Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Exploratory Spatial Data Analysis
2.4. Geographically Weighted Regression
3. Results
3.1. Analysis of the Spatial-Temporal Patterns of AQI
3.1.1. Spatial Variation of AQI
3.1.2. Periodic Variations of AQI
3.1.3. Evolution of Spatial Autocorrelation of AQI
3.2. Daily Meteorological Factors on the AQI from the Statistical Analysis
3.2.1. Precipitation
3.2.2. Wind
3.2.3. Annual Influential Factors on the AQI from the GWR Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Usman, M.; Ma, Z.; Wasif Zafar, M.; Haseeb, A.; Ashraf, R.U. Are Air Pollution, Economic and Non-Economic Factors Associated with Per Capita Health Expenditures? Evidence from Emerging Economies. Int. J. Environ. Res. Public Health 2019, 16, 1967. [Google Scholar] [CrossRef] [PubMed]
- Lin, G.; Fu, J.; Jiang, D.; Hu, W.; Dong, D.; Huang, Y.; Zhao, M. Spatio-Temporal Variation of PM2.5 Concentrations and Their Relationship with Geographic and Socioeconomic Factors in China. Int. J. Environ. Res. Public Health 2014, 11, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Sun, J.; Liu, Y.; Xiao, Y.; Tian, Y.; Zhao, B.; Zhang, X. Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. J. Environ. Manag. 2019, 245, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Jiang, Y.; Liu, Q.; Xu, D.; Zhao, S.; He, L.; Liu, H.; Xu, H. Temporal and spatial trends in air quality in Beijing. Landsc. Urban Plan. 2019, 185, 35–43. [Google Scholar] [CrossRef]
- Halkos, G.; Tsilika, K. Understanding transboundary air pollution network: Emissions, depositions and spatio-temporal distribution of pollution in European region. Resour. Conserv. Recycl. 2019, 145, 113–123. [Google Scholar] [CrossRef]
- Samoli, E.; Stergiopoulou, A.; Santana, P.; Rodopoulou, S.; Mitsakou, C.; Dimitroulopoulou, C.; Bauwelinck, M.; De Hoogh, K.; Costa, C.; Mari-Dell’Olmo, M.; et al. Spatial variability in air pollution exposure in relation to socioeconomic indicators in nine European metropolitan areas: A study on environmental inequality. Environ. Pollut. 2019, 249, 345–353. [Google Scholar] [CrossRef]
- Ma, Y.; Xiao, B.; Liu, C.; Zhao, Y.; Zheng, X. Association between Ambient Air Pollution and Emergency Room Visits for Respiratory Diseases in Spring Dust Storm Season in Lanzhou, China. Int. J. Environ. Res. Public Health 2016, 13, 613. [Google Scholar] [CrossRef]
- Zhong, L.; Louie, P.K.K.; Zheng, J.; Yuan, Z.; Yue, D.; Ho, J.W.K.; Lau, A.K.H. Science–policy interplay: Air quality management in the Pearl River Delta region and Hong Kong. Atmos. Environ. 2013, 76, 3–10. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Jiang, J.; Fu, Q.; Chen, C.; Xu, B.; Yu, J.; Fu, X.; Hao, J. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut. 2013, 182, 101–110. [Google Scholar] [CrossRef]
- Sun, D.; Fang, J.; Sun, J. Health-related benefits of air quality improvement from coal control in China: Evidence from the Jing-Jin-Ji region. Resour. Conserv. Recycl. 2018, 129, 416–423. [Google Scholar] [CrossRef]
- Zhang, Y. Dynamic effect analysis of meteorological conditions on air pollution: A case study from Beijing. Sci. Total Environ. 2019, 684, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Fan, Q.; Li, H.; Liao, Z.; Xie, J.; Fan, S. Multi-scale correlations between air quality and meteorology in the Guangdong−Hong Kong−Macau Greater Bay Area of China during 2015–2017. Atmos. Environ. 2018, 191, 463–477. [Google Scholar] [CrossRef]
