Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling Points Setting
2.3. Soil Sample Pretreatment and Measurement
2.4. Data Analysis
3. Results
3.1. Soil Properties in the Small Gaps at Diffferent Slope Positions
3.2. Soil Properties Differences Between Small Gaps and Closed Canopy
3.3. Importance of Soil Properties in the Subtropical Rhododendron Secondary Forest
3.4. Plant Species Richness and Composition of the Small Gaps and Closed Canopy
3.5. Relationship between Individual Plant Species and Soil topography Gradient Factor
3.6. Relationship Between Plant Species Richness and Soil Topography Gradient Factors
4. Discussion
4.1. Effects of Small Gap Disturbance on Soil Properties in Different Topographies of the Subtropical Rhododendron Secondary Forest
4.2. Effects of Small Canopy Gap on Soil Properties in the Subtropical Rhododendron Secondary Forest
4.3. Plant Species Richness and Composition
4.4. Relationship Between Individual Plants Species and Soil topography Gradient Factors
4.5. Plant Species Richness and Soil Topography Gradient Relationship
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pickett, S.T.A.; White, P.S. The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Orlando, FL, USA, 1985. [Google Scholar]
- Kern, C.C.; D’Amato, A.W.; Strong, T.F. Diversifying the composition and structure of managed, late-successional forests with harvest gaps: What is the optimal gap size? For. Ecol. Manag. 2013, 304, 110–120. [Google Scholar] [CrossRef]
- Muscolo, A.; Bagnato, S.; Sidari, M.; Mercurio, R. A review of the roles of forest canopy gaps. J. For. Res. 2014, 25, 725–736. [Google Scholar] [CrossRef]
- Gray, A.N.; Spies, T.A.; Pabst, R.J. Canopy gaps affect long-term patterns of tree growth and mortality in mature and old-growth forests in the Pacific Northwest. For. Ecol. Manag. 2012, 281, 111–120. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, Z.Y.; Liu, X.L.; Yi, X.F. Seedling predation of Quercus mongolica by small rodents in response to forest gaps. New For. 2017, 48, 83–94. [Google Scholar] [CrossRef]
- Dai, X. Influence of light conditions in canopy gaps on forest regeneration: A new gap light index and its application in a boreal forest in east-central Sweden. For. Ecol. Manag. 1996, 84, 187–197. [Google Scholar] [CrossRef]
- Canham, C.D.; Denslow, J.S.; Platt, W.J.; Runkle, J.R.; Spies, T.A.; White, P.S. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests. Can. J. For. Res. 1990, 20, 620–631. [Google Scholar] [CrossRef]
- Ni, X.Y.; Berg, B.; Yang, W.Q.; Li, H.; Liao, S.; Tan, B.; Yue, K.; Xu, Z.F.; Zhang, L.; Wu, F.Z. Formation of forest gaps accelerates C, N and P release from foliar litter during 4 years of decomposition in an alpine forest. Biogeochemistry 2018, 139, 321–335. [Google Scholar] [CrossRef] [Green Version]
- González, G.; Lodge, D.J.; Richardson, B.A.; Richardson, M.J. A canopy trimming experiment in Puerto Rico: The response of litter decomposition and nutrient release to canopy opening and debris deposition in a subtropical wet forest. For. Ecol. Manag. 2014, 332, 32–46. [Google Scholar] [CrossRef]
- Yan, Q.; Gang, Q.; Zhu, J. Size-dependent patterns of seed rain in gaps in temperate secondary forests, Northeast China. Forests 2019, 10, 123. [Google Scholar] [CrossRef]
- Sezen, U.U.; Chazdon, R.L.; Holsinger, K.E. Genetic consequences of tropical second-growth forest regeneration. Science 2005, 307, 891. [Google Scholar] [CrossRef]
