The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Wetland Data
2.3. LULC Analysis by Geographic Information System (GIS)
2.4. Driving Forces of the Decrease in Natural Wetlands
3. Results
3.1. Changes in Wetland Area and Distribution
3.2. Wetland Changes
3.3. Natural Wetlands Patterns of Change from 2000 to 2015
3.4. Drivers of the Decrease in Natural Wetland Area
4. Discussion
4.1. Main Wetland Changes in Different Areas
4.2. The Drivers of Changes in Wetland Area
4.3. Evidence-Based Policy Advice
4.4. Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yuan, H.; Zhang, R. Changes in wetland landscape patterns on Yinchuan Plain, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 236–243. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Environ. Resour. 2005, 15, 39–74. [Google Scholar] [CrossRef]
- Fan, Q.; Du, T.; Yang, J.; Xi, J.; Li, X.; Chen, P. Landscape Pattern Changes for Nansihu Wetland from 1982 to 2012. Resour. Sci. 2014, 36, 865–873. [Google Scholar]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, Z.; Zhang, H.; Wang, X.; Yao, W.; Zhou, D.; Zhao, K.; Zhao, H.; Li, N.; Huang, H.; Li, C.; et al. Mapping Wetland Changes between 1978 and 2008. Chin. Sci. Bull. 2012, 57, 2813–2823. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences (CAS). China Sustainable Development Strategy Report 2007-Water: Governance and Innovation; Science Press: Beijing, China, 2007. [Google Scholar]
- Ye, Q.; Glantz, M.H. The 1998 Yangtze Floods: The Use of Short-Term Forecasts in the Context of Seasonal to Interannual Water Resource Management. Mitig. Adapt. Strateg. Glob. Chang. 2005, 10, 159–182. [Google Scholar] [CrossRef]
- Jiang, B.; Wong, C.P.; Chen, Y.; Cui, L.; Ouyang, Z. Advancing Wetland Policies Using Ecosystem Services–China’s Way Out. Wetlands 2015, 35, 983–995. [Google Scholar] [CrossRef]
- Fujihara, M.; Kikuchi, T. Changes in the landscape structure of the Nagara River Basin, central Japan. Landsc. Urban Plan. 2005, 70, 271–281. [Google Scholar] [CrossRef]
- Janssen, R.; Goosen, H.; Verhoeven, M.L.; Verhoeven, J.T.A.; Omtzigt, A.Q.A.; Maltby, E. Decision support for integrated wetland management. Environ. Model. Softw. 2005, 20, 215–229. [Google Scholar] [CrossRef]
- Sica, Y.V.; Quintana, R.D.; Radeloff, V.C.; Gavier-Pizarro, G.I. Wetland loss due to land use change in the Lower Paraná River Delta, Argentina. Sci. Total Environ. 2016, 568, 967–978. [Google Scholar] [CrossRef]
- Patino, J.E.; Estupinan-Suarez, L.M. Hotspots of Wetland Area Loss in Colombia. Wetlands 2016. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Georgiou, I.Y.; Enchelmeyer, B.; Reed, D.J. The value of wetlands in protecting southeast louisiana from hurricane storm surges. PLoS ONE 2013, 8, e58715. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016; ISBN 978-750-059-419-2.
- Jiang, D.; Zhuang, D.; Xu, X.; Lei, Y. Integrated Evaluation of Urban Development Suitability Based on Remote Sensing and GIS Techniques: A Case Study in Jingjinji Area, China. Sensors 2008, 8, 5975–5986. [Google Scholar]
- Gao, Y.; Feng, Z.; Li, Y.; Li, S. Freshwater ecosystem service footprint model: A model to evaluate regional freshwater sustainable development—A case study in Beijing–Tianjin–Hebei, China. Ecol. Indic. 2014, 39, 1–9. [Google Scholar] [CrossRef]
- Beijing Water Authority. Beijing Water Resource Bulletin. Available online: http://swj.beijing.gov.cn/eportal/fileDir/bjwater/resource/cms/2017/11/2017112016524372510.pdf (accessed on 20 November 2017).
- Tianjin Water Authority. Tianjin Water Resource Bulletin. Available online: http://swj.tj.gov.cn/swj/zwgk/gkml/zcwj/gztb/201902/t20190228_13561.html (accessed on 28 February 2019).
- Department of Water Resources of Hebei Province. Hebei Water Resource Bulletin. Available online: http://slt.hebei.gov.cn/a/2018/03/02/2018030221905.html (accessed on 2 March 2018).