- Han, X.; Li, H.; Liu, Q.; Liu, F.; Arif, A. Analysis of influential factors on air quality from global and local perspectives in China. Environ. Pollut. 2019, 248, 965–979. [Google Scholar] [CrossRef] [PubMed]
- Zhan, D.; Kwan, M.P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Fu, B.; Kurisu, K.; Hanaki, K.; Che, Y. Influential factors of public intention to improve the air quality in China. J. Clean. Prod. 2019, 209, 595–607. [Google Scholar] [CrossRef]
- Park, S.K.; Marmur, A.; Russell, A.G. Environmental Risk Assessment: Comparison of Receptor and Air Quality Models for Source Apportionment. Hum. Ecol. Risk Assess. Int. J. 2013, 19, 1385–1403. [Google Scholar] [CrossRef]
- Xie, M.; Hannigan, M.P.; Dutton, S.J.; Milford, J.B.; Hemann, J.G.; Miller, S.L.; Schauer, J.J.; Peel, J.L.; Vedal, S. Positive Matrix Factorization of PM2.5: Comparison and Implications of Using Different Speciation Data Sets. Environ. Sci. Technol. 2012, 46, 11962–11970. [Google Scholar] [CrossRef]
- Soria-Lara, J.A.; Tarriño-Ortiz, J.; Bueno, P.; Ortega, A.; Vassallo, J.M. A collaborative appraisal framework to evaluate transport policies for improving air quality in city centres. Cities 2019, 92, 112–124. [Google Scholar] [CrossRef]
- Klepac, P.; Locatelli, I.; Korošec, S.; Künzli, N.; Kukec, A. Ambient air pollution and pregnancy outcomes: A comprehensive review and identification of environmental public health challenges. Environ. Res. 2018, 167, 144–159. [Google Scholar] [CrossRef]
- Giardullo, P.; Sergi, V.; Carton, W.; Kenis, A.; Kesteloot, C.; Kazepov, Y.; Kobus, D.; Maione, M.; Skotak, K.; Fuzzi, S.; et al. Air quality from a social perspective in four European metropolitan areas: Research hypothesis and evidence from the SEFIRA project. Environ. Sci. Policy 2016, 65, 58–64. [Google Scholar] [CrossRef]
- Butt, M.J.; Assiri, M.E.; Ali, M.A. Assessment of AOD variability over Saudi Arabia using MODIS Deep Blue products. Environ. Pollut. 2017, 231, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.R.; Ji, Q.; Fan, Y. Spatial linkage analysis of the impact of regional economic activities on PM2.5 pollution in China. J. Clean. Prod. 2016, 139, 1157–1167. [Google Scholar] [CrossRef]
- Hao, Y.; Liu, Y.M. The influential factors of urban PM2.5 concentrations in China: A spatial econometric analysis. J. Clean. Prod. 2016, 112, 1443–1453. [Google Scholar] [CrossRef]
- Liu, H.; Fang, C.; Zhang, X.; Wang, Z.; Bao, C.; Li, F. The effect of natural and anthropogenic factors on haze pollution in Chinese cities: A spatial econometrics approach. J. Clean. Prod. 2017, 165, 323–333. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, P.; Liu, Y.; Song, Y. Environmental and Dynamic Conditions for the Occurrence of Persistent Haze Events in North China. Engineering 2017, 3, 266–271. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.; Wang, S.; Hu, J. Identifying the socioeconomic determinants of population exposure to particulate matter (PM2.5) in China using geographically weighted regression modeling. Environ. Pollut. 2018, 241, 494–503. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, C.; Fang, S. Application of geographically weighted regression (GWR) in the analysis of the cause of haze pollution in China. Atmos. Pollut. Res. 2019, 10, 835–846. [Google Scholar] [CrossRef]
- Eder, B.; Kang, D.; Rao, S.T.; Mathur, R.; Yu, S.; Otte, T.; Schere, K.; Wayland, R.; Jackson, S.; Davidson, P. Using national air quality forecast guidance to develop local air quality index forecasts. Bull. Am. Meteorol. Soc. 2010, 91, 313–326. [Google Scholar] [CrossRef]