- Lai, H.R.; Hall, J.S.; Turner, B.L.; Van Breugel, M. Liana effects on biomass dynamics strengthen during secondary forest succession. Ecology 2017, 98, 1062–1070. [Google Scholar] [CrossRef]
- Li, Y.; Jiao, J.; Wang, Z.; Cao, B.; Wei, Y.; Hu, S. Effects of Revegetation on Soil Organic Carbon Storage and Erosion-Induced Carbon Loss under Extreme Rainstorms in the Hill and Gully Region of the Loess Plateau. Int. J. Environ. Res. Public Health 2016, 13, 456. [Google Scholar] [CrossRef]
- Jia, G.M.; Cao, J.; Wang, C.; Wang, G. Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, Northwest China. For. Ecol. Manag. 2005, 217, 117–125. [Google Scholar] [CrossRef]
- Scheiner, S.M. Population dynamics of an herbaceous perennial danthonia spicata during secondary forest succession. Am. Midl. Nat. 1988, 119, 268–281. [Google Scholar] [CrossRef]
- Chen, X.J.; Wu, X.; Yuan, Z.Q.; Chen, X.; Zhang, Y.W.; Cao, C.X. Spectral characteristics and species identification of rhododendrons using a discriminative restricted boltzmann machine. Spectrosc. Lett. 2017, 50, 65–72. [Google Scholar]
- Zhang, J.; Ma, Y.; Wu, Z.; Dong, K.; Zheng, S.; Wang, Y. Natural hybridization and introgression among sympatrically distributed rhododendron species in Guizhou, China. Biochem. Syst. Ecol. 2017, 70, 268–273. [Google Scholar] [CrossRef]
- Römer, A.H.; Kneeshaw, D.D.; Bergeron, Y. Small gap dynamics in the southern boreal forest of Eastern Canada: Do canopy gaps influence stand development? J. Veg. Sci. 2007, 18, 815–826. [Google Scholar] [CrossRef]
- Duguid, M.C.; Frey, B.R.; Ellum, D.S.; Kelty, M.; Ashton, M.S. The influence of ground disturbance and gap position on understory plant diversity in upland forests of southern New England. For. Ecol. Manag. 2013, 303, 148–159. [Google Scholar] [CrossRef]
- Prescott, C.E.; Hope, G.D.; Blevins, L.L. Effect of gap size on litter decomposition and soil nitrate concentrations in a high elevation spruce-fir forest. Can. J. For. Res. 2003, 33, 2210–2220. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Mercurio, R. Variations in soil chemical properties and microbial biomass in artificial gaps in silver fir stands. Eur. J. For. Res. 2007, 126, 59–65. [Google Scholar] [CrossRef]
- Özcan, M.; Gökbulak, F. Effect of size and surrounding forest vegetation on chemical properties of soil in forest gaps. iForest 2015, 8, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Schliemanna, S.A.; Bockheim, J.G. Methods for studying treefall gaps: A review. For. Ecol. Manag. 2011, 261, 1143–1151. [Google Scholar] [CrossRef]
- Tsui, C.C.; Chen, Z.S.; Hsieh, C.F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 2004, 123, 131–142. [Google Scholar] [CrossRef]
- Zhang, Z.; Hu, B.; Hu, G. Spatial heterogeneity of soil chemical properties in a subtropical karst forest, southwest China. Sci. World J. 2014, 2014, 473651. [Google Scholar] [CrossRef]
- Sisira, E.; Bmp, S.; Marks, A. Variation in canopy structure, light and soil nutrition across elevation of a Sri Lankan tropical rain forest. For. Ecol. Manag. 2008, 256, 1339–1349. [Google Scholar]
- Oliveira-Filho, A.T.; Curi, N.; Vilela, E.A.; Carvalho, D.A. Effects of canopy gaps, topography, and soils on the distribution of woody species in a central Brazilian deciduous dry forest. Biotropica 1998, 30, 362–375. [Google Scholar] [CrossRef]
