Ecological and Health Effects of Lubricant Oils Emitted into the Environment
Abstract
:1. Introduction
2. Impact of Oil Emissions
2.1. Environmental Issues
2.2. Health Issues
2.3. Environmental Cost
3. Current Legal Regulations
3.1. Regulations in Poland
3.2. Regulations in European Union
Revision of European Union Ecolabel Criteria for Lubricants
4. Biodegradability
5. Biotoxicity
6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Union. Rozporządzenie Komisji (WE) NR 440/2008 z dnia 30 maja 2008 r. metoda OECD 301 A-F; European Union: Brussels, Belgium, 2008. [Google Scholar]
- Beran, E. Wpływ budowy chemicznej bazowych olejów smarowych na ich biodegradowalność i wybrane właściwości eksploatacyjne; Wyd. PWR: Wrocław, Poland, 2008. [Google Scholar]
- Przemysłowe Środki Smarne. Available online: http://produkty.totalpolska.pl/wiedza/rozdzial%2001.pdf (accessed on 10 June 2019).
- Podniało, A. Paliwa, oleje i smary w ekologicznej eksploatacji; WNT: Warszawa, Poland, 2009. [Google Scholar]
- Tang, Z.; Li, S. A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 2014, 18, 119–139. [Google Scholar] [CrossRef]
- Zainal, N.A.; Zulkifli, N.W.M.; Gulzar, M.; Masjuki, H.H. A review on the chemistry, production, and technological potential of bio-based lubricants. Renew. Sustain. Energy Rev. 2018, 82, 80–102. [Google Scholar] [CrossRef]
- Vasile, C.; Sivertsvik, M.; Miteluţ, A.; Brebu, M.; Stoleru, E.; Rosnes, J.; Tănase, E.; Khan, W.; Pamfil, D.; Cornea, C.; et al. Comparative analysis of the composition and active property evaluation of certain essential oils to assess their potential applications in active food packaging. Materials 2017, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Totten, G.E.; Shah, R.J.; Westbrook, S.R. Fuels and Lubricants Handbook: Technology, Performance, and Testing; Totten, G.E., Westbrook, S.R., Shah, R.J., Eds.; ASTM International: Glen Burnie, MD, USA, 2003. [Google Scholar]
- Garrett, S. Vegetable oil for lubricating chain saws. US Dep. Agric. For. Serv. 1998, 5100, 1–4. [Google Scholar]
- Wu, M.M.; Ho, S.C.; Forbus, T.R. Synthetic lubricant base stock processes and products. In Practical Advances in Petroleum Processing; Springer: New York, NY, USA, 2007; pp. 553–577. [Google Scholar]
- Kijeńska, D. Oleje mineralne: Metoda oznaczania. Podstawy i Metody Oceny Środowiska Pr. 1999, 22, 158–164. [Google Scholar]
- Syahir, A.Z.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Alabdulkarem, A.; Gulzar, M.; Khuong, L.S.; Harith, M.H. A review on bio-based lubricants and their applications. J. Clean. Prod. 2017, 168, 997–1016. [Google Scholar] [CrossRef]
- Farfan-Cabrera, L.I.; Gallardo, E.; Gómez-Guarneros, M.; Hernandez Peña, A. Tribological Performance of an Engine Mineral oil Blended with a Vegetable Oil under approached Long-Term Use Conditions; SAE Technical Papers: Warrendale, PA, USA, 2019. [Google Scholar]
- Leslie, R.R. Synthetics, Mineral Oils, and Bio-Based Lubricants: Chemistry and Technology, 2nd ed.; Chemical Industries, Ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Shahabuddin, M.; Masjuki, H.H.; Kalam, M.A.; Bhuiya, M.M.K.; Mehat, H. Comparative tribological investigation of bio-lubricant formulated from a non-edible oil source (Jatropha oil). Ind. Crops Prod. 2013, 47, 323–330. [Google Scholar] [CrossRef]
