Toxicity of Thallium at Low Doses: A Review
Abstract
:1. Introduction
2. Are Low Doses of Thallium Toxic?
3. A Plea for Regulation Authorities
4. Conclusions
Funding
Conflicts of Interest
References
- Peter, A.L.J.; Viraraghavan, T. Thallium: A review of public health and environmental concerns. Environ. Int. 2005, 31, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Van der Voet, G.B.; Centeno, J.A.; Mullick, F.G.; Tchounwou, P.B. Metal-Induced Toxicologic Pathology: Human Exposure and Risk Assessment. Encycl. Environ. Health 2011, 152, 403–413. [Google Scholar]
- Liu, J.; Wang, J.; Chen, Y.; Lippold, H.; Xiao, T.; Li, H.; Shen, C.-C.; Xie, L.; Xie, X.; Yang, H. Geochemical transfer and preliminary health risk assessment of thallium in a riverine system in the Pearl River Basin, South China. J. Geochem. Explor. 2017, 176, 64–75. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, Z.; Xiang, M.; Zhou, Z.; Hu, G.; Zhang, Y.; Ma, R.; Li, H. Screening and prioritization of chemical hazards for deriving human health ambient water quality criteria in China. J. Environ. Manag. 2019, 245, 223–229. [Google Scholar] [CrossRef]
- Biagioni, C.; D’Orazio, M.; Vezzoni, S.; Dini, A.; Orlandi, P. Mobilization of TI-Hg-As-Sb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology 2013. [Google Scholar] [CrossRef]
- Biagioni, C.; D’Orazio, M.; Lepore, G.O.; d’Acapito, F.; Vezzoni, S. Thallium-rich rust scales in drinkable water distribution systems: A case study from northern Tuscany, Italy. Sci. Total Environ. 2017. [Google Scholar] [CrossRef]
- D’Orazio, M.; Biagioni, C.; Dini, A.; Vezzoni, S. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns. Miner. Depos. 2017. [Google Scholar] [CrossRef]
- Ghezzi, L.; D’Orazio, M.; Doveri, M.; Lelli, M.; Petrini, R.; Giannecchini, R. Groundwater and potentially toxic elements in a dismissed mining area: Thallium contamination of drinking spring water in the Apuan Alps (Tuscany, Italy). J. Geochem. Explor. 2019. [Google Scholar] [CrossRef]
- Perotti, M.; Petrini, R.; D’Orazio, M.; Ghezzi, L.; Giannecchini, R.; Vezzoni, S. Thallium and Other Potentially Toxic Elements in the Baccatoio Stream Catchment (Northern Tuscany, Italy) Receiving Drainages from Abandoned Mines. Mine Water Environ. 2018, 37, 1–11. [Google Scholar] [CrossRef]
- George, L.L.; Biagioni, C.; D’Orazio, M.; Cook, N.J. Textural and trace element evolution of pyrite during greenschist facies metamorphic recrystallization in the southern Apuan Alps (Tuscany, Italy): Influence on the formation of Tl-rich sulfosalt melt. Ore Geol. Rev. 2018. [Google Scholar] [CrossRef]
- Campanella, B.; Onor, M.; D’Ulivo, A.; Giannecchini, R.; D’Orazio, M.; Petrini, R.; Bramanti, E. Human exposure to thallium through tap water: A study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci. Total Environ. 2016, 1, 548–549. [Google Scholar] [CrossRef] [PubMed]
- Galván-Arzate, S.; Santamarı́a, A. Thallium toxicity. Toxicol. Lett. 1998, 99, 1–13. [Google Scholar] [CrossRef]
- Rodríguez-Mercado, J.J.; Altamirano-Lozano, M.A. Genetic toxicology of thallium: A review. Drug Chem. Toxicol. 2013, 36, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Rickwood, C.J.; King, M.; Huntsman-Mapila, P. Assessing the fate and toxicity of Thallium I and Thallium III to three aquatic organisms. Ecotoxicol. Environ. Saf. 2015, 115, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J.O. Thallium in the Environment; Wiley-Interscience: New York, NY, USA, 1998; ISBN 0471177555. [Google Scholar]