- Hejcmanovā-Nežerková, P.; Hejcman, M. A canonical correspondence analysis (CCA) of the vegetation–environment relationships in Sudanese Savannah, Senegal. S. Afr. J. Bot. 2006, 72, 256–262. [Google Scholar] [CrossRef]
- Chou, S.C.; Huang, C.H.; Hsu, T.W.; Wu, C.C.; Chou, C.H. Allelopathic potential of Rhododendron formosanum Hemsl in Taiwan. Allelopath. J. 2010, 25, 73–91. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis Part 2; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–580. [Google Scholar]
- Lin, X.; Feng, Y.; Zhang, H.; Chen, R.; Wang, J.; Zhang, J.; Chu, H. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environ. Sci. Technol. 2012, 46, 5764–5771. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Teng, Y.; Zhan, Y.; Wu, J.; Lin, X. Soil heavy metal pollution and risk assessment in Shenyang Industrial District, Northeast China. PLoS ONE 2015, 10, e0127736. [Google Scholar] [CrossRef]
- Jobidon, R.; Cyr, G.; Thiffault, N. Plant species diversity and composition along an experimental gradient of northern hardwood abundance in picea mariana plantations. For. Ecol. Manag. 2004, 198, 209–221. [Google Scholar] [CrossRef]
- Clarke, K.R.; Warwick, R.M. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed.; PRIMER-E Ltd.: Plymouth, UK, 2001. [Google Scholar]
- Archer, K.J.; Kimes, R.V. Empirical characterization of random forest variable importance measures. Comp. Stat. Data Anal. 2008, 52, 2249–2260. [Google Scholar] [CrossRef]
- Field, A. Discovering Statistics Using SPSS, 2nd ed.; Sage Publications Ltd.: London, UK, 2005. [Google Scholar]
- Scharenbroch, B.C.; Bockheim, J.G. Gaps and soil C dynamics in old growth northern hardwood-hemlock forests. Ecosystems 2008, 11, 426–441. [Google Scholar] [CrossRef]
- Arunachalam, A.; Arunachalam, K. Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of northeast India. Plant Soil 2000, 223, 185–193. [Google Scholar] [CrossRef]
- Zederer, D.P.; Talkner, U.; Spohn, M.; Joergensen, R.G. Microbial biomass phosphorus and C/N/P stoichiometry in forest floor and A horizons as affected by tree species. Soil Biol. Biochem. 2017, 111, 166–175. [Google Scholar] [CrossRef]
- Bates, T.E.; Johnston, R.W. Soil Acidity and Liming; Ontario Ministry of Agriculture and Food: Guelph, ON, Canada, 1991; p. 4.
- Scharenbroch, B.C.; Bockheim, J.G. Impacts of forest gaps on soil properties and processes in old growth northern hardwood-hemlock forests. Plant Soil 2007, 294, 219–233. [Google Scholar] [CrossRef]
- He, Z.S.; Liu, J.F.; Su, S.J.; Zheng, S.Q.; Xu, D.W.; Wu, Z.Y.; Hong, W.; Wang, J.L.M. Effects of forest gaps on soil properties in Castanopsis kawakamii nature forest. PLoS ONE 2015, 10, e0141203. [Google Scholar]
- Behera, S.K.; Shukla, A.K. Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degrad. Dev. 2014, 26, 71–79. [Google Scholar] [CrossRef]
- Whitehead, D.C.; Dibb, H.; Hartley, R.D. Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol. Biochem. 1981, 13, 343–348. [Google Scholar] [CrossRef]
- Wang, C.M.; Li, T.C.; Jhan, Y.L.; Weng, J.H.; Chou, C.H. The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS ONE 2013, 8, e85162. [Google Scholar] [CrossRef]
- Inderjit; Mallik, A.U. Effect of phenolic compounds on selected soil properties. For. Ecol. Manag. 1997, 92, 11–18. [Google Scholar]
