Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sampling
2.2. Processing of Soil Physicochemical Properties
2.3. DNA Extraction, PCR Amplification, and Illumina Miseq Sequencing
2.4. Bioinformatics and Statistical Analysis
2.5. Soil Bacterial Molecular Ecological Network Construction and Analyses
3. Results
3.1. Effects of Coal Mining Cracks on Soil Physicochemical Properties
3.2. Effects of Coal Mining Cracks on Soil Bacterial Community Structures
3.2.1. Effects of Coal Mining Cracks on Soil Bacterial Community Diversity
3.2.2. Effects of Coal Mining Cracks on the Soil Bacterial Community Composition
3.3. Effects of Coal Mining Cracks on Soil Bacterial Community Interactions
3.3.1. Effects of Coal Mining Cracks on the Topological Properties of the Soil Bacterial Molecular Ecological Network
3.3.2. Effects of Coal Mining Cracks on the Topological Roles of Soil Bacterial Molecular Ecological Network Nodes
3.3.3. Soil Bacterial Molecular Ecological Network Analysis in the LC and CLC
3.4. Effects of Coal Mining Cracks on the Relationship between Soil Bacterial Communities and Physicochemical Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IEA. Coal 2017. Available online: https://www.iea.org/coal2017/ (accessed on 1 June 2019).
- Lockie, S.; Franettovich, M.; Petkova-Timmer, V.; Rolfe, J.; Ivanova, G. Coal mining and the resource community cycle: A longitudinal assessment of the social impacts of the Coppabella coal mine. Environ. Impact Assess. Rev. 2009, 29, 330–339. [Google Scholar] [CrossRef]
- Morrice, E.; Colagiuri, R. Coal mining, social injustice and health: A universal conflict of power and priorities. Health Place 2013, 19, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Stern, N.; Wu, T.; Lu, J.; Green, F. China’s post-coal growth. Nat. Geosci. 2016, 9, 564. [Google Scholar] [CrossRef] [Green Version]
- Bian, Z.; Miao, X.; Lei, S.; Chen, S.-E.; Wang, W.; Struthers, S. The challenges of reusing mining and mineral-processing wastes. Science 2012, 337, 702–703. [Google Scholar] [CrossRef] [PubMed]
- Bian, Z.; Inyang, H.I.; Daniels, J.L.; Otto, F.; Struthers, S. Environmental issues from coal mining and their solutions. Min. Sci. Technol. (China) 2010, 20, 215–223. [Google Scholar] [CrossRef]
- Liu, H.; Liu, Z. Recycling utilization patterns of coal mining waste in China. Resour. Conserv. Recycl. 2010, 54, 1331–1340. [Google Scholar] [CrossRef]
- Luo, X.; Bai, Z.; Huang, B.; Sun, P. Study on reclamation potential of coal mine damaged land in China. In Proceedings of the Fourth China Mining Land Reclamation and Ecological Restoration Seminar, Taian, China, 23–25 October 2015. [Google Scholar]
- Bian, Z.; Dong, J.; Lei, S.; Leng, H.; Mu, S.; Wang, H. The impact of disposal and treatment of coal mining wastes on environment and farmland. Environ. Geol. 2009, 58, 625–634. [Google Scholar] [CrossRef]
- Geremias, R.; Pedrosa, R.C.; Benassi, J.C.; Fávere, V.T.; Stolberg, J.; Menezes, C.T.B.; Laranjeira, M.C.M. Remediation of coal mining wastewaters using chitosan microspheres. Environ. Technol. 2003, 24, 1509–1515. [Google Scholar] [CrossRef]