- Ishihara, M.; Taniguchi, Y.; Onoguchi, M.; Shibutani, T. Optimal thallium-201 dose in cadmium-zinc-telluride SPECT myocardial perfusion imaging. J. Nucl. Cardiol. 2018, 25, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Sugo, N.; Yokota, K.; Kondo, K.; Harada, N.; Aoki, Y.; Miyazaki, C.; Nemoto, M.; Kano, T.; Ohishi, H.; Seiki, Y. Early dynamic 201Tl SPECT in the evaluation of brain tumours. Nucl. Med. Commun. 2006, 27, 143–149. [Google Scholar] [CrossRef]
- Viraraghavan, T.; Srinivasan, A. Thallium: Environmental pollution and health effects. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, MA, USA, 2011; pp. 325–333. ISBN 978-0-444-52272-6. [Google Scholar]
- Hanzel, C.E.; Verstraeten, S.V. Tl(I) and Tl(III) activate both mitochondrial and extrinsic pathways of apoptosis in rat pheochromocytoma (PC12) cells. Toxicol. Appl. Pharmacol. 2009, 236, 59–70. [Google Scholar] [CrossRef]
- Hanzel, C.E.; Villaverde, M.S.; Verstraeten, S.V. Glutathione metabolism is impaired in vitro by thallium(III) hydroxide. Toxicology 2005, 207, 201–210. [Google Scholar] [CrossRef]
- Hanzel, C.E.; Verstraeten, S.V. Thallium induces hydrogen peroxide generation by impairing mitochondrial function. Toxicol. Appl. Pharmacol. 2006, 216, 485–492. [Google Scholar] [CrossRef]
- Gregotti, C.; Di Nucci, A.; Costa, L.G.; Manzo, L.; Scelsi, R.; Bertè, F.; Faustman, E.M. Effects of thallium on primary cultures of testicular cells. J. Toxicol. Environ. Health 1992, 36, 59–69. [Google Scholar] [CrossRef]
- Villaverde, M.S.; Verstraeten, S.V. Effects of thallium(I) and thallium(III) on liposome membrane physical properties. Arch. Biochem. Biophys. 2003, 417, 235–243. [Google Scholar] [CrossRef]
- Chou, Y.-T.; Lo, K.-Y. Thallium(I) treatment induces nucleolar stress to stop protein synthesis and cell growth. Sci. Rep. 2019, 9, 6905. [Google Scholar] [CrossRef] [PubMed]
- Bramanti, E.; Onor, M.; Colombaioni, L. Neurotoxicity Induced by Low Thallium Doses in Living Hippocampal Neurons: Evidence of Early Onset Mitochondrial Dysfunction and Correlation with Ethanol Production. ACS Chem. Neurosci. 2019, 10, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Colombaioni, L.; Onor, M.; Benedetti, E.; Bramanti, E. Thallium stimulates ethanol production in immortalized hippocampal neurons. PLoS ONE 2017, 12, e0188351. [Google Scholar] [CrossRef] [PubMed]
- Padilla, M.A.; Elobeid, M.; Ruden, D.M.; Allison, D.B. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int. J. Environ. Res. Public Health 2010, 7, 3332–3347. [Google Scholar] [CrossRef] [PubMed]
- Yorita Christensen, K.L. Metals in blood and urine, and thyroid function among adults in the United States 2007–2008. Int. J. Hyg. Environ. Health 2013, 216, 624–632. [Google Scholar] [CrossRef]
- Adams, J.B.; Audhya, T.; McDonough-Means, S.; Rubin, R.A.; Quig, D.; Geis, E.; Gehn, E.; Loresto, M.; Mitchell, J.; Atwood, S.; et al. Toxicological status of children with autism vs. neurotypical children and the association with autism severity. Biol. Trace Elem. Res. 2013, 151, 171–180. [Google Scholar] [CrossRef]
- Weaver, V.M.; Vargas, G.G.; Silbergeld, E.K.; Rothenberg, S.J.; Fadrowski, J.J.; Rubio-Andrade, M.; Parsons, P.J.; Steuerwald, A.J.; Navas-Acien, A.; Guallar, E. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. Environ. Res. 2014, 132, 226–232. [Google Scholar] [CrossRef]