- Wang, Y.; Li, W.; Wang, Y.; Fu, J. Integrate actions for water resources protection in Beijing-Tianjin-Hebei Region. China Water Resour. 2015, 6, 1–4. [Google Scholar]
- Haas, J.; Ban, Y. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 2014, 30, 42–55. [Google Scholar] [CrossRef]
- Foti, R.; del Jesus, M.; Rinaldo, A.; Rodriguez-Iturbe, I. Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes. Proc. Natl. Acad. Sci. USA 2013, 110, 6296–6300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinkel, J.; Klein, R.J.T. Integrating knowledge to assess coastal vulnerability to sea-level rise: The development of the DIVA tool. Glob. Environ. Chang. 2009, 19, 384–395. [Google Scholar] [CrossRef]
- Zhou, Y.; Tian, B.; Huang, Y.; Wu, W.; Qi, X.; Shu, M.; Xu, W.; Ge, F.; Wei, W.; Huang, G. Degradation of Coastal Wetland Ecosystem in China: Drivers, Impacts, and Strategies. Bull. Chin. Acad. Sci. 2016, 31, 1157–1166. [Google Scholar]
- Hu, Q.; Qi, Y.; Hu, Y.; Zhanng, Y.; Wu, C.; Zhang, G.; Shen, Y. Changes and driving forces of land use/cover and landscape patterns in Beijing-Tianjin-Hebei region. Chin. J. Econ. Agric. 2011, 95, 1182–1189. [Google Scholar] [CrossRef]
- Wang, S.; Ma, H.; Zhao, Y. Exploring the relationship between urbanization and the eco-environment—A case study of Beijing–Tianjin–Hebei region. Ecol. Indic. 2014, 45, 171–183. [Google Scholar] [CrossRef]
- Yan, M.; Li, J.; Ren, L. Beijing-Tianjin-Hebei Region Land Use and Landscape Pattern Analysis of Typical Cities. Geospat. Inf. 2016, 14, 69–72. [Google Scholar]
- Zhang, M.; Gong, Z.; Zhao, W. Landscape pattern change and the driving forces in Baiyangdian wetland from 1984 to 2014. Acta Ecol. Sin. 2016, 36, 4780–4791. [Google Scholar]
- China’s National Ecosystem Assessment and Ecological Safety Database. Available online: http://www.ecosystem.csdb.cn (accessed on 12 September 2018).
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Gu, F.X.; Liu, W.B. Change Detection of Coastal Landscape Pattern Using GIS: A Case Study of Tianjin Binhai New Area. Adv. Mater. Res. 2011, 418, 2032–2035. [Google Scholar] [CrossRef]
- Liquete, C.; Zulian, G.; Delgado, I.; Stips, A.; Maes, J. Assessment of coastal protection as an ecosystem service in Europe. Ecol. Indic. 2013, 30, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E.B. Valuing the storm protection service of estuarine and coastal ecosystems. Ecosyst. Serv. 2015, 11, 32–38. [Google Scholar] [CrossRef]
- Liu, H.; Dong, Y.; Tian, L. The Effects of Lake Aquiculture on the Lake Ecosystem in Hubei. Hubei Agric. Sci. 2011, 50, 1789–1792. [Google Scholar]
- Wu, W.; Zhao, S.; Zhu, C.; Jiang, J. A comparative study of urban expansion in Beijing, Tianjin and Shijiazhuang over the past three decades. Landsc. Urban Plan. 2015, 134, 93–106. [Google Scholar] [CrossRef]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, Y.; Rao, E.; Jiang, L. Spatial Characteristics of Food Provision Service and Its Impact Factors in China. J. Nat. Resour. 2015, 30, 188–196. [Google Scholar]
- Henriksson, P.J.G.; Belton, B.; Murshed-e-Jahan, K.; Rico, A. Measuring the potential for sustainable intensification of aquaculture in Bangladesh using life cycle assessment. Proc. Natl. Acad. Sci. USA 2018, 115, 2958–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Talukdar, S. Drivers of vulnerability to wetlands in Punarbhaba river basin of India-Bangladesh. Ecol. Indic. 2018, 93, 612–626. [Google Scholar] [CrossRef]