- Young, C.C. Non-polar macroreticular resin to recover phenolic acids from a subtropical latosol. Soil Biol. Biochem. 1984, 16, 377–380. [Google Scholar] [CrossRef]
- Wurzburger, N.; Hendrick, R.L. Rhododendron thickets alter N cycling and soil extracellular enzyme activities in southern Appalachian hardwood forests. Pedobiologia 2007, 50, 563–576. [Google Scholar] [CrossRef]
- Griffths, R.P.; Gray, A.N.; Spies, T.A. Soil properties in old-growth Douglas-fir forest gaps in the western Cascade Mountains of Oregon. Northwest Sci. 2010, 84, 33–45. [Google Scholar] [CrossRef]
- He, J.; Yang, W.; Xu, L.; Ni, X.; Li, H.; Wu, F. Copper and zinc dynamics in foliar litter during decomposition from gap center to closed canopy in an alpine forest. Scand. J. For. Res. 2015, 31, 355–367. [Google Scholar] [CrossRef]
- Muscolo, A.; Sidari, M.; Mercurio, R. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio Poiret) stands. For. Ecol. Manag. 2007, 242, 412–418. [Google Scholar] [CrossRef]
- Sharma, L.N.; Grytnes, J.A.; Måren, I.E.; Vetaas, O.R.; Paruelo, J. Do composition and richness of woody plants vary between gaps and closed canopy patches in subtropical forests? J. Veg. Sci. 2016, 27, 1129–1139. [Google Scholar] [CrossRef] [Green Version]
- Yao, A.W.; Chiang, J.M.; McEwan, R.; Lin, T.C. The effect of typhoon-related defoliation on the ecology of gap dynamics in a subtropical rain forest of Taiwan. J. Veg. Sci. 2015, 26, 145–154. [Google Scholar] [CrossRef]
- Terborgh, J.; Huanca Nuñez, N.; Alvarez Loayza, P.; Cornejo Valverde, F. Gaps contribute tree diversity to a tropical floodplain forest. Ecology 2017, 98, 2895–2903. [Google Scholar] [CrossRef]
- Ranjitkar, S.; Luedeling, E.; Shrestha, K.K.; Guan, K.; Xu, J. Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int. J. Biometeorol. 2012, 57, 225–240. [Google Scholar] [CrossRef]
- Taneda, H.; Kandel, D.R.; Ishida, A.; Ikeda, H. Altitudinal changes in leaf hydraulic conductance across five Rhododendron species in Eastern Nepal. Tree Physiol. 2016, 36, 1272–1282. [Google Scholar] [CrossRef]
- Miln, R.I.; Abbott, R.J. Reproductive isolation among two interfertile Rhododendron species: Low frequency of post-F1 hybrid genotypes in alpine hybrid zones. Mol. Ecol. 2008, 17, 1108–1121. [Google Scholar] [CrossRef]
- Mcclure, J.W.; Lee, T.D. Small-scale disturbance in a northern hardwoods forest: Effects on tree species abundance and distribution. Can. J. For. Res. 1993, 23, 1347–1360. [Google Scholar] [CrossRef]
- Rao, P.; Barik, S.K.; Pandey, H.N.; Tripathi, R.S. Tree seed germination and seedling establishment in treefall gaps and understorey in a subtropical forest of northeast India. Austral. Ecol. 1997, 22, 136–145. [Google Scholar] [CrossRef]
- Burton, J.I.; Mladenoff, D.J.; Forrester, J.A.; Clayton, M.K.; Gilliam, F. Experimentally linking disturbance, resources and productivity to diversity in forest ground-layer plant communities. J. Ecol. 2014, 102, 1634–1648. [Google Scholar] [CrossRef]
- Tang, J.; Davy, A.J.; Jiang, D.; Musa, A.; Wu, D.; Wang, Y.C.; Miao, C.P. Effects of excluding grazing on the vegetation and soils of degraded sparse-elm grassland in the Horqin sandy land, China. Agr. Ecosyst. Environ. 2016, 235, 340–348. [Google Scholar] [CrossRef]
- Crouzeilles, R.; Ferreira, M.S.; Chazdon, R.L.; Lindenmayer, D.B.; Sansevero, J.B.B.; Monteiro, L.; Iribarrem, A.; Latawiec, A.E.; Strassburg, B.B.N. Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Sci. Adv. 2017, 3, e1701345. [Google Scholar] [CrossRef]
