035 (838025) Landfilling of Waste—Landfill Closure and Reclamation, Setting Guidelines for the Establishment and Treatment of Grass Stands on the Landfill Body. 2019. Available online: http://www.technicke-normy-csn.cz/838035-csn-83-8035_4_52116.html (accessed on 2 July 2019).
- Vaverková, M.D.; Adamcová, D. Case study of landfill reclamation at Czech landfill site. Environ. Eng. Manag. J. 2018, 17, 641–648. [Google Scholar] [CrossRef]
- Breza-Boruta, B. Bioaerosols of the municipal waste landfill site as a source of microbiological air pollution and health hazard. Ecol. Chem. Eng. 2012, 19, 851–862. [Google Scholar]
- Breza-Boruta, B. The assessment of airborne bacterial and fungal contamination emitted by a municipal landfill site in Northern Poland. Atmos. Pollut. Res. 2016, 7, 1043–1052. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Z.; Sun, P.; Lin, B.; Li, L.; Wang, Z.; Ma, R.; Xiang, M.; Li, H.; Guo, S. Effects of ambient air pollution from municipal solid waste landfill on children’s non-specific immunity and respiratory health. Environ. Pollut. 2018, 236, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Kormi, T.; Ali, N.B.H.; Abichou, T.; Green, R. Estimation of landfill methane emissions using stochastic search methods. Atmos. Pollut. Res. 2017, 8, 597–605. [Google Scholar] [CrossRef]
- Gębicki, J.; Dymerski, T.; Namieśnik, J. Investigation of Air Quality beside a Municipal Landfill: The Fate of Malodour Compounds as a Model VOC. Environments 2017, 4, 7. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, W.; Wang, H.; Huang, O.; Gao, X. Odor impact assessment of trace sulfur compounds from working faces of landfills in Beijing, China. J. Environ. Manag. 2018, 220, 136–141. [Google Scholar] [CrossRef]
- McInnes, R.N.; Hemming, D.; Burgess, P.; Lyndsay, D.; Osborne, N.J.; Skjøth, C.A.; Thomas, S.; Vardoulakis, S. Mapping allergenic pollen vegetation in UK to study environmental exposure and human health. Sci. Total Environ. 2017, 599–600, 483–499. [Google Scholar] [CrossRef] [Green Version]
- Greiner, A.N.; Hellings, P.W.; Rotiroti, G.; Scadding, G.K. Allergic rhinitis. Lancet 2012, 378, 2112–2212. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Sikoparija, B.; Jager, S. EAN-Network Pollen sources. In Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts; Sofiev, M., Bergmann, K.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–27. [Google Scholar]
- Sofiev, M.; Bergmann, K.C. (Eds.) Chapter 5. In Allergenic Pollen: A Review of the Production, Release, Distribution and Health Impacts; Springer: Berlin/Heidelberg, Germany, 2012; pp. 127–159. [Google Scholar]
- Ramtek, D.S. Reclamation and Remediation of Solid Waste through Bio-chemical Process. In Bioremediation Technology; Springer: Dordrecht, The Netherlands, 2010; pp. 285–314. [Google Scholar]
- Maiti, D.; Maiti, S.K. Ecorestoration of Waste Dump by the Establishment of Grass-Legume Cover. Int. J. Sci. Technol. Res. 2014, 3, 37–41. [Google Scholar]
- Matiti, S.K.; Matiti, D. Ecological restoration of waste dumps by topsoil blanketing, coir-matting and seeding with grass–legume mixture. Ecol. Eng. 2015, 77, 74–84. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Chen, R.; Coo, J.L.; Liu, J.; Ni, J.J.; Chen, Y.M.; Zhan, T.L.T.; Guo, H.W.; Lu, B.W. A novel vegetated three-layer landfill cover system using recycled construction wastes without geomembranes. Can. Geotech. J. 2019, 56, 1863–1875. [Google Scholar] [CrossRef]
- Simmons, E. Restoration of landfill sites for ecological diversity. Waste Manag. Res. 1999, 17, 511–519. [Google Scholar] [CrossRef]
- Rahman, M.L.; Tarrant, S.; McCollin, D.; Ollerton, J. The conservation value of restored landfill sites in the East Midlands, UK for supporting bird communities. Biodivers. Conserv. 2011, 20, 1879–1893. [Google Scholar] [CrossRef]
- Vaverková, M.D.; Radziemska, M.; Bartoň, S.; Cerdà, A.; Koda, E. The use of vegetation as a natural strategy for landfill restoration. Land Degrad. Dev. 2018, 29, 3674–3680. [Google Scholar] [CrossRef]
