Critical Hours and Important Environments: Relationships between Afterschool Physical Activity and the Physical Environment Using GPS, GIS and Accelerometers in 10–12-Year-Old Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Measurement
2.2.1. Socio-Demographic Measures
2.2.2. Accelerometer Measures
2.2.3. GPS and GIS Measures
2.3. Data Analysis
2.3.1. Data Management and Validation
2.3.2. Spatial Analyses to Validate Afterschool Leisure Time PA
2.3.3. Spatial Analyses of Children’s Daily Activity Spaces and GIS Data
2.4. Statistical Analyses
3. Results
3.1. Participant Characteristics
3.2. Participant’s Afterschool Behavior in Various Contexts
3.3. Meteorological Circumstances
3.4. Association between PA and First-Level Attributes of the Physical Environment
3.5. Association between Afterschool Leisure Time PA and Second-Level Attributes of the Physical Environment
3.6. Association between Afterschool Active Transport and Attributes of the Second-Level Physical Environment
4. Discussion
4.1. Empirical Findings
4.2. Methodological Considerations
4.3. Strengths and Weaknesses
4.4. External Validity
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Mean (SD) | Median (IQR) | |
Child characteristics (n = 255 children) | ||
Age | 12.1 (0.49) | 12.06 (0.69) |
Gender (n boys) | 117 (45.9%) | |
Meteorology (n = 808 days) | ||
Temperature (mean degrees Celsius) | 19.0 (5.4) | 17.6 (6.47) |
Atmospheric pressure (mean hPa) | 1019.0 (6.3) | 1018.9 (8.5) |
Rain (days with no rain in afterschool period) | 538 (66.7%) | |
Wind (mean kmph) | 8.2 (4.2) | 7.1 (4.4) |
Solar exposure (UV index) | 2.2 (1.3) | 2.0 (1.8) |
Afterschool Physical Activity (n = 808 days) | ||
Leisure Time Light PA per day (minutes) | 25.8 (29.4) | 16.8 (36.3) |
Leisure Time MVPA per day (minutes) | 3.9 (8.8) | 0.8 (3.7) |
Bicycling per day (minutes) | 18.8 (0.4) | 15.3 (19.8) |
Walking per day (minutes) | 15.3 (0.4) | 10.3 (16.8) |
Mean (SD) | Percent from total area activity space (SD) * | |
Physical environment first level (n = 255 children) | ||
Total area of activity-space (square kilometres) | 1.11 (0.41) | 100 |
Roads (square kilometres) | 0.33 (0.14) | 29.48 (5.12) |
Water (square kilometres) | 0.19 (0.21) | 15.96 (14.75) |
Vegetated terrain (square kilometres) | 0.36 (0.26) | 32.32 (18.08) |
Buildings (square kilometres) | 0.02 (0.07) | 19.56 (3.79) |
Physical environment second level (n = 255 children) | ||
Vegetated terrain: agriculture (square meters) | 74783.25 (84832.00) | 6.70 (7.54) |
Vegetated terrain: lawns (square meters) | 7557.25 (13044.63) | 0.60 (1.05) |
Vegetated terrain: shrubs (square meters) | 323.70 (1266.03) | 0.02 (0.06) |
Roads: local road (50 kmph) (square meters) | 152007.18 (66805.78) | 13.69 (2.37) |
Roads: main road (100 kmph) (square meters) | 1906.08 (8901.44) | 0.11 (0.52) |
Roads: highway (120 kmph) (square meters) | 2112.11 (5792.11) | 0.18 (0.55) |
Roads: pedestrian path (square meters) | 91586.26 (45885.05) | 8.31 (2.98) |
Roads: pedestrian area (square meters) | 3571.09 (2783.07) | 0.33 (0.26) |
References
- Strong, W.B.; Malina, R.M.; Blimkie, C.J.; Daniels, S.R.; Dishman, R.K.; Gutin, B.; Hergenroeder, A.C.; Must, A.; Nixon, P.A.; Pivarnik, J.M. Evidence based physical activity for school-age youth. J. Pediatr. 2005, 146, 732–737. [Google Scholar] [CrossRef] [PubMed]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [PubMed]
- Boreham, C.A.; McKay, H.A. Physical activity in childhood and bone health. Br. J. Sports Med. 2011, 45, 877–879. [Google Scholar] [CrossRef] [PubMed]
- Sibley, B.A.; Etnier, J.L. The relationship between physical activity and cognition in children: A meta-analysis. Pediatr. Exerc. Sci. 2003, 15, 243–256. [Google Scholar] [CrossRef]