- Zhang, D.; Qi, X.; Yin, G.; Zheng, B. Coal and rock fissure evolution and distribution characteristics of multi-seam mining. Int. J. Min. Sci. Technol. 2013, 23, 835–840. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, N.; Tian, S. Mining-induced movement properties and fissure time-space evolution law in overlying strata. Int. J. Min. Sci. Technol. 22012, 22, 817–820. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, X.; He, A. Distribution characteristic and development rules of ground fissures due to coal mining in windy and sandy region. J. China Coal Soc. 2014, 39, 11–18. (In Chinese) [Google Scholar]
- Jung, H.C.; Kim, S.-W.; Jung, H.-S.; Min, K.D.; Won, J.-S. Satellite observation of coal mining subsidence by persistent scatterer analysis. Eng. Geol. 2007, 92, 1–13. [Google Scholar] [CrossRef]
- Kalogirou, E.E.; Tsapanos, T.M.; Karakostas, V.G.; Marinos, V.P.; Chatzipetros, A. Ground fissures in the area of Mavropigi Village (N. Greece): Seismotectonics or mining activity? Acta Geophys. 2014, 62, 1387–1412. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Yang, Y.; Jia, R.; Wang, X. Estimation of disturbance range by ground cracks in loess plateau mining area. China Coal 2013, 3, 111–115. (In Chinese) [Google Scholar]
- Liu, H.; Deng, K.; Lei, S.; Bian, Z. Mechanism of formation of sliding ground fissure in loess hilly areas caused by underground mining. Int. J. Min. Sci. Technol. 2015, 25, 553–558. [Google Scholar] [CrossRef]
- Liu, H.; Deng, K.; Zhu, X.; Jiang, C. Effects of mining speed on the developmental features of mining-induced ground fissures. Bull. Eng. Geol. Environ. 2019, 78, 6297–6309. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, F.; Zhang, Y.; Guo, J. Monitoring and mechanisms of ground deformation and ground fissures induced by cut-and-fill mining in the Jinchuan Mine 2, China. Environ. Earth Sci. 2013, 68, 1903–1911. [Google Scholar] [CrossRef]
- Li, L.; Wu, K.; Hu, Z.; Xu, Y.; Zhou, D. Analysis of developmental features and causes of the ground cracks induced by oversized working face mining in an aeolian sand area. Environ. Earth Sci. 2017, 76, 135. [Google Scholar] [CrossRef]
- Kan, W.; Zhenqi, H.; Jiang, C. Distribution law of ground crack induced by coal mining. J. China Univ. Min. Technol. 1997, 26, 56–59. (In Chinese) [Google Scholar]
- Wu, L.; Tian, J.; Tang, Y.; Zhu, Z. Effects of collapse-fissure on soil moisture in arid and semi-arid mining areas. South North Water Transf. Water Sci. Technol. 2019, 17, 115–120. (In Chinese) [Google Scholar]
- Zhang, Y.; Bi, Y.; Chen, S.; Wang, J.; Han, B.; Feng, Y. Effects of subsidence fracture caused by coal-mining on soil moisture content in semi-arid windy desert area. Environ. Sci. Technol. 2015, 38, 11–14. (In Chinese) [Google Scholar]
- Wang, J.; Kang, J.; Hu, J. Influential research of mining ground fissures on water and soil resources. Shanxi Coal 2011, 31, 27–30. (In Chinese) [Google Scholar]
- Li, E.; Zhao, Y.; Peng, M.; Wang, X.; Zeng, J.; Yu, Y.; Gao, Y. Research on the impact of ground crack on soil nitrogen in sandy area pit mining. Adv. Mater. Res. 2013, 488, 157–161. (In Chinese) [Google Scholar] [CrossRef]
- He, M.; Gao, Y.; Chen, X.; Zhang, Y.; Ma, Y.B.; Huang, Y. Effect of cracks of coal mining subsidence on soil available nutrients. North. Hortic. 2014, 9, 186–188. (In Chinese) [Google Scholar]
- Kundu, N.K.; Ghose, M.K. Studies on, the topsoil of an underground coal-mining project. Environ. Conserv. 1994, 21, 126–132. [Google Scholar] [CrossRef]