- Reid, J.L.; Fagan, M.E.; Zahawi, R.A. Positive site selection bias in meta-analyses comparing natural regeneration to active forest restoration. Sci. Adv. 2018, 4, eaas9143. [Google Scholar] [CrossRef] [Green Version]
Plant Type | Major Plant Species | Small Gaps | Closed Canopy |
---|---|---|---|
Woody | Rhododendron delavayi Franch | 8 | 8 |
Rhododendron agastum Balf.f.et W.W.Smith | 8 | 6 | |
Quercus michauxii Nutt. | 6 | 3 | |
Cyclobalanopsis glauca (syn. Quercus glauca) | 5 | 3 | |
Eurya japonica Thunb. | 4 | 3 | |
Rhododendron irroratum Franch | 4 | 5 | |
Rhododendron simsii Planch | 4 | - | |
Castanea sequinii Dode | 3 | - | |
Hypericum monogynum L. | 3 | - | |
Gaultheria yunnanensis (Franch.) Rehder | 3 | - | |
Cinnamomum glanduliferum (Wall.) Meissn. | 2 | - | |
Vaccinium bracteatum Thunb. | 2 | - | |
Castanea mollissima Blume | 2 | - | |
Aralia chinensis L. | - | 2 | |
Herbaceous | Fargesia spathacea Franch | - | 2 |
Gap Type | Slope Position | AK (mg/kg) | C/P | pH | Ca (g/kg) |
---|---|---|---|---|---|
Small gaps | Downhill | 50.99 ± 2.06A | 143.91 ± 26.97 | 4.9 ± 0.41 | 2.63 ± 1.05 |
Mid-slope | 53.74 ± 1.83a | 141.28 ± 20.17 | 4.22 ± 0.21 | 1.20 ± 0.27 | |
Uphill | 45.66 ± 2.90 | 172.52 ± 25.92 | 4.41 ± 0.16 | 1.51 ± 0.29 | |
Closed canopy | Downhill | 38.70 ± 4.27B | 218.60 ± 69.43 | 5.19 ± 0.99a | 2.77 ± 0.89a |
Mid-slope | 44.30 ± 2.14b | 217.44 ± 21.06 | 4.01 ± 0.08b | 1.11 ± 0.15b | |
Uphill | 43.19 ± 2.22 | 218.45 ± 41.54 | 4.13 ± 0.04 | 1.53 ± 0.27 | |
Gap type c | * | * | NS | NS | |
Slope position c | NS | NS | * | * | |
G × SP c | NS | NS | NS | NS |
Coefficient | B | SE | WCT (χ2) | P (>χ2) |
---|---|---|---|---|
Intercept | 5.60 | 8.53 | 0.450 | 0.503 |
Alti | 0.01 | 0.01 | 3.45 | 0.063 |
SP | −0.58 | 0.30 | 3.68 | 0.055 |
pH | −1.28 | 0.52 | 6.00 | 0.014 * |
SWC | −0.21 | 0.04 | 28.81 | <0.000 * |
SOC | 0.00 | 0.01 | 0.00 | 0.971 |
TK | −0.56 | 0.17 | 10.31 | 0.001 * |
C/P | −0.01 | 0.01 | 1.24 | 0.265 |
Scale | 0.56a | 0.21 | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, F.; Quan, W.; Li, C.; Huang, X.; Wu, X.; Yang, Q.; Pan, Y.; Xu, T.; Qian, C.; Gu, Y. Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China. Int. J. Environ. Res. Public Health 2019, 16, 1919. https://doi.org/10.3390/ijerph16111919
Tang F, Quan W, Li C, Huang X, Wu X, Yang Q, Pan Y, Xu T, Qian C, Gu Y. Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China. International Journal of Environmental Research and Public Health. 2019; 16(11):1919. https://doi.org/10.3390/ijerph16111919
Chicago/Turabian StyleTang, Fenghua, Wenxuan Quan, Chaochan Li, Xianfei Huang, Xianliang Wu, Qiaoan Yang, Yannan Pan, Tayan Xu, Chenyu Qian, and Yunbing Gu. 2019. "Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China" International Journal of Environmental Research and Public Health 16, no. 11: 1919. https://doi.org/10.3390/ijerph16111919
APA StyleTang, F., Quan, W., Li, C., Huang, X., Wu, X., Yang, Q., Pan, Y., Xu, T., Qian, C., & Gu, Y. (2019). Effects of Small Gaps on the Relationship Among Soil Properties, Topography, and Plant Species in Subtropical Rhododendron Secondary Forest, Southwest China. International Journal of Environmental Research and Public Health, 16(11), 1919. https://doi.org/10.3390/ijerph16111919