- Baeyens, W.; Vrijens, J.; Gao, Y.; Croes, K.; Schoeters, G.; Den Hond, E.; Sioen, I.; Bruckers, L.; Nawrot, T.; Nelen, V.; et al. Trace metals in blood and urine of newborn/mother pairs, adolescents and adults of the Flemish population (2007–2011). Int. J. Hyg. Environ. Health 2014, 217, 878–890. [Google Scholar] [CrossRef]
- Xia, W.; Du, X.; Zheng, T.; Zhang, B.; Li, Y.; Bassig, B.A.; Zhou, A.; Wang, Y.; Xiong, C.; Li, Z.; et al. A case–control study of prenatal thallium exposure and low birth weight in China. Environ. Health Perspect. 2016, 124, 164–169. [Google Scholar] [CrossRef]
- Adams, J.; Howsmon, D.P.; Kruger, U.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.; Mitchell, J.; Ingram, J.; Hellmers, R.; et al. Significant association of urinary toxic metals and autism-related symptoms-A nonlinear statistical analysis with cross validation. PLoS ONE 2017. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ren, L.; Fang, J.; Ji, J.; Liu, G.; Zhang, J.; Zhang, H.; Luo, R.; Lin, K.; Fan, R. Trace elements are associated with urinary 8-hydroxy-2′-deoxyguanosine level: A case study of college students in Guangzhou, China. Environ. Sci. Pollut. Res. 2016, 23, 8484–8491. [Google Scholar] [CrossRef]
- Maitre, L.; Robinson, O.; Martinez, D.; Toledano, M.B.; Ibarluzea, J.; Marina, L.S.; Sunyer, J.; Villanueva, C.M.; Keun, H.C.; Vrijheid, M.; et al. Urine Metabolic Signatures of Multiple Environmental Pollutants in Pregnant Women: An Exposome Approach. Environ. Sci. Technol. 2018, 52, 13469–13480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, J.; Lai, Y.; Liang, C.; Yan, S.; Huang, K.; Pan, W.; Feng, L.; Jiang, L.; Zhu, P.; Hao, J.; et al. Prenatal thallium exposure and poor growth in early childhood: A prospective birth cohort study. Environ. Int. 2019, 123, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Liang, C.; Yan, S.; Li, Z.; Huang, K.; Xia, X.; Hao, J.; Zhu, P.; Tao, F. Association between serum thallium in early pregnancy and risk of gestational diabetes mellitus: The Ma’anshan birth cohort study. J. Trace Elem. Med. Biol. 2019, 52, 151–156. [Google Scholar] [CrossRef]
- Dai, J.; Wu, X.; Bai, Y.; Feng, W.; Wang, S.; Chen, Z.; Fu, W.; Li, G.; Chen, W.; Wang, G.; et al. Effect of thallium exposure and its interaction with smoking on lung function decline: A prospective cohort study. Environ. Int. 2019, 127, 181–189. [Google Scholar] [CrossRef]
- Wu, M.; Shu, Y.; Song, L.; Liu, B.; Zhang, L.; Wang, L.; Liu, Y.; Bi, J.; Xiong, C.; Cao, Z.; et al. Prenatal exposure to thallium is associated with decreased mitochondrial DNA copy number in newborns: Evidence from a birth cohort study. Environ. Int. 2019, 129, 470–477. [Google Scholar] [CrossRef]
- Esposito, F.; Nardone, A.; Fasano, E.; Scognamiglio, G.; Esposito, D.; Agrelli, D.; Ottaiano, L.; Fagnano, M.; Adamo, P.; Beccaloni, E.; et al. A systematic risk characterization related to the dietary exposure of the population to potentially toxic elements through the ingestion of fruit and vegetables from a potentially contaminated area. A case study: The issue of the “Land of Fires” area in C. Environ. Pollut. 2018, 243, 1781–1790. [Google Scholar] [CrossRef]
Subjects | [Tl] (μg/L or μg/g Creatinine) in Urine/Serum/Blood | Summary of Health Effects | Ref. |
---|---|---|---|
n = 3800; age 6–60 y.o. | Geometric mean 0.176 μg/L (range 0.154–0.192) (urine) | Direct correlation with waist circumference and body mass index. | [27] |