- Biddle, S.J.; Asare, M. Physical activity and mental health in children and adolescents: A review of reviews. Br. J. Sports Med. 2011, 45, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Cesa, C.C.; Sbruzzi, G.; Ribeiro, R.A.; Barbiero, S.M.; de Oliveira Petkowicz, R.; Eibel, B.; Machado, N.B.; Marques, R.; Tortato, G.; dos Santos, T.J.; et al. Physical activity and cardiovascular risk factors in children: Meta-analysis of randomized clinical trials. Prev. Med. 2014, 69, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Telama, R. Tracking of Physical Activity from Childhood to Adulthood: A Review. Obes. Facts 2009, 3, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Butcher, Z.H.; Stratton, G. Whole-day and segmented-day physical activity variability of northwest England school children. Prev. Med. 2007, 44, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Giles-Corti, B.; Timperio, A.; Bull, F.; Pikora, T. Understanding physical activity environmental correlates: Increased specificity for ecological models. Exerc. Sport Sci. Rev. 2005, 33, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, K.; Economos, C.D.; Bakun, P.; Boulos, R.; Chui, K.; Mueller, M.P.; Smith, K.; Sacheck, J. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school-and out-of-school time. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Arundell, L.; Ridgers, N.D.; Veitch, J.; Salmon, J.; Hinkley, T.; Timperio, A. 5-year changes in afterschool physical activity and sedentary behavior. Am. J. Prev. Med. 2013, 44, 605–611. [Google Scholar] [CrossRef]
- De Baere, S.; Lefevre, J.; De Martelaer, K.; Philippaerts, R.; Seghers, J. Temporal patterns of physical activity and sedentary behavior in 10–14 year-old children on weekdays. BMC Public Health 2015, 15, 791. [Google Scholar] [CrossRef]
- Gardner, B.; Lally, P. Does intrinsic motivation strengthen physical activity habit? Modeling relationships between self-determination, past behaviour, and habit strength. J. Behav. Med. 2013, 36, 488–497. [Google Scholar] [CrossRef]
- Hagger, M.S.; Chatzisarantis, N.L. Intrinsic Motivation and Self-Determination in Exercise and Sport; Human Kinetics: Champaigne, IL, USA, 2007. [Google Scholar]
- O’Connor, J.; Ball, E.J.; Steinbeck, K.S.; Davies, P.S.; Wishart, C.; Gaskin, K.J. Measuring physical activity in children: A comparison of four different methods. Pediatr. Exerc. Sci. 2003, 15, 202–215. [Google Scholar] [CrossRef]
- Battista, J.; Nigg, C.R.; Chang, J.A.; Yamashita, M.; Chung, R. Elementary after school programs: An opportunity to promote physical activity for children. Calif. J. Health Promot. 2005, 3, 108–118. [Google Scholar] [CrossRef]
- Stanley, R.M.; Ridley, K.; Dollman, J. Correlates of children’s time-specific physical activity: A review of the literature. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 50. [Google Scholar] [CrossRef]
- Jago, R.; Fox, K.R.; Page, A.S.; Brockman, R.; Thompson, J.L. Physical activity and sedentary behaviour typologies of 10-11 year olds. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 59. [Google Scholar] [CrossRef]
- Nilsson, A.; Anderssen, S.A.; Andersen, L.B.; Froberg, K.; Riddoch, C.; Sardinha, L.B.; Ekelund, U. Between-and within-day variability in physical activity and inactivity in 9-and 15-year-old European children. Scand. J. Med. Sci. Sports 2009, 19, 10–18. [Google Scholar] [CrossRef]
- Hager, R.L. Television viewing and physical activity in children. J. Adolesc. Health 2006, 39, 656–661. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.R.; Page, A.S.; Wheeler, B.W.; Hillsdon, M.; Griew, P.; Jago, R. Patterns of GPS measured time outdoors after school and objective physical activity in English children: The PEACH project. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Lau, E.Y.; Barr-Anderson, D.J.; Dowda, M.; Forthofer, M.; Saunders, R.P.; Pate, R.R. Associations Between Home Environment and After-School Physical Activity and Sedentary Time Among 6th Grade Children. Pediatr. Exerc. Sci. 2015, 27, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Fairclough, S.J.; Beighle, A.; Erwin, H.; Ridgers, N.D. School day segmented physical activity patterns of high and low active children. BMC Public Health 2012, 12, 406. [Google Scholar] [CrossRef] [PubMed]