- Cain, R.B. Biodegradation of Lubricants. In Proceedings of the 8th International Biodeterioration and Biodegradation, Windsor, ON, Canada, 26–31 August 1990; pp. 249–275. [Google Scholar]
- Beran, E. Biodegradowalność jako nowe kryterium w ocenie jakości olejów smarowych. Przem. Chem. 2005, 84, 320–328. [Google Scholar]
- Singh, Y. Tribological behavior as lubricant additive and physiochemical characterization of Jatropha oil blends. Friction 2015, 3, 320–332. [Google Scholar] [CrossRef] [Green Version]
- Iłowska, J.; Chrobak, J.; Grabowski, R.; Szmatoła, M.; Woch, J.; Szwach, I.; Drabik, J.; Trzos, M.; Kozdrach, R.; Wrona, M. Designing lubricating properties of vegetable base oils. Molecules 2018, 23, 2025. [Google Scholar] [CrossRef]
- Aluyor, E.O.; Ori-jesu, M. Biodegradation of mineral oils—A review. Afr. J. Biotechnol. 2009, 8, 915–920. [Google Scholar]
- Włodarczyk-Makuła, M. Zagrożenie zanieczyszczenia środowiska wodnego związkami ropopochodnymi. LAB Lab. Apar. Badania 2013, 21, 12–16. [Google Scholar]
- Wojtkowiak, R.; Tomczak, R.J. Analiza porównawcza wybranych właściwości olejów smarujących układ tnący pilarki łańcuchowej. Rośliny Oleiste 2003, 24, 317–325. [Google Scholar]
- Stelmaszuk, W.; Linowska, E.; Podedworny, I.; Antoniuk, N. Wpływ produktów ropopochodnych na organizmy żywe. In Proceedings of the Ogólnopolskie Sympozjum Naukowe „Związki ropopochodne–kryteria i metodyka oceny skażenia, Karwice, Poland, 13–15 April 1994. [Google Scholar]
- Abosede, E.E. Effect of Crude Oil Pollution on some Soil Physical Properties. IOSR J. Agric. Vet. Sci. 2013, 6, 14–17. [Google Scholar] [CrossRef]
- Dmochowska, A.; Dmochowski, D.; Biegugnis, S. Charakterystyka biorekultywacji gleb skażonych produktami ropopochodnymi metodą pryzmowania ex situ. Annu. Set Environ. Prot. 2016, 18, 759–771. [Google Scholar]
- Krzemińska, S.; Irzmańska, E. Zagrożenia olejami mineralnymi na stanowiskach pracy oraz nowe rozwiązania polimerowych materiałów ochronnych w wybranych środkach ochrony indywidualnej. Med. Pr. 2011, 62, 435–443. [Google Scholar] [PubMed]
- Neri, F.; Foderi, C.; Laschi, A.; Fabiano, F.; Cambi, M.; Sciarra, G.; Aprea, M.C.; Cenni, A.; Marchi, E. Determining exhaust fumes exposure in chainsaw operations. Environ. Pollut. 2016, 218, 1162–1169. [Google Scholar] [CrossRef]
- Gawęda, E.; Bednarek, K.; Szydło, Z. Oznaczanie mgły olejowej w powietrzu na stanowiskach pracy metodą wagową. Bezpieczeństwo Pr. 2005, 12, 11–14. [Google Scholar]
- Rogoś, E.; Urbański, A. Charakterystyki tribologiczne roślinnych olejów bazowych dla olejów hydraulicznych. Tribologia 2010, 5, 201–212. [Google Scholar]
- Ramadan, K.M.A. Biodegradation of used lubricating and diesel oils by a new yeast strain Candida viswanathii KA-2011. Afr. J. Biotechnol. 2012, 11, 14166–14174. [Google Scholar] [CrossRef]
- Broniewicz, E. Rachunek nakładów na ochronę środowiska w krajach Unii Europejskiej. Ekon. i Środowisko Czas. Stowarzyszenia Ekon. Środowiska i Zasobów Nat. 2006, 1, 125–134. [Google Scholar]
- Lasy Państwowe. Available online: http://www.lasy.gov.pl/pl (accessed on 3 April 2019).
