Environmental Influences on Mammographic Breast Density in California: A Strategy to Reduce Breast Cancer Risk
Abstract
:1. Introduction
2. Approach
2.1. Framework to Expand Research on Environmental Exposure and MBD
- Geographic Information Systems (GIS) studies to map high MBD hotspots and associated geographic distribution of exposures;
- Prospective epidemiological studies that link MBD to environmental factors during WOS;
- Multiple ‘omics investigations to discover individual pathways to risk;
- Developmental toxicology studies to confirm causation and investigate mechanism.
2.2. GIS Studies of Environmental Determinants of MBD
2.3. Prospective Epidemiological Studies of the Environment and MBD
2.4. Beyond Descriptive Studies: ‘Omics
2.5. Beyond Human Studies to Discover Mechanism
2.6. Creating Change to Prevent Breast Cancer
3. Barriers and Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Boyd, N.F.; Rommens, J.M.; Vogt, K.; Lee, V.; Hopper, J.L.; Yaffe, M.J.; Paterson, A.D. Mammographic breast density as an intermediate phenotype for breast cancer. Lancet Oncol. 2005, 6, 798–808. [Google Scholar] [CrossRef]
- Pettersson, A.; Graff, R.E.; Ursin, G.; Santos Silva, I.D.; McCormack, V.; Baglietto, L.; Vachon, C.; Bakker, M.F.; Giles, G.G.; Chia, K.S.; et al. Mammographic density phenotypes and risk of breast cancer: A meta-analysis. J. Natl. Cancer Inst. 2014, 106. [Google Scholar] [CrossRef] [PubMed]
- Posso, M.; Louro, J.; Sanchez, M.; Roman, M.; Vidal, C.; Sala, M.; Bare, M.; Castells, X. Mammographic breast density: How it affects performance indicators in screening programmes? Eur. J. Radiol. 2019, 110, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Krieger, N.; Waterman, P.D.; Gryparis, A.; Coull, B.A. Black carbon exposure, socioeconomic and racial/ethnic spatial polarization, and the Index of Concentration at the Extremes (ICE). Health Place 2015, 34, 215–228. [Google Scholar] [CrossRef]
- Green, V.L. Mammographic Breast Density and Breast Cancer Risk: Implications of the Breast Density Legislation for Health Care Practitioners. Clin. Obstet. Gynecol. 2016, 59, 419–438. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Schmidt, D.F.; Makalic, E.; Dite, G.S.; Stone, J.; Apicella, C.; Bui, M.; Macinnis, R.J.; Odefrey, F.; Cawson, J.N.; et al. Explaining variance in the cumulus mammographic measures that predict breast cancer risk: A twins and sisters study. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2395–2403. [Google Scholar] [CrossRef]
- Byrne, C.; Ursin, G.; Martin, C.F.; Peck, J.D.; Cole, E.B.; Zeng, D.; Kim, E.; Yaffe, M.D.; Boyd, N.F.; Heiss, G.; et al. Mammographic Density Change With Estrogen and Progestin Therapy and Breast Cancer Risk. J. Natl. Cancer Inst. 2017, 109. [Google Scholar] [CrossRef]
- Boyd, N.F.; Martin, L.J.; Rommens, J.M.; Paterson, A.D.; Minkin, S.; Yaffe, M.J.; Stone, J.; Hopper, J.L. Mammographic density: A heritable risk factor for breast cancer. Methods Mol. Biol. 2009, 472, 343–360. [Google Scholar] [CrossRef]
- Engmann, N.J.; Scott, C.G.; Jensen, M.R.; Ma, L.; Brandt, K.R.; Mahmoudzadeh, A.P.; Malkov, S.; Whaley, D.H.; Hruska, C.B.; Wu, F.F.; et al. Longitudinal Changes in Volumetric Breast Density with Tamoxifen and Aromatase Inhibitors. Cancer Epidemiol. Biomark. 2017, 26, 930–937. [Google Scholar] [CrossRef]
- Liu, Y.; Tamimi, R.M.; Colditz, G.A.; Bertrand, K.A. Alcohol consumption across the life course and mammographic density in premenopausal women. Breast Cancer Res. Treat. 2018, 167, 529–535. [Google Scholar] [CrossRef]
- Terry, M.B. Consistency, now what? Breast Cancer Res. 2017, 19, 85. [Google Scholar] [CrossRef] [PubMed]
- Hopper, J.L.; Dite, G.S.; MacInnis, R.J.; Liao, Y.; Zeinomar, N.; Knight, J.A.; Southey, M.C.; Milne, R.L.; Chung, W.K.; Giles, G.G.; et al. Age-specific breast cancer risk by body mass index and familial risk: Prospective family study cohort (ProF-SC). Breast Cancer Res. 2018, 20, 132. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.B.; Cohn, B.A.; Goldberg, M.; Flom, J.D.; Wei, Y.; Houghton, L.C.; Tehranifar, P.; McDonald, J.A.; Protacio, A.; Cirillo, P.; et al. Do Birth Weight and Weight Gain During Infancy and Early Childhood Explain Variation in Mammographic Density in Women in Midlife? Results From Cohort and Sibling Analyses. Am. J. Epidemiol. 2019, 188, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Terry, M.B.; Michels, K.B.; Brody, J.G.; Byrne, C.; Chen, S.; Jerry, D.J.; Malecki, K.M.C.; Martin, M.B.; Miller, R.L.; Neuhausen, S.L.; et al. Environmental exposures during windows of susceptibility for breast cancer: A framework for prevention research. Breast Cancer Res. 2019, 21, 96. [Google Scholar] [CrossRef] [PubMed]