- Klinker, C.; Schipperijn, J.; Kerr, J.; Ersbøll, A.; Troelsen, J. Context-Specific Outdoor Time and Physical Activity among School-Children Across Gender and Age: Using Accelerometers and GPS to Advance Methods. Front. Public Health 2014, 2, 20. [Google Scholar] [CrossRef] [PubMed]
- Timperio, A.; Giles-Corti, B.; Crawford, D.; Andrianopoulos, N.; Ball, K.; Salmon, J.; Hume, C. Features of public open spaces and physical activity among children: Findings from the CLAN study. Prev. Med. 2008, 47, 514–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taverno Ross, S.E.; Dowda, M.; Colabianchi, N.; Saunders, R.; Pate, R.R. After-school setting, physical activity, and sedentary behavior in 5th grade boys and girls. Health Place 2012, 18, 951–955. [Google Scholar] [CrossRef] [PubMed]
- Rushovich, B.R.; Voorhees, C.C.; Davis, C.; Neumark-Sztainer, D.; Pfeiffer, K.A.; Elder, J.P.; Going, S.; Marino, V.G. The relationship between unsupervised time after school and physical activity in adolescent girls. Int. J. Behav. Nutr. Phys. Act. 2006, 3, 20. [Google Scholar] [CrossRef] [PubMed]
- Almanza, E.; Jerrett, M.; Dunton, G.; Seto, E.; Pentz, M.A. A study of community design, greenness, and physical activity in children using satellite, GPS and accelerometer data. Health Place 2012, 18, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Gebel, K. Built environment, physical activity, and obesity: What have we learned from reviewing the literature? Health Place 2012, 18, 100–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McGrath, L.J.; Hopkins, W.G.; Hinckson, E.A. Associations of objectively measured built-environment attributes with youth moderate–vigorous physical activity: A systematic review and meta-analysis. Sports Med. 2015, 45, 841–865. [Google Scholar] [CrossRef] [PubMed]
- Scott, M.M.; Evenson, K.R.; Cohen, D.A.; Cox, C.E. Comparing perceived and objectively measured access to recreational facilities as predictors of physical activity in adolescent girls. J. Urban Health 2007, 84, 346. [Google Scholar] [CrossRef] [PubMed]
- Remmers, T.; Van Kann, D.; Thijs, C.; de Vries, S.; Kremers, S. Playability of school-environments and after-school physical activity among 8–11 year-old children: Specificity of time and place. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Dowda, M.; McKenzie, T.L.; Cohen, D.A.; Scott, M.M.; Evenson, K.R.; Bedimo-Rung, A.L.; Voorhees, C.C.; Almeida, M.J.C.A. Commercial venues as supports for physical activity in adolescent girls. Prev. Med. 2007, 45, 163–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oreskovic, N.M.; Blossom, J.; Field, A.E.; Chiang, S.R.; Winickoff, J.P.; Kleinman, R.E. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat. Health 2012, 6, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Perchoux, C.; Chaix, B.; Cummins, S.; Kestens, Y. Conceptualization and measurement of environmental exposure in epidemiology: Accounting for activity space related to daily mobility. Health Place 2013, 21, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Matthews, S.A.; Yang, T.-C. Spatial Polygamy and Contextual Exposures (SPACEs): Promoting Activity Space Approaches in Research on Place and Health. Am. Behav. Sci. 2013, 57, 1057–1081. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Meline, J.; Duncan, S.; Merrien, C.; Karusisi, N.; Perchoux, C.; Lewin, A.; Labadi, K.; Kestens, Y. GPS tracking in neighborhood and health studies: A step forward for environmental exposure assessment, a step backward for causal inference? Health Place 2013, 21, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Kestens, Y.; Duncan, D.T.; Brondeel, R.; Méline, J.; El Aarbaoui, T.; Pannier, B.; Merlo, J. A GPS-based methodology to analyze environment-health associations at the trip level: Case-crossover analyses of built environments and walking. Am. J. Epidemiol. 2016, 184, 579–589. [Google Scholar] [CrossRef] [PubMed]