- Hui, L.C.; Chu, L.M. Identifying suitable tree species for evapotranspiration covers of landfills in humid regions using seedlings. Urban For. Urban Green. 2019, 38, 157–164. [Google Scholar] [CrossRef]
- Kruczek, A.; Puc, M.; Wolskiki, T. Airborne pollen from allergenic herbaceous plants in urban and rural areas of Western Pomerania, NW Poland. Grana 2017, 56, 71–80. [Google Scholar] [CrossRef]
- Garrett, J.K.; White, M.P.; Huang, J.; Ng, S.; Hui, Y.; Leung, C.; Tse, L.A.; Fung, F.; Elliott, L.R.; Depledge, M.H.; et al. Urban blue space and health and wellbeing in Hong Kong: Results from a survey of older adults. Health Place 2019, 55, 100–110. [Google Scholar] [CrossRef]
- Woon, K.S.; Lo, I.M.C. An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator. Resour. Conserv. Recycl. 2016, 107, 104–114. [Google Scholar] [CrossRef]
- Ghosh, S.P.; Thakur, I.S. An integrated approach to study the risk from landfill soil of Delhi: Chemical analyses, in vitro assays and human risk assessment. Ecotoxicol. Environ. Saf. 2017, 143, 120–128. [Google Scholar]
Monitored Sites | |||
---|---|---|---|
Kuchyňky (C) | Petrůvky (B) | Štěpánovice (A) | |
Altitude (m a.s.l.) | 270–285 | 550–650 | 450 |
Basin of River | Morava | Morava | Vltava |
Type of landscape in the landfill surroundings | Intensively used agricultural landscape | Extensively used agricultural landscape | Landscape dominated by forests |
Potential natural vegetation | Floodplain forests | Herb-rich beech forests | Acidophilous beech-fir-birch and pine oak forests |
Blooming Time and Significance of Pollen as Allergen | Monitored Sites | |||
---|---|---|---|---|
Kuchyňky (C) | Petrůvky (B) | Štěpánovice (A) | ||
Total | 192 | 162 | 127 | |
Number of plant species flowering in selected months | February (II) | 3 | 2 | 2 |
March (III) | 13 | 13 | 9 | |
April (IV) | 32 | 43 | 27 | |
May (V) | 92 | 93 | 62 | |
June (VI) | 136 | 112 | 91 | |
July (VII) | 148 | 117 | 105 | |
August (VIII) | 125 | 89 | 88 | |
September (IX) | 94 | 60 | 66 | |
October (X) | 41 | 26 | 33 | |
Plant species | Plant species producing allergenic pollen | 45 | 40 | 29 |
Wind-fertilized plant species not belonging to strong allergens | 7 | 9 | 5 | |
Entomophilous plant species whose pollen gets into the air only at limited extent | 139 | 112 | 92 | |
Plant species with no pollen production (cryptogams) | 1 | 1 | 1 |
Factors | Explained Variation (%) | Statistical Significance (p-Value) | Pseudo F |
---|---|---|---|
Month of blooming | 22.6 | 0.001 | 2.0 |
Landfill locality | 23.0 | 0.001 | 3.6 |
Year of evaluation | 6.0 | 0.2 | 8.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vaverková, M.D.; Adamcová, D.; Winkler, J.; Koda, E.; Červenková, J.; Podlasek, A. Influence of a Municipal Solid Waste Landfill on the Surrounding Environment: Landfill Vegetation as a Potential Risk of Allergenic Pollen. Int. J. Environ. Res. Public Health 2019, 16, 5064. https://doi.org/10.3390/ijerph16245064
Vaverková MD, Adamcová D, Winkler J, Koda E, Červenková J, Podlasek A. Influence of a Municipal Solid Waste Landfill on the Surrounding Environment: Landfill Vegetation as a Potential Risk of Allergenic Pollen. International Journal of Environmental Research and Public Health. 2019; 16(24):5064. https://doi.org/10.3390/ijerph16245064
Chicago/Turabian StyleVaverková, Magdalena Daria, Dana Adamcová, Jan Winkler, Eugeniusz Koda, Jana Červenková, and Anna Podlasek. 2019. "Influence of a Municipal Solid Waste Landfill on the Surrounding Environment: Landfill Vegetation as a Potential Risk of Allergenic Pollen" International Journal of Environmental Research and Public Health 16, no. 24: 5064. https://doi.org/10.3390/ijerph16245064
APA StyleVaverková, M. D., Adamcová, D., Winkler, J., Koda, E., Červenková, J., & Podlasek, A. (2019). Influence of a Municipal Solid Waste Landfill on the Surrounding Environment: Landfill Vegetation as a Potential Risk of Allergenic Pollen. International Journal of Environmental Research and Public Health, 16(24), 5064. https://doi.org/10.3390/ijerph16245064