- White, A.J.; Weinberg, C.R.; O’Meara, E.S.; Sandler, D.P.; Sprague, B.L. Airborne metals and polycyclic aromatic hydrocarbons in relation to mammographic breast density. Breast Cancer Res. 2019, 21, 24. [Google Scholar] [CrossRef]
- Mora-Pinzon, M.C.; Trentham-Dietz, A.; Gangnon, R.E.; Adams, S.V.; Hampton, J.M.; Burnside, E.; Shafer, M.M.; Newcomb, P.A. Urinary Magnesium and Other Elements in Relation to Mammographic Breast Density, a Measure of Breast Cancer Risk. Nutr. Cancer 2018, 70, 441–446. [Google Scholar] [CrossRef]
- Sprague, B.L.; Trentham-Dietz, A.; Hedman, C.J.; Wang, J.; Hemming, J.D.; Hampton, J.M.; Buist, D.S.; Aiello Bowles, E.J.; Sisney, G.S.; Burnside, E.S. Circulating serum xenoestrogens and mammographic breast density. Breast Cancer Res. 2013, 15, R45. [Google Scholar] [CrossRef]
- Diorio, C.; Dumas, I.; Sandanger, T.M.; Ayotte, P. Levels of circulating polychlorinated biphenyls and mammographic breast density. Anticancer Res. 2013, 33, 5483–5489. [Google Scholar]
- McDonald, J.A.; Cirillo, P.M.; Tehranifar, P.; Krigbaum, N.Y.; Engmann, N.J.; Cohn, B.A.; Terry, M.B. In utero DDT exposure and breast density in early menopause by maternal history of breast cancer. Reprod. Toxicol. 2019. [Google Scholar] [CrossRef]
- Krigbaum, N.Y.; Cirillo, P.M.; McDonald, J.A.; Flom, J.D.; Terry, M.B.; Cohn, B.A. In Utero DDT Exposure and Breast Density Before Age 50. Reprod. Toxicol. 2019. [Google Scholar] [CrossRef]
- Sprague, B.L.; Kerlikowske, K.; Bowles, E.J.A.; Rauscher, G.H.; Lee, C.I.; Tosteson, A.N.A.; Miglioretti, D.L. Trends in Clinical Breast Density Assessment From the Breast Cancer Surveillance Consortium. J. Natl. Cancer Inst. 2019. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Li, S.; Cirillo, P.; Krigbaum, N.; Tran, V.; Ishikawa, T.; La Merrill, M.A.; Jones, D.P.; Cohn, B. Metabolome Wide Association Study of serum DDT and DDE in Pregnancy and Early Postpartum. Reprod. Toxicol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Chau, S.L.; Alabaster, A.; Luikart, K.; Brenman, L.M.; Habel, L.A. The Effect of California’s Breast Density Notification Legislation on Breast Cancer Screening. J. Prim. Care Community Health 2017, 8, 55–62. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Statistics Center. Available online: https://cancerstatisticscenter.cancer.org/#!/state/California (accessed on 14 October 2019).
- California Department of Public Health; California Environmental Protection Agencey Offic of Envrionmental Health Hazard Assessment; California Department of Toxic Substances Control. Biomonitoring California. Available online: https://biomonitoring.ca.gov/ (accessed on 14 October 2019).
- Buermeyer, N. Challenge Highlights Innovations in Breast Cancer Prevention. Available online: https://link.ucop.edu/2019/05/21/challenge-highlights-innovations-in-breast-cancer-prevention/ (accessed on 14 October 2019).
- Krieger, N.; Singh, N.; Waterman, P.D. Metrics for monitoring cancer inequities: Residential segregation, the Index of Concentration at the Extremes (ICE), and breast cancer estrogen receptor status (USA, 1992–2012). Cancer Causes Control 2016, 27, 1139–1151. [Google Scholar] [CrossRef]
- Boronow, K.E.; Susmann, H.P.; Gajos, K.Z.; Rudel, R.A.; Arnold, K.C.; Brown, P.; Morello-Frosch, R.; Havas, L.; Brody, J.G. DERBI: A Digital Method to Help Researchers Offer "Right-to-Know" Personal Exposure Results. Environ. Health Perspect. 2017, 125, A27–A33. [Google Scholar] [CrossRef]
- Brody, J.; Havas, L.; Boronow, K.; Plumb, M.; Rudel, R.; Susmann, H.; Cohn, B. MyCHDSReport: An Online Portal for Reporting Chemical Exposures to Study Participants. In Proceedings of the California Breast Cancer Research Program 2016 Conference: Joining Forces to Understand the Causes of Breast Cancer South San Francisco Conference Center, South San Francisco, CA, USA, 29 February 2016. [Google Scholar]
- Interagency Breast Cancer and Environmental Research Coordinating Committee. Breast Cancer and the Environment: Prioritizing Prevention. Available online: https://www.niehs.nih.gov/about/assets/docs/breast_cancer_and_the_environment_prioritizing_prevention_508.pdf (accessed on 14 October 2019).