- Chaix, B.; Kestens, Y.; Perchoux, C.; Karusisi, N.; Merlo, J.; Labadi, K. An interactive mapping tool to assess individual mobility patterns in neighborhood studies. Am. J. Prev. Med. 2012, 43, 440–450. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A.P.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. What can global positioning systems tell us about the contribution of different types of urban greenspace to children’s physical activity? Health Place 2012, 18, 586–594. [Google Scholar] [CrossRef]
- Wheeler, B.W.; Cooper, A.R.; Page, A.S.; Jago, R. Greenspace and children’s physical activity: A GPS/GIS analysis of the PEACH project. Prev. Med. 2010, 51, 148–152. [Google Scholar] [CrossRef]
- Southward, E.F.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. Contribution of the school journey to daily physical activity in children aged 11–12 years. Am. J. Prev. Med. 2012, 43, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Mackett, R.; Brown, B.; Gong, Y.; Kitazawa, K.; Paskins, J. Children’s independent movement in the local environment. Built Environ. 2007, 33, 454–468. [Google Scholar] [CrossRef]
- Quigg, R.; Gray, A.; Reeder, A.I.; Holt, A.; Waters, D.L. Using accelerometers and GPS units to identify the proportion of daily physical activity located in parks with playgrounds in New Zealand children. Prev. Med. 2010, 50, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Cummins, S. Commentary: Investigating neighbourhood effects on health—Avoiding the ‘local trap’. Int. J. Epidemiol. 2007, 36, 355–357. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Ben-Akiva, M.E.; Bowman, J.L.; Walker, J.L. Moving from trip-based to activity-based measures of accessibility. Transp. Res. Part A 2006, 40, 163–180. [Google Scholar] [CrossRef]
- Hägerstraand, T. What about people in regional science? Pap. Reg. Sci. 1970, 24, 7–24. [Google Scholar] [CrossRef]
- Gustafson, P. Mobility and territorial belonging. Environ. Behav. 2009, 41, 490–508. [Google Scholar] [CrossRef]
- CBS Statline: Statistics Netherlands, Population Development in Municipalities. In the Hague. 2017. Available online: https://opendata.cbs.nl/statline/#/CBS/nl/ (accessed on 31 August 2018).
- Department of Research and Statistics, Population and area. In Municipality of ‘s-Hertogenbosch: Statistical Yearbook 2015–2016. 2016. Available online: http://www.timeanddate.com/sun/netherlands (accessed on 31 August 2018).
- Van Ham, M.; Clark, W.A. Neighbourhood Mobility in Context: Household Moves and Changing Neighbourhoods in the Netherlands. Environ. Plan. A Econ. Space 2009, 41, 1442–1459. [Google Scholar] [CrossRef] [Green Version]
- Corder, K.; Ekelund, U.; Steele, R.M.; Wareham, N.J.; Brage, S. Assessment of physical activity in youth. J. Appl. Physiol. 2008, 105, 977–987. [Google Scholar] [CrossRef]
- De Vries, S.I.; Van Hirtum, H.W.; Bakker, I.; Hopman-Rock, M.; Hirasing, R.A.; Van Mechelen, W. Validity and reproducibility of motion sensors in youth: A systematic update. Med. Sci. Sport Exerc. 2009, 41, 818–827. [Google Scholar] [CrossRef]
- Choi, L.; Liu, Z.; Matthews, C.E.; Buchowski, M.S. Validation of accelerometer wear and nonwear time classification algorithm. Med. Sci. Sports Exerc. 2011, 43, 357–364. [Google Scholar] [CrossRef]
- Duncan, S.; Stewart, T.I.; Oliver, M.; Mavoa, S.; MacRae, D.; Badland, H.M.; Duncan, M.J. Portable Global Positioning System Receivers: Static Validity and Environmental Conditions. Am. J. Prev. Med. 2013, 44, 19–29. [Google Scholar] [CrossRef]
- Schipperijn, J.; Kerr, J.; Duncan, S.; Madsen, T.; Klinker, C.D.; Troelsen, J. Dynamic Accuracy of GPS Receivers for Use in Health Research: A Novel Method to Assess GPS Accuracy in Real-World Settings. Front. Public Health 2014, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- The Physical Acitivty and Location Management (PALMS). Available online: https://palms.ucsd.edu:8443/PALMS/ (accessed on 1 March 2019).