n = 1587 adults | 0.15 (median) μg/L (range 0.11–0.21) (urine) | Impaired thyroid function (decrease of total thyroxine values, P < 0.05). | [28] |
n = 55; age 5–16 y.o. | 0.104 ± 0.083 μg/g creatinine (mean ± SD) (urine) | Positive correlation with Autism Spectrum Disorders (ASD). | [29] |
n = 512; age 12–16 y.o. | 0.27 μg/g creatinine (mean) (urine) | Positive correlation with estimated glomerular filtration rate. | [30] |
n = 235 mothers and n = 241 neonates | Maternal blood 0.028 μg/L; cord blood = 0.017 μg/L | Placenta transports about 50% Tl from mother to fetus. | [31] |
n = 816 (pregnant women) | Tl > 0.78 μg/g creatinine (0.02 < range < 8.15 μg/g) (urine) | Low birth weight. | [32] |
n = 67 | Average 0.17 µg/g creatinine; 25th and 75th percentiles normalized to the median of the control values: 0.10/0.20 (urine) | Positive correlation with ASD. | [33] |
n = 53 | Mean 0.510 μg/L (range 0.056–1.401) (urine) | Positive significant correlation (P < 0.01) with urinary 8-hydroxy-2′- deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress. | [34] |
n = 750 (pregnant woman) | 3rd trimester: 0.13 µg/g creatinine (range 0.092–0.18) | Thallium is associated with increased scyllo-inositol, acetate, formate, carnitine, and decreased dimethylamine and N-acetylated metabolites. | [35] |
n = 3080 (pregnant woman and child until 2 years) | Median (P25–P75) of Tl levels in umbilical cord serum: 1st trimester: 0.062 μg/L (range 0.051–0.077); 2nd trimester: 0.060 μg/L (range 0.051–0.075); 3rd trimester: 0.04 (range 0.034–0.044) μg/L | Prenatal Tl exposure was associated with the reduction in infantile weight-for-age and height-for-age up to the age of 2 years and that these impacts might differ by gender. | [36] |
n = 3013 women | Median = 0.062 μg/L (0.011–0.232 μg/L (serum) | Risk of gestational diabetes mellitus. | [37] |
n = 1243 workers in coke-oven plant | 0.58 μg/L (range 0.37–0.86 μg/L); 0.41 μg/g creatinine (range 0.27–0.64) (urine) | Deleterious effect on lung function, likely enhanced by tobacco smoking. | [38] |
n = 746 pregnant women | Geometric mean value (maternal urine): 0.34 μg/L (1st trimester); 0.36 μg/L (2nd trimester); 0.34 μg/L (3rd trimester) | Negative association with blood leukocyte mtDNAcn in newborns shows that mitochondria is the target of thallium toxicity in early pregnancy. | [39] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campanella, B.; Colombaioni, L.; Benedetti, E.; Di Ciaula, A.; Ghezzi, L.; Onor, M.; D’Orazio, M.; Giannecchini, R.; Petrini, R.; Bramanti, E. Toxicity of Thallium at Low Doses: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4732. https://doi.org/10.3390/ijerph16234732
Campanella B, Colombaioni L, Benedetti E, Di Ciaula A, Ghezzi L, Onor M, D’Orazio M, Giannecchini R, Petrini R, Bramanti E. Toxicity of Thallium at Low Doses: A Review. International Journal of Environmental Research and Public Health. 2019; 16(23):4732. https://doi.org/10.3390/ijerph16234732
Chicago/Turabian StyleCampanella, Beatrice, Laura Colombaioni, Edoardo Benedetti, Agostino Di Ciaula, Lisa Ghezzi, Massimo Onor, Massimo D’Orazio, Roberto Giannecchini, Riccardo Petrini, and Emilia Bramanti. 2019. "Toxicity of Thallium at Low Doses: A Review" International Journal of Environmental Research and Public Health 16, no. 23: 4732. https://doi.org/10.3390/ijerph16234732