Fish and Meat Intake, Serum Eicosapentaenoic Acid and Docosahexaenoic Acid Levels, and Mortality in Community-Dwelling Japanese Older Persons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants in the Baseline Survey
2.2. Follow-Up and Study Subjects
2.3. Blood Sampling and Serum Fatty Acid Analysis
2.4. Nutritional Assessments
2.5. Other Measurements
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Katanoda, K.; Matsumura, Y. National Nutrition Survey in Japan--its methodological transition and current findings. J. Nutr. Sci. Vitaminol. 2002, 48, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Annual Report of the National Nutrition Survey in 2012. Available online: http://www.mhlw.go.jp/bunya/kenkou/eiyou/h24-houkoku.html (accessed on 13 March 2019). (In Japanese).
- Sekikawa, A.; Steingrimsdottir, L.; Ueshima, H.; Shin, C.; Curb, J.D.; Evans, R.W.; Hauksdottir, A.M.; Kadota, A.; Choo, J.; Masaki, K.; et al. Serum levels of marine-derived n-3 fatty acids in Icelanders, Japanese, Koreans, and Americans--a descriptive epidemiologic study. Prostaglandins Leukot. Essent. Fat. Acids 2012, 87, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Crombie, I.K.; McLoon, P.; Smith, W.C.; Thomson, M.; Pedoe, H.T. International differences in coronary heart disease mortality and consumption of fish and other foodstuffs. Eur. Heart J. 1987, 8, 560–563. [Google Scholar] [CrossRef] [PubMed]
- León, H.; Shibata, M.C.; Sivakumaran, S.; Dorgan, M.; Chatterley, T.; Tsuyuki, R.T. Effect of fish oil on arrhythmias and mortality: Systematic review. BMJ 2008, 337, a2931. [Google Scholar] [CrossRef]
- Nakamura, Y.; Ueshima, H.; Okamura, T.; Kadowaki, T.; Hayakawa, T.; Kita, Y.; Tamaki, S.; Okayama, A.; NIPPON DATA80 Research Group. Association between fish consumption and all-cause and cause-specific mortality in Japan: NIPPON DATA80, 1980–1999. Am. J. Med. 2005, 118, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sasaki, S.; Amano, K.; Kesteloot, H. Fish consumption and mortality from all causes, ischemic heart disease, and stroke: An ecological study. Prev. Med. 1999, 28, 520–529. [Google Scholar] [CrossRef]
- Osler, M.; Andreasen, A.H.; Hoidrup, S. No inverse association between fish consumption and risk of death from all-causes, and incidence of coronary heart disease in middle-aged, Danish adults. J. Clin. Epidemiol. 2003, 56, 274–279. [Google Scholar] [CrossRef]
- Frank, B.H. Obesity Epidemiology; Oxford University Press: New York, NY, USA, 2008. [Google Scholar]
- Kobayashi, M.; Sasaki, S.; Kawabata, T.; Hasegawa, K.; Akabane, M.; Tsugane, S. Single measurement of serum phospholipid fatty acid as a biomarker of specific fatty acid intake in middle-aged Japanese men. Eur. J. Clin. Nutr. 2001, 55, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.B.; Song, X.; Huang, H.; Sacks, F.M.; Rimm, E.B.; Wang, M.; Siscovick, D.S. Plasma phospholipid long-chain omega-3 fatty acids and total and cause-specific mortality in older adults: A cohort study. Ann. Intern. Med. 2013, 158, 515–525. [Google Scholar] [CrossRef]
- Ouchi, S.; Miyazaki, T.; Shimada, K.; Sugita, Y.; Shimizu, M.; Murata, A.; Kato, T.; Aikawa, T.; Suda, S.; Shiozawa, T.; et al. Low docosahexaenoic acid, dihomo-gamma-linolenic acid, and arachidonic acid levels associated with long-term mortality in patients with acute decompensated heart failure in different nutritional statuses. Nutrients 2017, 30, 9. [Google Scholar]
- Kuriki, K.; Nagaya, T.; Tokudome, Y.; Imaeda, N.; Fujiwara, N.; Sato, J.; Goto, C.; Ikeda, M.; Maki, S.; Tajima, K.; et al. Plasma concentrations of (n-3) highly unsaturated fatty acids are good biomarkers of relative dietary fatty acid intakes: A cross-sectional study. J. Nutr. 2003, 133, 3643–3650. [Google Scholar] [CrossRef] [PubMed]
- Sugano, M.; Hirahara, F. Polyunsaturated fatty acids in the food chain in Japan. Am. J. Clin. Nutr. 2000, 71, 189S–196S. [Google Scholar] [CrossRef]