- Kerr, J.; Norman, G.; Godbole, S.; Raab, F.; Demchak, B.; Patrick, K. Validating GPS data with the PALMS system to detect different active transportation modes. Med. Sci. Sport Exerc. 2012, 44, 647. [Google Scholar]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef]
- Trost, S.G.; Loprinzi, P.D.; Moore, R.; Pfeiffer, K.A. Comparison of accelerometer cut points for predicting activity intensity in youth. Med. Sci. Sports Exerc. 2011, 43, 1360–1368. [Google Scholar] [CrossRef]
- Cain, K.L.; Sallis, J.F.; Conway, T.L.; Van Dyck, D.; Calhoon, L. Using accelerometers in youth physical activity studies: A review of methods. J. Phys. Act. Health 2013, 10, 437–450. [Google Scholar] [CrossRef]
- Carlson, J.A.; Jankowska, M.M.; Meseck, K.; Godbole, S.; Natarajan, L.; Raab, F.; Demchak, B.; Patrick, K.; Kerr, J. Validity of PALMS GPS scoring of active and passive travel compared with SenseCam. Med. Sci. Sports Exerc. 2015, 47, 662–667. [Google Scholar] [CrossRef]
- Klinker, C.D.; Schipperijn, J.; Toftager, M.; Kerr, J.; Troelsen, J. When cities move children: Development of a new methodology to assess context-specific physical activity behaviour among children and adolescents using accelerometers and GPS. Health Place 2015, 31, 90–99. [Google Scholar] [CrossRef] [Green Version]
- Dessing, D.; Pierik, F.H.; Sterkenburg, R.P.; van Dommelen, P.; Maas, J.; de Vries, S.I. Schoolyard physical activity of 6–11 year old children assessed by GPS and accelerometry. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 97. [Google Scholar] [CrossRef]
- Kerr, J.; Duncan, S.; Schipperijn, J. Using global positioning systems in health research: A practical approach to data collection and processing. Am. J. Prev. Med. 2011, 41, 532–540. [Google Scholar] [CrossRef]
- Jago, R.; Baranowski, T.; Zakeri, I.; Harris, M. Observed environmental features and the physical activity of adolescent males. Am. J. Prev. Med. 2005, 29, 98–104. [Google Scholar] [CrossRef]
- Mitra, R.; Buliung, R.; Roorda, M.J. Built environment and school travel mode choice in Toronto, Canada. Transp. Res. Rec 2010, 2156, 150–159. [Google Scholar] [CrossRef]
- Van Kann, D.; Kremers, S.; Gubbels, J.; Bartelink, N.; De Vries, S.; De Vries, N.; Jansen, M.W.J. The association between the physical environment of primary schools and active school transport. Environ. Behav. 2015, 47, 418–435. [Google Scholar] [CrossRef]
- Oreskovic, N.M.; Winickoff, J.P.; Kuhlthau, K.A.; Romm, D.; Perrin, J.M. Obesity and the built environment among Massachusetts children. Clin. Pediatr. 2009, 48, 904–912. [Google Scholar] [CrossRef]
- Carlson, J.A.; Schipperijn, J.; Kerr, J.; Saelens, B.E.; Natarajan, L.; Frank, L.D.; Glanz, K.; Conway, T.L.; Chapman, J.E.; Cain, K.L.J.P. Locations of physical activity as assessed by GPS in young adolescents. Pediatrics 2016, 137, e20152430. [Google Scholar] [CrossRef]
- Netherlands Institute of Social Research (SCP): Statusscores 2016. Available online: https://www.scp.nl/Onderzoek/Lopend_onderzoek/A_Z_alle_lopende_onderzoeken/Statusscores/statusscores_2016 (accessed on 31 August 2018).
- McCrorie, P.R.; Fenton, C.; Ellaway, A. Combining GPS, GIS, and accelerometry to explore the physical activity and environment relationship in children and young people—A review. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 93. [Google Scholar] [CrossRef]
- Lachowycz, K.; Jones, A. Greenspace and obesity: A systematic review of the evidence. Obes. Rev. 2011, 12, e183–e189. [Google Scholar] [CrossRef]