- Podsiadło, Ł.; Krzyśko-Łupicka, T. Techniki bioremediacji substancji ropopochodnych i metody oceny ich efektywności. Inżynieria i Ochr. Środowiska 2013, 16, 459–476. [Google Scholar]
- Zagórski, Z. Modification, degradation and stabilization of polymers in view of the classification of radiation spurs. Radiat. Phys. Chem. 2002, 63, 9–19. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E.; Lasota, J.; Kalandyk, A.; Waligórski, P. Influence of Oil Contamination on Physical and Biological Properties of Forest Soil After Chainsaw Use. Water Air Soil Pollut. 2015, 226, 389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez Couto, S. Exploitation of biological wastes for the production of value-added products uncler solid-state fermentation conditions. Biotechnol. J. 2008, 3, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Decision of the General Director of State Forests No. 148 of 30 July 2018 regarding the provision of uniform template documents for ordering forest services in the field of forest management in organizational units of State Forests. Available online: https://sip.lex.pl/akty-prawne/dzienniki-resortowe/udostepnienie-jednolitych-wzorow-dokumentow-dotyczacych-zamawiania-35529417 (accessed on 1 July 2019).
- European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the registration, evaluation, authorization and restriction of chemicals (REACH); European Union: Brussels, Belgium, 2006. [Google Scholar]
- Organization for Economic Co-operation and Development. (2006) OECD Guidlines for the Testing of Chemical; Organization for Economic Co-operation and Development: Paris, France, 2006. [Google Scholar]
- Beran, E. Ocena biodegradowalności słabo rozpuszczalnych w wodzie związków organicznych na przykładzie olejów smarnych. Probl. Ekol. 2008, 12, 153–159. [Google Scholar]
- Zajezierska, A.; Ptak, S. Badania biodegradowalności smarów plastycznych. Nafta-Gaz 2015, LXXI, 793–799. [Google Scholar]
- International Organization for Standardization. Water Quality—Evaluation of the “Ready”, “Ultimate” Aerobic Biodegradability of Organic Compounds in an Aqueous Medium—Method by Analysis of Dissolved Organic Carbon (DOC); International Organization for Standardization: Geneva, Switzerland, 2012. [Google Scholar]
- International Organization for Standardization. Water Quality—Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium—Carbon Dioxide Evolution Test; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- International Organization for Standardization. Water Quality—Evaluation in an Aqueous Medium of the “Ultimate” Aerobic Biodegradability of Organic Compounds—Method by Analysis of Biochemical Oxygen Demand (Closed Bottle Test); International Organization for Standardization: Geneva, Switzerland, 1997. [Google Scholar]
- International Organization for Standardization. Water Quality—Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium by Determination of Oxygen Demand in a Closed Respirometer; International Organization for Standardization: Geneva, Switzerland, 1999. [Google Scholar]
- International Organization for Standardization. Water Quality + Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium—Method by Analysis of Inorganic Carbon in Sealed Vessels (CO2 Headspace Test); International Organization for Standardization: Geneva, Switzerland, 2005. [Google Scholar]
- International Organization for Standardization. Water Quality—Evaluation of the Aerobic Biodegradability of Organic Compounds in an Aqueous Medium—Semi-Continuous Activated Sludge Method (SCAS); International Organization for Standardization: Geneva, Switzerland, 1994. [Google Scholar]
- International Organization for Standardization. Water Quality—Evaluation of Ultimate Aerobic Biodegradability of Organic Compounds in Aqueous Medium—Static Test (Zahn-Wellens Method); International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- Zittwitz, M.; Gerhardt, M.; Ringpfeil, M. Practical Experience from Commercial In-situ Bioremediation in Cases of Cable Insulating Oil and Tri-/Perchlorethylene. 2000. Available online: www.biopract.de (accessed on 1 July 2019).