- Bi, Y.; Zhang, J.; Song, Z.; Wang, Z.; Qiu, L.; Hu, J.; Gong, Y. Arbuscular mycorrhizal fungi alleviate root damage stress induced by simulated coal mining subsidence ground fissures. Sci. Total Environ. 2019, 652, 398–405. [Google Scholar] [CrossRef]
- Sun, H.; Li, X.; Hu, Z.; Liu, X.; Zhong, W. Variance of reclamation soil quality in Majiata opencast mine region. Trans. Chin. Soc. Agric. Eng. 2008, 24, 205–209. (In Chinese) [Google Scholar]
- Rui, W.; Shouchen, M.; Hebing, Z. Effects of surface cracks caused by high intensity coal mining on soil microbial characteristics and plant communities in arid regions. Res. Environ. Sci. 2016, 29, 1249–1255. (In Chinese) [Google Scholar]
- Li, P.; Zhang, X.; Hao, M.; Cui, Y.; Zhu, S.; Zhang, Y. Effects of vegetation restoration on soil bacterial communities, enzyme activities, and nutrients of reconstructed soil in a mining area on the Loess Plateau, China. Sustainability 2019, 11, 2295. [Google Scholar] [CrossRef] [Green Version]
- Claassens, S.; van Rensburg, P.J.J.; Maboeta, M.S.; van Rensburg, L. Soil microbial community function and structure in a post-mining chronosequence. Water Air Soil Pollut. 2008, 194, 315–329. [Google Scholar] [CrossRef]
- Claassens, S.; Van Rensburg, P.J.J.; Van Rensburg, L. Soil microbial community structure of coal mine discard under rehabilitation. Water Air Soil Pollut. 2006, 174, 355–366. [Google Scholar] [CrossRef]
- Mummey, D.L.; Stahl, P.D.; Buyer, J.S. Soil microbiological properties 20 years after surface mine reclamation: Spatial analysis of reclaimed and undisturbed sites. Soil Biol. Biochem. 2002, 34, 1717–1725. [Google Scholar] [CrossRef]
- Helingerová, M.; Frouz, J.; Šantrůčková, H. Microbial activity in reclaimed and unreclaimed post-mining sites near Sokolov (Czech Republic). Ecol. Eng. 2010, 36, 768–776. [Google Scholar] [CrossRef]
- Li, Y.; Chen, L.; Wen, H.; Zhou, T.; Zhang, T.; Gao, X. 454 Pyrosequencing analysis of bacterial diversity revealed by a comparative study of soils from mining subsidence and reclamation areas. J. Microbiol. Biotechnol. 2014, 24, 313–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, H.; Wang, C.; Ding, Z.; Zhang, S.; Yang, Y.; Ma, J.; Chen, F.; Li, J. Variation in the soil microbial community of reclaimed land over different reclamation periods. Sustainability 2018, 10, 2286. [Google Scholar] [CrossRef] [Green Version]
- Urbanová, M.; Kopecký, J.; Valášková, V.; Ságová-Marečková, M.; Elhottová, D.; Kyselková, M.; Moënne-Loccoz, Y.; Baldrian, P. Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiol. Ecol. 2011, 78, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Yang, Y. Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2. mBio 2011, 2, e00122-11. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Deng, Y.; Luo, F.; He, Z.; Tu, Q.; Zhi, X. Functional molecular ecological networks. mBio 2010, 1, e00169-10. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Yang, Y.; Zhong, J.; Gao, H.; Khan, L.; Thompson, D.K.; Zhou, J. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory. BMC Bioinform. 2007, 8, 299. [Google Scholar] [CrossRef] [Green Version]