- Krieger, N. Follow the North Star: Why Space, Place, and Power Matter for Geospatial Approaches to Cancer Control and Health Equity. Cancer Epidemiol. Biomark. Prev. 2017, 26, 476–479. [Google Scholar] [CrossRef]
- Dettmer, K.; Aronov, P.A.; Hammock, B.D. Mass spectrometry-based metabolomics. Mass Spectrom. Rev. 2007, 26, 51–78. [Google Scholar] [CrossRef]
- Walker, D.I.; Go, Y.-M.; Liu, K.; Pennell, K.D.; Jones, D.P. Chapter 7-Population Screening for Biological and Environmental Properties of the Human Metabolic Phenotype: Implications for Personalized Medicine A2-Holmes, Elaine. In Metabolic Phenotyping in Personalized and Public Healthcare; Nicholson, J.K., Darzi, A.W., Lindon, J.C., Eds.; Academic Press: Boston, MA, USA, 2016; pp. 167–211. [Google Scholar] [CrossRef]
- Hu, X.; Li, S.; Cirillo, P.M.; Krigbaum, N.Y.; Tran, V.; Jones, D.P.; Cohn, B.A. Metabolome Wide Association Study of Serum Poly and Perfluoroalkyl Substances (PFASs) in Pregnancy and Early Postpartum. Reprod. Toxicol. 2019, 87, 70–78. [Google Scholar] [CrossRef]
- Li, S.; Cirillo, P.; Hu, X.; Tran, V.; Krigbaum, N.; Yu, S.; Jones, D.P.; Cohn, B. Understanding mixed environmental exposures using metabolomics via a hierarchical community network model in a cohort of California women in 1960’s. Reprod. Toxicol. 2019. [Google Scholar] [CrossRef]
- Salimi, Y.; Shahandeh, K.; Malekafzali, H.; Loori, N.; Kheiltash, A.; Jamshidi, E.; Frouzan, A.S.; Majdzadeh, R. Is Community-based Participatory Research (CBPR) Useful? A Systematic Review on Papers in a Decade. Int. J. Prev. Med. 2012, 3, 386–393. [Google Scholar]
- Smith, A.; Vidal, G.A.; Pritchard, E.; Blue, R.; Martin, M.Y.; Rice, L.J.; Brown, G.; Starlard-Davenport, A. Sistas Taking a Stand for Breast Cancer Research (STAR) Study: A Community-Based Participatory Genetic Research Study to Enhance Participation and Breast Cancer Equity among African American Women in Memphis, TN. Int. J. Environ. Res. Public Health 2018, 15, 2899. [Google Scholar] [CrossRef] [PubMed]
- Hébert, J.R.; Braun, K.L.; Meade, C.D.; Bloom, J.; Kobetz, E. Community-Based Participatory Research Adds Value to the National Cancer Institute’s Research Portfolio. Prog. Community Health Partn. 2015, 9, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- UCTV; U.o.C.T. California Ports: Air Pollution Interventions and Breast Cancer Risk in Local Communities. Available online: https://www.youtube.com/watch?v=Z0z549QKruc (accessed on 14 October 2019).
- Goodman, M.; LaKind, J.S.; Fagliano, J.A.; Lash, T.L.; Wiemels, J.L.; Winn, D.M.; Patel, C.; Van Eenwyk, J.; Kohler, B.A.; Schisterman, E.F.; et al. Cancer cluster investigations: Review of the past and proposals for the future. Int. J. Environ. Res. Public Health 2014, 11, 1479–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- P.H.A.o.S. The California Health Places Index. Available online: https://healthyplacesindex.org (accessed on 14 October 2019).
- California Pan-Ethnic Health Network. Healthy Communities Data and Indicators Project. Available online: https://cpehn.org/resource/healthy-communities-data-and-indicators-project (accessed on 14 October 2019).
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohn, B.A.; Terry, M.B. Environmental Influences on Mammographic Breast Density in California: A Strategy to Reduce Breast Cancer Risk. Int. J. Environ. Res. Public Health 2019, 16, 4731. https://doi.org/10.3390/ijerph16234731
Cohn BA, Terry MB. Environmental Influences on Mammographic Breast Density in California: A Strategy to Reduce Breast Cancer Risk. International Journal of Environmental Research and Public Health. 2019; 16(23):4731. https://doi.org/10.3390/ijerph16234731
Chicago/Turabian StyleCohn, Barbara A., and Mary Beth Terry. 2019. "Environmental Influences on Mammographic Breast Density in California: A Strategy to Reduce Breast Cancer Risk" International Journal of Environmental Research and Public Health 16, no. 23: 4731. https://doi.org/10.3390/ijerph16234731