- Zhang, Y.; Arthington, A.H.; Bunn, S.E.; Mackay, S.; Xia, J.; Kennard, M. Classification of Flow Regimes for Environmental Flow Assessment in Regulated Rivers: The Huai River Basin, China. River Res. Appl. 2012, 28, 989–1005. [Google Scholar] [CrossRef]
- Dawson, T.P.; Berry, P.M.; Kampa, E. Climate change impacts on freshwater wetland habitats. J. Nat. Conserv. 2003, 11, 25–30. [Google Scholar] [CrossRef]
- Song, K.; Wang, Z.; Li, L.; Tedesco, L.; Li, F.; Jin, C.; Du, J. Wetlands shrinkage, fragmentation and their links to agriculture in the Muleng–Xingkai Plain, China. J. Environ. Manag. 2012, 111, 120–132. [Google Scholar] [CrossRef]
- Milzow, C.; Burg, V.; Kinzelbach, W. Estimating future ecoregion distributions within the Okavango Delta Wetlands based on hydrological simulations and future climate and development scenarios. J. Hydrol. 2010, 381, 89–100. [Google Scholar] [CrossRef]
- Fay, P.A.; Guntenspergen, G.R.; Olker, J.H.; Johnson, W.C. Climate change impacts on freshwater wetland hydrology and vegetation cover cycling along a regional aridity gradient. Ecosphere 2016, 7, e01504. [Google Scholar] [CrossRef]
- Gopal, B.; Shilpakar, R.; Sharma, E. Functions and Services of Wetlands in the Eastern Himalayas: Impacts of Climate Change; International Centre for Integrated Mountain Development (ICIMOD): Lalitpur, Nepal, 2010. [Google Scholar]
- Du, T.; Kang, S.; Zhang, J.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Assessment, M.E. Ecosystems and Human Well-Being: Wetlands and Water Synthesis: A Report of the Millennium Ecosystem Assessment; World Resources Institute: Washington, DC, USA, 2005. [Google Scholar]
- Beijing Munipical Commission of Planning and Natural Resources. Available online: http://ghzrzyw.beijing.gov.cn/art/2007/10/12/art_4591_463615.html (accessed on 12 October 2007).
- Fan, J. Research on the Comprehensive Planning of Jing-Jin-Ji Metropolitan Area; Science Press: Beijing, China, 2008. [Google Scholar]
- Xie, Z.; Xu, L.; Duan, X.; Xu, X. Analysis of boundary adjustments and land use policy change—A case study of Tianjin Palaeocoast and Wetland National Natural Reserve, China. Ocean Coast. Manag. 2012, 56, 56–63. [Google Scholar] [CrossRef]
- Kang, H.; Seely, B.; Wang, G.; Innes, J.; Zheng, D.; Chen, P.; Wang, T.; Li, Q. Evaluating management tradeoffs between economic fiber production and other ecosystem services in a Chinese-fir dominated forest plantation in Fujian Province. Sci. Total Environ. 2016, 557, 80–90. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Li, Y.; Robinson, B.E.; Liu, G.; Ma, D.; Wang, F.; Lu, F.; Ouyang, Z.; Daily, G.C. Using ecosystem service trade-offs to inform water conservation policies and management practices. Front. Ecol. Environ. 2016, 14, 527–532. [Google Scholar] [CrossRef]
Wetland Types | 2000 | 2015 | Changes from 2000 to 2015 | |||
---|---|---|---|---|---|---|
Area/km2 | Percent/% | Area/km2 | Percent/% | Area */km2 | Percent/% | |
Herbaceous | 985.54 | 14.81 | 826.67 | 13.20 | −158.87 * | −16.12 |
Lake | 22.72 | 0.34 | 35.20 | 0.56 | 12.48 | 54.96 |
Reservoir/pond | 4298.07 | 64.58 | 4447.09 | 70.99 | 149.01 | 3.47 |
Rivers | 1109.40 | 16.67 | 771.22 | 12.31 | −338.18 * | −30.48 |