- Luo, F.; Zhong, J.; Yang, Y.; Scheuermann, R.H.; Zhou, J. Application of random matrix theory to biological networks. Phys. Lett. A 2006, 357, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Jiang, Y.-H.; Yang, Y.; He, Z.; Luo, F.; Zhou, J. Molecular ecological network analyses. BMC Bioinform. 2012, 13, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agler, M.T.; Ruhe, J.; Kroll, S.; Morhenn, C.; Kim, S.-T.; Weigel, D.; Kemen, E.M. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol. 2016, 14, e1002352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barberán, A.; Bates, S.T.; Casamayor, E.O.; Fierer, N. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 2011, 6, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, C.-E.T.; Kim, D.Y.; Sachdeva, R.; Caron, D.A.; Fuhrman, J.A. Top-down controls on bacterial community structure: Microbial network analysis of bacteria, T4-like viruses and protists. ISME J. 2013, 8, 816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Zhang, P.; Qin, Y.; Tu, Q.; Yang, Y.; He, Z.; Schadt, C.W.; Zhou, J. Network succession reveals the importance of competition in response to emulsified vegetable oil amendment for uranium bioremediation. Environ. Microbiol. 2016, 18, 205–218. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Nuccio, E.E.; Shi, Z.J.; He, Z.; Zhou, J.; Firestone, M.K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 2016, 19, 926–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, Q.; Yuan, M.; He, Z.; Deng, Y.; Xue, K.; Wu, L.; Hobbie, S.E.; Reich, P.B.; Zhou, J. Fungal communities respond to long-term CO2 elevation by community reassembly. Appl. Environ. Microbiol. 2015, 81, 2445–2454. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, R.; Zheng, Q.; Deng, Y.; Van Nostrand, J.D.; Zhou, J.; Jiao, N. Bacterioplankton community resilience to ocean acidification: Evidence from microbial network analysis. ICES J. Mar. Sci. 2015, 73, 865–875. [Google Scholar] [CrossRef]
- Ma, J.; Luo, Z.; Chen, F.; Chen, R.; Zhu, Q.; Zhang, S. Impacts of elevated CO2 levels on the soil bacterial community in a natural CO2-enhanced oil recovery area. Diversity 2019, 11, 77. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Zhang, Y.; Deng, Y.; Cong, J.; Lu, H.; Sun, X.; Yang, C.; Yuan, T.; Van Nostrand, J.D.; Li, D.; et al. Integrated metagenomics and network analysis of soil microbial community of the forest timberline. Sci. Rep. 2015, 5, 7994. [Google Scholar] [CrossRef] [Green Version]
- Berg, M.P.; Kirrs, E.T.; Driessen, G.; Van Der Heijden, M.; Kooi, B.W.; Kuenen, F.; Liefting, M.; Verhoef, H.A.; Ellers, J. Adapt or disperse: Understanding species persistence in a changing world. Glob. Chang. Biol. 2010, 16, 587–598. [Google Scholar] [CrossRef]
- Classen, A.T.; Sundqvist, M.K.; Henning, J.A.; Newman, G.S.; Moore, J.A.M.; Cregger, M.A.; Moorhead, L.C.; Patterson, C.M. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere 2015, 6, 1–21. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Han, X.; Deng, Y. Higher precipitation strengthens the microbial interactions in semi-arid grassland soils. Glob. Ecol. Biogeogr. 2018, 27, 570–580. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Luo, Z.; Ma, J.; Chen, F.; Li, X.; Zhang, S. Effects of Pb smelting on the soil bacterial community near a secondary lead plant. Int. J. Environ. Res. Public Health 2018, 15, 1030. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziegler, M.; Seneca, F.O.; Yum, L.K.; Palumbi, S.R.; Voolstra, C.R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 2017, 8, 14213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 1984, 11, 265–270. [Google Scholar] [CrossRef]