- Jones, A.P.; Coombes, E.G.; Griffin, S.J.; van Sluijs, E.M. Environmental supportiveness for physical activity in English schoolchildren: A study using Global Positioning Systems. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 42. [Google Scholar] [CrossRef]
- Rodríguez, D.A.; Cho, G.-H.; Evenson, K.R.; Conway, T.L.; Cohen, D.; Ghosh-Dastidar, B.; Pickrel, J.L.; Veblen-Mortenson, S.; Lytle, L.A. Out and about: Association of the built environment with physical activity behaviors of adolescent females. Health Place 2012, 18, 55–62. [Google Scholar] [CrossRef] [Green Version]
- McDonald, N.C. Children’s mode choice for the school trip: The role of distance and school location in walking to school. Transportation 2008, 35, 23–35. [Google Scholar] [CrossRef]
- Troped, P.J.; Wilson, J.S.; Matthews, C.E.; Cromley, E.K.; Melly, S.J. The built environment and location-based physical activity. Am. J. Prev. Med. 2010, 38, 429–438. [Google Scholar] [CrossRef]
- Maddison, R.; Jiang, Y.; Hoorn, S.V.; Exeter, D.; Mhurchu, C.N.; Dorey, E. Describing patterns of physical activity in adolescents using global positioning systems and accelerometry. Pediatr. Exerc. Sci. 2010, 22, 392–407. [Google Scholar] [CrossRef]
- Rainham, D.G.; Bates, C.J.; Blanchard, C.M.; Dummer, T.J.; Kirk, S.F.; Shearer, C.L. Spatial classification of youth physical activity patterns. Am. J. Prev. Med. 2012, 42, 87–96. [Google Scholar] [CrossRef]
- Coombes, E.; van Sluijs, E.; Jones, A. Is environmental setting associated with the intensity and duration of children’s physical activity? Findings from the SPEEDY GPS study. Health Place 2013, 20, 62–65. [Google Scholar] [CrossRef]
- Baggett, C.D.; Stevens, J.; Catellier, D.J.; Evenson, K.R.; McMurray, R.G.; He, K.; Treuth, M.S. Compensation or displacement of physical activity in middle school girls: The Trial of Activity for Adolescent Girls. Int. J. Obes. 2010, 34, 1193–1199. [Google Scholar] [CrossRef]
- Goodman, A.; Mackett, R.L.; Paskins, J. Activity compensation and activity synergy in British 8–13year olds. Prev. Med. 2011, 53, 293–298. [Google Scholar] [CrossRef]
- Ridgers, N.D.; Timperio, A.; Cerin, E.; Salmon, J. Compensation of physical activity and sedentary time in primary school children. Med. Sci. Sports Exerc. 2014, 46, 1564–1569. [Google Scholar] [CrossRef]
- Gubbels, J.S.; Van Kann, D.H.; de Vries, N.K.; Thijs, C.; Kremers, S.P. The next step in health behavior research: The need for ecological moderation analyses—An application to diet and physical activity at childcare. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 52. [Google Scholar] [CrossRef]
n (%) | |
---|---|
Gender; n boys (missing n = 0) | 117 (45.9%) |
Age; mean years (SD) (missing n = 0) | 12.1 (0.5) |
Valid measurement-days; n ≥ 3 days (missing n = 0) | 189 (74.1%) |
Respondent questionnaire; n mothers (missing n = 54 (21.2%)) | 146 (57.3%) |
Most frequently used transport mode to school; n bicycling (missing n = 59 (23.1%)) | 128 (50.2%) |
Most frequently used transport mode to school; n walking (missing n = 59 (23.1%)) | 52 (20.4%) |
Average daily time spent on homework during measurement; n ≤ 10 min (missing n = 59 (23.1%)) | 150 (58.8%) |
Standardized mean of social economic status score of the neighbourhood (SD) 1 (missing n = 0) | 0.06 (1.31) |
n of Participants | Unadjusted Median (IQR) | n of days | |||
---|---|---|---|---|---|