- National Contaminated Sites Remediation Program (Canada). Project Summary: Bioremediation of Soil Contaminated by Transformer Oil (Boucherville) and Diesel Fuel (Jonquiere); Quebec, QC, Canada, 1995. [Google Scholar]
- Nwaogu, L.A.; Onyeze, G.O.C.; Nwabueze, R.N. Degradation of diesel oil in a polluted soil using Bacillus subtilis. Afr. J. Biotechnol. 2008, 7, 1939–1943. [Google Scholar]
- Muratovba, A.; Turkovskaia, O. Degradation of Mineral Oils by a Selected Microbial Association. Prikl Biokhim Mikrobiol 2001, 37, 175–180. [Google Scholar]
- Riis, V.; Brandt, M.; Miethe, D.; Babel, W. Influence of special surfactants on the microbial degradation of mineral oils. Chemosphere 2000, 41, 1001–1006. [Google Scholar] [CrossRef]
- Stryker, W.A. Absorption of liquid petrolatum (“mineral oil”) from the intestine. Arch. Pathol. Lab. Med. Online 1941, 31, 670–692. [Google Scholar]
- Ebert, A.G.; Schlieffer, C.R.; Hess, S.M. Absorption, disposition and excretion of 3H mineral oil in rats. J. Pharm. Sci. 1996, 55, 923–929. [Google Scholar] [CrossRef] [PubMed]
- Shymanski, L.K.; Kommineni, P.M.; Naro, P.A.; Mackerer, C.R. Oral absorption and pharmacokinetic studies of radiolabeled normal paraffinic, isoparaffinic and cycloparaffinic surrogatesin white oil in Fischer 344 rats. In Proceedings of the Transcript of the Toxicology Forum, Special Meeting on Mineral Hydrocarbons; Oxford, UK, 1992; pp. 86–101. [Google Scholar]
- Bollinger, J.N. Metabolic Fate of Mineral Oil Adjuvants Using 14C-Labeled Tracers I: Mineral Oil. J. Pharm. Sci. 1970, 59, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Löf, A.; Lam, H.R.; Gullstrand, E.; Øtergaard, G.; Ladefoged, O. Distribution of Dearomatised White Spirit in Brain, Blood, and Fat Tissue after Repeated Exposure of Rats. Pharmacol. Toxicol. 1999, 85, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Cravedi, J.; Perdu, E. In vitro metabolic study on alkanes in hepatic microsomes from humans and rats. EFSA Support. Publ. 2012, 9. [Google Scholar] [CrossRef] [Green Version]
- Concin, N.; Hofstetter, G.; Plattner, B.; Tomovski, C.; Fiselier, K.; Gerritzen, K.; Fessler, S.; Windbichler, G.; Zeimet, A.; Ulmer, H.; et al. Mineral oil paraffins in human body fat and milk. Food Chem. Toxicol. 2008, 46, 544–552. [Google Scholar] [CrossRef] [PubMed]
- Barp, L.; Kornauth, C.; Wuerger, T.; Rudas, M.; Biedermann, M.; Reiner, A.; Concin, N.; Grob, K. Mineral oil in human tissues, Part I: Concentrations and molecular mass distributions. Food Chem. Toxicol. 2014, 72, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Farfan-Cabrera, L.I.; Gallardo-Hernández, E.A.; Pérez-González, J.; Marín-Santibáñez, B.M.; Lewis, R. Effects of Jatropha lubricant thermo-oxidation on the tribological behaviour of engine cylinder liners as measured by a reciprocating friction test. Wear 2019, 426–427, 910–918. [Google Scholar] [CrossRef]
Continental | Harvested Wood | The Amount of Lubricating Oil Used |
---|---|---|
(Thousand m3) | (Thousand L) | |
Asia | 1,117,409 | 33,522 |
Africa | 737,603 | 22,128 |
Europe | 725,645 | 21,769 |
Poland | 42,200 | 1266 |
Russia | 205,507 | 6165 |
North America | 568,915 | 17,067 |
Central and South America | 489,982 | 14,699 |
Oceania | 74,128 | 2224 |
Type of Contaminated Material | Separation Method | Method of Development |
---|---|---|
Oil mixed with wood, plastics, seaweed | Collection of liquid oil during temporary storage; Oil flushing with water; Removal of free water compression | Stabilization and reuse after removal of plastics and large pollutants; Degradation through tillage or composting in the case of oil mixed with seaweed or crustaceans; Landfill combustion |