- Chao, A.; Yang, M.C.K. Stopping rules and estimation for recapture debugging with unequal failure rates. Biometrika 1993, 80, 193–201. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Chang, W.R. Graphics Cookbook: Practical Recipes for Visualizing Data; O’Reilly Media, Inc.: Newton, MA, USA, 2012. [Google Scholar]
- Olesen, J.M.; Bascompte, J.; Dupont, Y.L.; Jordano, P. The modularity of pollination networks. Proc. Natl. Acad. Sci. USA 2007, 104, 19891–19896. [Google Scholar] [CrossRef] [Green Version]
- Guimerà, R.; Sales-Pardo, M.; Amaral, L.A.N. Classes of complex networks defined by role-to-role connectivity profiles. Nat. Phys. 2007, 3, 63–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Selim, H.M.; Kirkham, D. Soil temperature and water content changes during drying as influenced by cracks: A laboratory experiment 1. Soil Sci. Soc. Am. J. 1970, 34, 565–569. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, W.; Zhu, L.; Wang, C.; Sheng, L.; Chen, Y. Effects of roots and salinity on law of development for farmland soil desiccation crack. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2014, 30, 83–89. (In Chinese) [Google Scholar] [CrossRef]
- James, D.W.; Hurst, C.J.; Tindall, T.A. Alfalfa cultivar response to phosphorus and potassium deficiency: Elemental composition of the herbage. J. Plant Nutr. 1995, 18, 2447–2464. [Google Scholar] [CrossRef]
- Augustin, S.; Mindrup, M.; Meiwes, K.J. Soil chemistry. In Magnesium Deficiency in Forest Ecosystems; Hüttl, R.F., Schaaf, W., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Averill, C.; Waring, B.G.; Hawkes, C.V. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture. Glob. Chang. Biol. 2016, 22, 1957–1964. [Google Scholar] [CrossRef]
- Uhlířová, E.; Elhottová, D.; Tříska, J.; Šantrůčková, H. Physiology and microbial community structure in soil at extreme water content. Folia Microbiol. 2005, 50, 161. [Google Scholar] [CrossRef]
- Feng, Y.; Grogan, P.; Caporaso, J.G.; Zhang, H.; Lin, X.; Knight, R.; Chu, H. pH is a good predictor of the distribution of anoxygenic purple phototrophic bacteria in Arctic soils. Soil Biol. Biochem. 2014, 74, 193–200. [Google Scholar] [CrossRef]
- Shen, C.; Xiong, J.; Zhang, H.; Feng, Y.; Lin, X.; Li, X.; Liang, W.; Chu, H. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol. Biochem. 2013, 57, 204–211. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado-Baquerizo, M.; Oliverio, A.M.; Brewer, T.E.; Benavent-González, A.; Eldridge, D.J.; Bardgett, R.D.; Maestre, F.T.; Singh, B.K.; Fierer, N. A global atlas of the dominant bacteria found in soil. Science 2018, 359, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malard, L.A.; Anwar, M.Z.; Jacobsen, C.S.; Pearce, D.A. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol. Ecol. 2019, 95, fiz128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djukic, I.; Zehetner, F.; Mentler, A.; Gerzabek, M.H. Microbial community composition and activity in different Alpine vegetation zones. Soil Biol. Biochem. 2010, 42, 155–161. [Google Scholar] [CrossRef]