- Esri, R. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2011. [Google Scholar]
- Tobler, W.R. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wang, L.; Wei, B.; Li, H.; Zhang, F.; Rosenberg, M.; Yang, L.; Huang, J.; Krafft, T.; Wang, W. A study of air pollutants influencing life expectancy and longevity from spatial perspective in China. Sci. Total Environ. 2014, 487, 57–64. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially Varying Relationships; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- The MathWorks, Inc. MATLAB and Statistics Toolbox Release; The MathWorks, Inc.: Natick, MA, USA, 2012. [Google Scholar]
- Cai, S.; Wang, Y.; Zhao, B.; Wang, S.; Chang, X.; Hao, J. The impact of the “Air Pollution Prevention and Control Action Plan” on PM2.5 concentrations in Jing-Jin-Ji region during 2012–2020. Sci. Total Environ. 2017, 580, 197–209. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Li, S.; Cao, W.; Ren, H.; Knibbs, L.D.; Abramson, M.J.; Guo, Y. Spatiotemporal patterns of PM10 concentrations over China during 2005–2016: A satellite-based estimation using the random forests approach. Environ. Pollut. 2018, 242, 605–613. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Y.Q.; Wang, Y.J.; Ma, C. National air pollution distribution in China and related geographic, gaseous pollutant, and socio-economic factors. Environ. Pollut. 2019, 250, 998–1009. [Google Scholar] [CrossRef]
- Pratt, G.; Vadali, M.; Kvale, D.; Ellickson, K. Traffic, air pollution, minority and socio-economic status: Addressing inequities in exposure and risk. Int. J. Environ. Res. Public Health 2015, 12, 5355–5372. [Google Scholar] [CrossRef]
- Luo, J.; Du, P.; Samat, A.; Xia, J.; Che, M.; Xue, Z. Spatiotemporal pattern of PM2.5 concentrations in mainland China and analysis of its influencing factors using geographically weighted regression. Sci. Rep. 2017, 7, 40607. [Google Scholar] [CrossRef]
- Pu, H.; Luo, K.; Wang, P.; Wang, S.; Kang, S. Spatial variation of air quality index and urban driving factors linkages: Evidence from Chinese cities. Environ. Sci. Pollut. Res. 2017, 24, 4457–4468. [Google Scholar] [CrossRef]
- Xu, B.; Luo, L.; Lin, B. A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models. Ecol. Indic. 2016, 63, 346–358. [Google Scholar] [CrossRef]
- Zhao, Y.B.; Gao, P.P.; Yang, W.D.; Ni, H.G. Vehicle exhaust: An overstated cause of haze in China. Sci. Total Environ. 2018, 612, 490–491. [Google Scholar] [CrossRef]
- Long, R.; Shao, T.; Chen, H. Spatial econometric analysis of China’s province-level industrial carbon productivity and its influencing factors. Appl. Energy 2016, 166, 210–219. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Perlmutt, L.D.; Cromar, K.R. Comparing associations of respiratory risk for the EPA Air Quality Index and health-based air quality indices. Atmos. Environ. 2019, 202, 1–7. [Google Scholar] [CrossRef]
- Batterman, S. Temporal and spatial variation in allocating annual traffic activity across an urban region and implications for air quality assessments. Transp. Res. Part D Transp. Environ. 2015, 41, 401–415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Range | Level | Air Pollution Category | Health Implications |
---|---|---|---|
0–50 | I | Excellent | No health implications |
51–100 | II | Good | Some pollutants may slightly affect very few hypersensitive individuals. |