Oil mixed with pavement, pebbles, or shingle | Collection of liquid oil from material during temporary storage Extraction of oil from material | Restoration of cleaned stones to the source; Stabilization and reuse of oil; Dumping; Use of recovered liquid oil as fuel or refinery raw material; Return of treated water to the source Stabilization and reuse; Degradation through soil cultivation or composting; Storage of waste; Combustion |
Non-emulsified oils and sewage | Sedimentation and gravity separation of free water The recovered water may require further processing or filtration | Use of recovered oil as fuel or refinery raw material; Return of treated water to the source |
OECD Test | International Organization for Standardization (ISO) Norm | Parameter Monitored | Ref. |
---|---|---|---|
Rapid biodegradability assessment tests | |||
301 A DOC Die-Away | Water quality. Evaluation in an aqueous medium of the “ultimate” aerobic biodegradability of organic compounds. Method by analysis of dissolved organic carbon (DOC). | DOC 1 | [42] |
301 B CO2 Evolution Test | Water quality. Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium. Carbon dioxide evolution test. | CO2 Production | [43] |
301 C MITI I Test Modified MITI I test | No equivalent. Test used in Japan. | BOD5 2 | - |
301 D Closed bottle test | Water quality. Evaluation in an aqueous medium of the “ultimate” aerobic biodegradability of organic compounds. Method by analysis of biochemical oxygen demand (closed bottle test). | BOD5 2 | [44] |
301 E Modified OECD 3 Screening Test | Water quality. Evaluation of the “ready”, “ultimate” aerobic biodegradability of organic compounds in an aqueous medium. Method by analysis of dissolved organic carbon (DOC). | DOC 1 | [42] |
301 F Manometric Respiratory Test | Water quality. Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium by determination of oxygen demand in a closed respirometer. | BOD5 2 | [45] |
310 CO2 Headspace Test | Water quality. Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium. Method by analysis of inorganic carbon in sealed vessels (CO2 headspace test). | CO2 Production | [46] |
Tests for potential biodegradability. | |||
302 A Modified SCAS test | Water quality. Evaluation of the aerobic biodegradability of organic compounds in an aqueous medium. Semi-continuous activated sludge method (SCAS). | DOC 1 | [47] |
302 B Zahn-Wellens modified test | Water quality. Evaluation of ultimate aerobic biodegradability of organic compounds in aqueous medium. Static test (Zahn-Wellens method). | DOC 1 | [48] |
302 C Modified MITI 4 II test | No equivalent. Test used in Japan. | BOD5 2 | - |
302 D CONCAWE 5 Test | No equivalent. | CO2 Production | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, P.; Kucharska, K.; Kamiński, M. Ecological and Health Effects of Lubricant Oils Emitted into the Environment. Int. J. Environ. Res. Public Health 2019, 16, 3002. https://doi.org/10.3390/ijerph16163002
Nowak P, Kucharska K, Kamiński M. Ecological and Health Effects of Lubricant Oils Emitted into the Environment. International Journal of Environmental Research and Public Health. 2019; 16(16):3002. https://doi.org/10.3390/ijerph16163002
Chicago/Turabian StyleNowak, Paulina, Karolina Kucharska, and Marian Kamiński. 2019. "Ecological and Health Effects of Lubricant Oils Emitted into the Environment" International Journal of Environmental Research and Public Health 16, no. 16: 3002. https://doi.org/10.3390/ijerph16163002
APA StyleNowak, P., Kucharska, K., & Kamiński, M. (2019). Ecological and Health Effects of Lubricant Oils Emitted into the Environment. International Journal of Environmental Research and Public Health, 16(16), 3002. https://doi.org/10.3390/ijerph16163002