Canal/Channel | 239.75 | 3.60 | 183.90 | 2.94 | −55.85 * | −23.30 |
Total | 6655.49 | 100.00 | 6264.07 | 100.00 | −391.42 * | −5.88 |
Changing Patterns /% | |||||||
---|---|---|---|---|---|---|---|
Landforms | Wetland Type | Urbanization | Agriculture | Artificialize | Internal Conversion | Grassland Expansion | Other |
Coastal area | Herbaceous swamp | 3.48 | 3.06 | 82.44 | 7.13 | 0.22 | 3.67 |
Lakes | - | - | - | - | - | - | |
Rivers | 12.84 | 25.66 | 44.24 | 3.61 | 9.34 | 4.31 | |
Total | 8.00 | 13.99 | 63.97 | 5.43 | 4.63 | 3.98 | |
Plain | Herbaceous swamp | 3.72 | 13.00 | 66.51 | 5.57 | 8.98 | 2.22 |
Lakes | 0.31 | 7.98 | 79.58 | 0.16 | 0.20 | 11.76 | |
Rivers | 5.57 | 45.44 | 6.47 | 1.27 | 30.10 | 11.15 | |
Total | 4.78 | 31.56 | 32.16 | 3.10 | 21.05 | 7.35 | |
Mountainous area | Herbaceous swamp | 1.43 | 46.12 | 21.92 | 2.13 | 16.11 | 12.30 |
Lakes | 15.35 | 5.20 | 0.00 | 6.92 | 27.83 | 44.70 | |
Rivers | 5.70 | 43.52 | 0.99 | 0.44 | 40.41 | 8.95 | |
Total | 4.33 | 44.27 | 7.81 | 1.00 | 32.46 | 10.12 | |
In Total | Herbaceous swamp | 3.42 | 16.89 | 61.35 | 5.19 | 9.60 | 3.56 |
Lakes | 4.13 | 7.23 | 58.88 | 1.88 | 7.23 | 20.65 | |
Rivers | 5.75 | 44.66 | 6.28 | 1.16 | 31.55 | 10.59 | |
Total | 4.79 | 33.16 | 29.06 | 2.82 | 22.46 | 7.70 |
Changing Patterns/% | |||||||
---|---|---|---|---|---|---|---|
Province | Wetland Type | Urbanization | Agriculture | Artificialize | Internal Conversion | Grassland Expansion | Other |
Beijing | Herbaceous swamp | 13.25 | 8.62 | 20.41 | 3.15 | 43.95 | 10.61 |
Lakes | 0.31 | 7.98 | 79.58 | 0.16 | 0.20 | 11.76 | |
Rivers | 5.92 | 10.51 | 7.06 | 1.43 | 55.60 | 19.48 | |
Total | 7.35 | 10.10 | 10.59 | 1.77 | 52.61 | 17.58 | |
Hebei | Herbaceous swamp | 3.16 | 24.95 | 53.22 | 2.20 | 12.37 | 4.10 |
Lakes | 15.00 | 5.09 | 0.00 | 6.77 | 27.20 | 45.94 | |
Rivers | 5.45 | 50.65 | 5.52 | 0.71 | 28.38 | 9.29 | |
Total | 4.78 | 43.01 | 19.65 | 1.16 | 23.63 | 7.77 | |
Tianjin | Herbaceous swamp | 2.62 | 8.59 | 75.17 | 8.83 | 2.63 | 2.15 |
Lakes | - | - | - | - | - | - | |
Rivers | 17.28 | 17.75 | 32.71 | 18.15 | 7.36 | 6.75 | |
Total | 3.53 | 9.15 | 72.55 | 9.41 | 2.92 | 2.44 | |
In Total | Herbaceous swamp | 3.42 | 16.89 | 61.35 | 5.19 | 9.60 | 3.56 |
Lakes | 4.13 | 7.23 | 58.88 | 1.88 | 7.23 | 20.65 | |
Rivers | 5.75 | 44.66 | 6.28 | 1.16 | 31.55 | 10.59 | |
Total | 4.79 | 33.16 | 29.06 | 2.82 | 22.46 | 7.70 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhen, Q.; Cheng, M.; Ouyang, Z. The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region. Int. J. Environ. Res. Public Health 2019, 16, 2619. https://doi.org/10.3390/ijerph16142619
Zhang L, Zhen Q, Cheng M, Ouyang Z. The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region. International Journal of Environmental Research and Public Health. 2019; 16(14):2619. https://doi.org/10.3390/ijerph16142619
Chicago/Turabian StyleZhang, Liyun, Quan Zhen, Min Cheng, and Zhiyun Ouyang. 2019. "The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region" International Journal of Environmental Research and Public Health 16, no. 14: 2619. https://doi.org/10.3390/ijerph16142619
APA StyleZhang, L., Zhen, Q., Cheng, M., & Ouyang, Z. (2019). The Main Drivers of Wetland Changes in the Beijing-Tianjin-Hebei Region. International Journal of Environmental Research and Public Health, 16(14), 2619. https://doi.org/10.3390/ijerph16142619