Total Minutes (Including Sedentary) | Minutes in Light PA | Minutes in MVPA | ≥80% of Time within Activity Space | ||
Residential parcel † | 255 | 239.3 (138.7) | 89.8 (57.4) | 8.3 (14.2) 1 | 790 (100%) |
School grounds † | 233 | 33.5 (73.3) | 15.5 (33.0) | 13.5 (35.0) 2 | 640 (100%) |
Sports grounds † | 214 | 100.2 (55.2) | 54.8 (34.7) | 41.0 (29.3) 2 | 202 (42.3%) |
Afterschool childcare † | 144 | 19.8 (39.7) | 10.0 (21.7) | 2.2 (13.2) | 181 (67.0%) |
Shopping centers † | 220 | 79.5 (105.1) | 44.5 (58.5) | 8.0 (11.0) | 216 (45.6%) |
Active transport ‡ | 253 | 40.3 (32.7) | 23.3 (22.3) | 15.0 (17.5) | 480 (63.3%) |
Passive transport ‡ | 186 | 19.5 (14.7) | 10.3 (8.2) | 1.8 (2.3) | 45 (13.8%) |
Leisure time * | 255 | 171.2 (136.2) | 81.5 (71.5) 1 | 22.3 (24.8) | 544 (68.0%) |
Afterschool Leisure Time | Afterschool Active Transport | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Light PA 1 | Moderate to Vigorous PA 2 | Bicycling 3 | Walking 4 | |||||||||
Unstd. Beta (SE) | Std Beta (SE) | p-Value | Unstd. Beta (SE) | Std. Beta (SE) | p-Value | Unstd. Beta (SE) | Std. Beta (SE) | p-Value | Unstd. Beta (SE) | Std. Beta (SE) | p-Value | |
Wear time (total minutes) | 0.01 (000) | 0.37 (0.01) | <0.05 | <0.00 (0.01) | 0.12 (0.01) | <0.05 | <0.00 (0.01) | <0.00 (0.01) | 0.54 | <0.00 (0.01) | 0.01 (0.01) | 0.60 |
Gender (boys vs. girls) | −0.03 (0.02) | −0.03 (0.02) | 0.09 | 0.07 (0.03) | 0.07 (0.03) | <0.05 | −0.02 (0.02) | −0.02 (0.02) | 0.46 | 0.01 (0.03) | 0.01 (0.03) | 0.76 |
Age (years) | −0.04 (0.02) | −0.02 (0.01) | <0.05 | −0.03 (0.03) | −0.01 (0.01) | 0.29 | <0.00 (0.02) | <0.00 (0.01) | 0.77 | −0.02 (0.03) | −0.01 (0.01) | 0.57 |
Temperature (mean degrees Celsius) | <0.00 (0.001) | 0.01 (0.01) | 0.28 | −0.01 (0.002) | −0.04 (0.02) | <0.05 | 0.01 (0.03) | 0.03 (0.01) | <0.05 | <0.00 (0.01) | 0.03 (0.02) | 0.06 |
Atmospheric pressure (mean hPa) | 0.00 (0.001) | 0.02 (0.01) | 0.07 | 0.01 (0.002) | <0.00 (0.01) | 0.69 | <0.00 (0.01) | 0.03 (0.01) | 0.06 | <0.00 (0.01) | 0.03 (0.02) | <0.05 |
Rain (0.2–10.0 mm vs. no rain) | −0.06 (0.02) | −0.06 (0.02) | <0.05 | −0.17 (0.06) | −0.17 (0.06) | <0.05 | −0.16 (0.06) | −0.16 (0.06) | <0.05 | −0.15 (0.07) | −0.15 (0.07) | <0.05 |
Wind (mean km/h) | <0.00 (0.01) | <0.01 (0.01) | 0.91 | <0.00 (0.01) | −0.01 (0.01) | 0.35 | <0.00 (0.01) | <0.00 (0.01) | 0.79 | <0.00 (0.01) | −0.02 (0.02) | 0.23 |
Solar exposure (UV index) | <0.00 (0.01) | −0.01 (0.01) | 0.28 | 0.01 (0.01) | 0.01 (0.01) | 0.26 | 0.01 (0.01) | 0.02 (0.01) | 0.20 | −0.03 (0.01) | −0.04 (0.02) | <0.05 |
Total area of activity-space (per square km) | 0.02 (0.02) | <0.01 (0.01) | 0.37 | −0.06 (0.03) | −0.03 (0.01) | 0.06 | −0.08 (0.03) | 0.03 (0.01) | <0.05 | −0.12 (0.04) | −0.05 (0.01) | <0.05 |
Roads 5 | <0.00 (0.01) | 0.01 (0.01) | 0.35 | <0.00 (0.01) | 0.03 (0.01) | 0.06 | <0.00 (0.01) | −0.01 (0.01) | 0.56 | <0.00 (0.01) | 0.04 (0.02) | <0.05 |
Water 5 | <0.00 (0.01) | −0.03 (0.01) | 0.07 | <0.00 (0.01) | <0.00 (0.01) | 0.92 | <0.00 (0.01) | −0.01 (0.01) | 0.38 | <0.00 (0.01) | <0.00 (0.01) | 0.56 |
Vegetated terrain 5 | <0.00 (0.01) | <0.01 (0.01) | 0.97 | <0.00 (0.01) | <0.00 (0.01) | 0.81 | <0.00 (0.01) | −0.02 (0.01) | 0.09 | <0.00 (0.01) | 0.03 (0.02) | 0.07 |
Buildings 5 | <0.00 (0.01) | 0.01 (0.01) | 0.35 | <0.00 (0.01) | <0.00 (0.01) | 0.67 | −0.02 (0.01) | −0.07 (0.01) | <0.05 | 0.01 (0.01) | 0.03 (0.02) | <0.05 |
Leisure Time LPA 1 | Leisure Time MVPA 2 | |||||
---|---|---|---|---|---|---|