- Klimek, B.; Niklińska, M.; Jaźwa, M.; Tarasek, A.; Tekielak, I.; Musielok, Ł. Covariation of soil bacteria functional diversity and vegetation diversity along an altitudinal climatic gradient in the Western Carpathians. Pedobiologia 2015, 58, 105–112. [Google Scholar] [CrossRef]
- Chodak, M.; Niklińska, M. Effect of texture and tree species on microbial properties of mine soils. Appl. Soil Ecol. 2010, 46, 268–275. [Google Scholar] [CrossRef]
Soil Physicochemical Properties | LC | CLC | p2 |
---|---|---|---|
Soil water/W (%) | 15.60 ± 2.45 1 | 17.35 ± 5.22 | 0.266 |
Soil temperature/T (°C) | 21.24 ± 0.71 | 26.14 ± 2.98 | <0.001 *** |
pH | 7.20 ± 0.30 | 7.64 ± 0.37 | 0.002 ** |
Electrical conductivity/EC (ms·cm−3) | 13.83 ± 8.68 | 16.13 ± 6.92 | 0.446 |
Organic matter/OM (g·kg−1) | 2.64 ± 0.72 | 4.37 ± 2.65 | 0.026 * |
Available phosphorus/AP (mg·kg−1) | 107.04 ± 35.67 | 147.49 ± 40.00 | 0.009 ** |
Available potassium/AK (mg·kg−1) | 69.00 ± 32.78 | 165.57 ± 131.80 | 0.013 * |
Nitrate nitrogen/NN (mg·kg−1) | 1.68 ± 2.21 | 3.37 ± 2.67 | 0.08 |
Ammonium nitrogen/AN (mg·kg−1) | 1.23 ± 0.27 | 0.76 ± 0.17 | <0.001 *** |
Molecular Ecological Network Topological Properties | LC | CLC |
---|---|---|
Number of original OTUs 1 | 469 | 448 |
Similarity threshold 2 | 0.81 | 0.81 |
Total nodes 3 | 158 | 260 |
Total links 4 | 273 | 388 |
R square of power-law 5 | 0.824 | 0.926 |
Average degree 6 | 3.456 | 2.985 |
Average clustering coefficient 7 | 0.209 | 0.155 |
Average path distance 8 | 5.663 | 6.608 |
Geodesic efficiency 9 | 0.230 | 0.200 |
Maximal degree 10 | 14 | 15 |
Density 11 | 0.022 | 0.012 |
Transitivity 12 | 0.328 | 0.274 |
Connectedness 13 | 0.744 | 0.611 |
Module 14 | 15 | 31 |
Modularity 15 | 0.687 | 0.710 |
Soil Physicochemical Properties | LC | CLC | ||
---|---|---|---|---|
Mantel r | p | Mantel r | p | |
W (%) | −0.0934 | 0.999 | −0.0087 | 0.485 |
T (°C) | 0.1578 | 0.001 | −0.0596 | 0.961 |
pH | 0.0811 | 0.050 | 0.0769 | 0.022 |
EC (ms·cm−3) | 0.1803 | 0.003 | −0.0554 | 0.944 |
OM (g·kg−1) | 0.0505 | 0.092 | 0.0126 | 0.340 |
AP (mg·kg−1) | −0.0086 | 0.486 | −0.0455 | 0.875 |
AK (mg·kg−1) | −0.0339 | 0.722 | −0.0332 | 0.743 |
NN (mg·kg−1) | 0.1790 | 0.003 | −0.0769 | 0.998 |
AN (mg·kg−1) | 0.0356 | 0.198 | −0.0180 | 0.607 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Ma, J.; Chen, F.; Li, X.; Hou, H.; Zhang, S. Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China. Int. J. Environ. Res. Public Health 2019, 16, 4892. https://doi.org/10.3390/ijerph16244892
Luo Z, Ma J, Chen F, Li X, Hou H, Zhang S. Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China. International Journal of Environmental Research and Public Health. 2019; 16(24):4892. https://doi.org/10.3390/ijerph16244892
Chicago/Turabian StyleLuo, Zhanbin, Jing Ma, Fu Chen, Xiaoxiao Li, Huping Hou, and Shaoliang Zhang. 2019. "Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China" International Journal of Environmental Research and Public Health 16, no. 24: 4892. https://doi.org/10.3390/ijerph16244892
APA StyleLuo, Z., Ma, J., Chen, F., Li, X., Hou, H., & Zhang, S. (2019). Cracks Reinforce the Interactions among Soil Bacterial Communities in the Coal Mining Area of Loess Plateau, China. International Journal of Environmental Research and Public Health, 16(24), 4892. https://doi.org/10.3390/ijerph16244892