101–150 | III | Lightly Polluted | Part of healthy people may experience slight irritations and sensitive individuals will be slightly affected to a larger extent. |
151–200 | IV | Moderately Polluted | Healthy people may manifest symptoms. |
201–300 | V | Heavily Polluted | Healthy people will be noticeably affected. People with breathing or heart problems will experience reduced endurance in activities. |
301–500 | VI | Severely Polluted | Healthy people will experience reduced endurance in activities. There may be strong irritations and symptoms and may trigger other illnesses. |
Explanatory Variables | Abbreviation | Unit | Collinearity Statistics | ||
---|---|---|---|---|---|
Tolerance | VIF | ||||
Meteorological factors | Temperature | Tem | °C | 0.24 | 4.24 |
Precipitation | Pre | mm | 0.28 | 3.63 | |
Wind speed | WS | m/s | 0.19 | 5.40 | |
Atmospheric pressure | AP | Kpa | 0.30 | 3.37 | |
Socioeconomic factors | Annual Average Population | AAP | 104 persons | 0.26 | 3.85 |
Population density | PD | person/sq·km | 0.30 | 3.33 | |
GDP | GDP | 104 yuan | 0.05 | 18.76 | |
Per capita GDP | PCGDP | yuan | 0.22 | 4.53 | |
The secondary industry as percentage to GDP | SIAGDP | % | 0.47 | 2.13 | |
Green covered area as rate of completed area | GCAARCA | % | 0.59 | 1.68 | |
Forest coverage | FC | % | 0.67 | 1.48 | |
Civilian car ownership | CCO | One car | 0.16 | 6.01 | |
Total Gas Supply | TGS | 104 m3 | 0.15 | 6.64 |
Variable | Standardized Coefficients | p | VIF | Std. Error | t-Statistic |
---|---|---|---|---|---|
Air pressure | 0.1896 | 0.1363 | 3.3489 | 0.1444 | 1.313405 |
Temperature | −0.1844 | 0.1808 | 4.1055 | 0.1598 | −1.153739 |
Wind speed | −0.5833 | 0.0013 * | 5.0591 | 0.1774 | −3.286439 |
Precipitation | −0.1862 | 0.2021 | 3.5785 | 0.1492 | −1.247577 |
Population | −0.0820 | 0.5102 | 2.7766 | 0.1314 | −0.623908 |
Population density | 0.0866 | 0.5464 | 3.0296 | 0.1373 | 0.631044 |
Secondary industry as a % of GDP | 0.1772 | 0.0944 * | 2.1108 | 0.1146 | 1.545896 |
Per capita GDP | −0.1855 | 0.0044 * | 2.2576 | 0.1185 | −1.5649 |
Green covered area as rate of completed area | 0.0714 | 0.3241 | 1.3345 | 0.0911 | 0.783747 |
Forest coverage | −0.2272 | 0.0085 * | 1.3858 | 0.0928 | −2.446134 |
Total gas supply | −0.3045 | 0.2167 | 3.5997 | 0.1497 | −2.034404 |
Civilian car ownership | 0.6319 | 0.0005 * | 5.1361 | 0.1788 | 3.533406 |
Joint Wald Statistic | 248.7073 | 0.0000 * | |||
AICc | 127.5710 | ||||
Adjusted R2 | 0.6450 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Tian, Y.; Liu, Y.; Zhao, B.; Liu, Y.; Zhang, X. Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China. Int. J. Environ. Res. Public Health 2019, 16, 2820. https://doi.org/10.3390/ijerph16162820
Xu W, Tian Y, Liu Y, Zhao B, Liu Y, Zhang X. Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China. International Journal of Environmental Research and Public Health. 2019; 16(16):2820. https://doi.org/10.3390/ijerph16162820
Chicago/Turabian StyleXu, Wenxuan, Yongzhong Tian, Yongxue Liu, Bingxue Zhao, Yongchao Liu, and Xueqian Zhang. 2019. "Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China" International Journal of Environmental Research and Public Health 16, no. 16: 2820. https://doi.org/10.3390/ijerph16162820
APA StyleXu, W., Tian, Y., Liu, Y., Zhao, B., Liu, Y., & Zhang, X. (2019). Understanding the Spatial-Temporal Patterns and Influential Factors on Air Quality Index: The Case of North China. International Journal of Environmental Research and Public Health, 16(16), 2820. https://doi.org/10.3390/ijerph16162820