Unstd. Beta (SE) | Std. Beta (SE) | p-Value | Unstd. Beta (SE) | Std. Beta (SE) | p-Value | |
Total area of activity space (per square km.) | −0.08 (0.03) | −0.03 (0.01) | <0.05 | −0.08 (0.03) | −0.03 (0.01) | <0.05 |
Water 3 | <0.00 (0.002) | −0.01 (0.01) | 0.48 | <0.00 (0.004) | <0.00 (0.01) | 0.75 |
Buildings 3 | <0.00 (0.004) | 0.02 (0.01) | 0.18 | <0.00 (0.002) | 0.01 (0.01) | 0.60 |
Vegetated terrain: Agriculture 3 | 0.02 (0.01) | 0.02 (0.01) | <0.14 | - | - | - |
Vegetated terrain: Lawns 3 | 0.03 (0.01) | 0.03 (0.01) | <0.05 | 0.05 (0.01) | 0.02 (0.01) | <0.05 |
Vegetated terrain: Shrubs 3 | 0.63 (0.17) | 0.04 (0.01) | <0.05 | 0.74 (0.21) | 0.05 (0.01) | <0.05 |
Roads: Highway (120 kmph) 3 | −0.05 (0.02) | −0.03 (0.01) | <0.05 | - | - | - |
Roads: Local road (50 kmph) 3 | 0.02 (0.01) | 0.04 (0.01) | <0.05 | - | - | - |
Roads: Pedestrian path 3 | - | - | - | 0.02 (0.003) | 0.05 (0.01) | <0.05 |
Bicycling 1 | Walking 2 | |||||
---|---|---|---|---|---|---|
Unstd. Beta (SE) | Std. Beta (SE) | p-Value | Unstd. Beta (SE) | Std. Beta (SE) | p-Value | |
Total area of activity space (per square km) | 0.08 (0.03) | 0.03 (0.01) | <0.05 | −0.16 (0.04) | −0.07 (0.02) | <0.05 |
Water 3 | <0.00 (0.003) | −0.01 (0.01) | 0.49 | <0.00 (0.001) | <0.00 (0.01) | 0.76 |
Buildings 3 | −0.02 (0.001) | −0.08 (0.01) | <0.05 | 0.01 (0.002) | 0.02 (0.02) | 0.15 |
Vegetated terrain: Agriculture 3 | - | - | - | 0.01 (0.004) | 0.04 (0.02) | <0.05 |
Vegetated terrain: Lawns 3 | −0.03 (0.01) | −0.03 (0.01) | <0.05 | - | - | - |
Vegetated terrain: Shrubs 3 | - | - | - | 0.49 (0.23) | 0.03 (0.02) | <0.05 |
Roads: Main road (100 kmph) 3 | 0.06 (0.02) | 0.03 (0.01) | <0.05 | 0.07 (0.03) | 0.04 (0.02) | <0.05 |
Roads: Pedestrian path 3 | −0.01 (0.002) | −0.04 (0.01) | <0.05 | 0.02 (0.005) | 0.07 (0.02) | <0.05 |
Roads: Pedestrian area 3 | 0.23 (0.05) | 0.06 (0.01) | <0.05 | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Remmers, T.; Thijs, C.; Ettema, D.; de Vries, S.; Slingerland, M.; Kremers, S. Critical Hours and Important Environments: Relationships between Afterschool Physical Activity and the Physical Environment Using GPS, GIS and Accelerometers in 10–12-Year-Old Children. Int. J. Environ. Res. Public Health 2019, 16, 3116. https://doi.org/10.3390/ijerph16173116
Remmers T, Thijs C, Ettema D, de Vries S, Slingerland M, Kremers S. Critical Hours and Important Environments: Relationships between Afterschool Physical Activity and the Physical Environment Using GPS, GIS and Accelerometers in 10–12-Year-Old Children. International Journal of Environmental Research and Public Health. 2019; 16(17):3116. https://doi.org/10.3390/ijerph16173116
Chicago/Turabian StyleRemmers, Teun, Carel Thijs, Dick Ettema, Sanne de Vries, Menno Slingerland, and Stef Kremers. 2019. "Critical Hours and Important Environments: Relationships between Afterschool Physical Activity and the Physical Environment Using GPS, GIS and Accelerometers in 10–12-Year-Old Children" International Journal of Environmental Research and Public Health 16, no. 17: 3116. https://doi.org/10.3390/ijerph16173116
APA StyleRemmers, T., Thijs, C., Ettema, D., de Vries, S., Slingerland, M., & Kremers, S. (2019). Critical Hours and Important Environments: Relationships between Afterschool Physical Activity and the Physical Environment Using GPS, GIS and Accelerometers in 10–12-Year-Old Children. International Journal of Environmental Research and Public Health, 16(17), 3116. https://doi.org/10.3390/ijerph16173116