- Farina, E.K.; Kiel, D.P.; Roubenoff, R.; Schaefer, E.J.; Cupples, L.A.; Tucker, K.L. Protective effects of fish intake and interactive effects of long-chain polyunsaturated fatty acid intakes on hip bone mineral density in older adults: The Framingham Osteoporosis Study. Am. J. Clin. Nutr. 2011, 93, 1142–1151. [Google Scholar] [CrossRef]
- Ma, J.; Folsom, A.R.; Shahar, E.; Eckfeldt, J.H. Plasma fatty acid composition as an indicator of habitual dietary fat intake in middle-aged adults. The Atherosclerosis Risk in Communities (ARIC) Study Investigators. Am. J. Clin. Nutr. 1995, 62, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Shimokata, H.; Ando, F.; Niino, N. A new comprehensive study on aging--the National Institute for Longevity Sciences, Longitudinal Study of Aging (NILS-LSA). J. Epidemiol. 2000, 10, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Kato, Y.; Imai, T.; Ando, F.; Shimokata, H. Secular trend of serum docosahexaenoic acid, eicosapentaenoic acid, and arachidonic acid concentrations among Japanese-a 4- and 13-year descriptive epidemiologic study. Prostaglandins Leukot. Essent. Fat. Acids 2015, 94, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Domei, T.; Kuramitsu, S.; Soga, Y.; Arita, T.; Ando, K.; Shirai, S.; Kondo, K.; Sakai, K.; Goya, M.; Iwabuchi, M.; et al. Ratio of serum n-3 to n-6 polyunsaturated fatty acids and the incidence of major adverse cardiac events in patients undergoing percutaneous coronary intervention. Circ. J. 2011, 76, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Imai, T.; Sakai, S.; Mori, K.; Ando, F.; Niino, N.; Shimokata, H. Nutritional assessments of 3-day dietary records in National Institute for Longevity Sciences--Longitudinal Study of Aging (NILS-LSA). J. Epidemiol. 2000, 10, S70–S76. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education Culture, Sports, Science and Technology. Standard Tables of Food Composition in Japan 2010. Available online: http://www.mext.go.jp/b_menu/shingi/gijyutu/gijyutu3/houkoku/1298713.htm (accessed on 13 March 2019).
- Kozakai, R.; Ando, F.; Kim, H.Y.; Rantanen, T.; Shimokata, H. Regular exercise history as a predictor of exercise in community-dwelling older Japanese people. J. Phys. Fit. Sports Med. 2012, 1, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Holmes, M.D.; Colditz, G.A.; Hunter, D.J.; Hankinson, S.E.; Rosner, B.; Speizer, F.E.; Willett, W.C. Meat, fish and egg intake and risk of breast cancer. Int. J. Cancer 2003, 104, 221–227. [Google Scholar] [CrossRef]
- Larsson, S.C.; Håkanson, N.; Permert, J.; Wolk, A. Meat, fish, poultry and egg consumption in relation to risk of pancreatic cancer: A prospective study. Int. J. Cancer 2006, 118, 2866–2870. [Google Scholar] [CrossRef]
- Kinjo, Y.; Beral, V.; Akiba, S.; Key, T.; Mizuno, S.; Appleby, P.; Yamaguchi, N.; Watanabe, S.; Doll, R. Possible protective effect of milk, meat and fish for cerebrovascular disease mortality in Japan. J. Epidemiol. 1999, 9, 268–274. [Google Scholar] [CrossRef]
- Chen, G.C.; Lv, D.B.; Pang, Z.; Liu, Q.F. Red and processed meat consumption and risk of stroke: A meta-analysis of prospective cohort studies. Eur. J. Clin. Nutr. 2013, 67, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Micha, R.; Wallace, S.K.; Mozaffarian, D. Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: A systematic review and meta-analysis. Circulation 2010, 121, 2271–2283. [Google Scholar] [CrossRef]
- Micha, R.; Michas, G.; Mozaffarian, D. Unprocessed red and processed meats and risk of coronary artery disease and type 2 diabetes--an updated review of the evidence. Curr. Atheroscler. Rep. 2012, 14, 515–524. [Google Scholar] [CrossRef]
- De Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: Systematic review and meta-analysis of observational studies. BMJ 2015, 11, h3978. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; et al. Prospective Urban Rural Epidemiology (PURE) study investigators. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef]
- Salem, N., Jr.; Litman, B.; Kim, H.Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakewell, L.; Burdge, G.C.; Calder, P.C. Polyunsaturated fatty acid concentrations in young men and women consuming their habitual diets. Br. J. Nutr. 2006, 96, 93–99. [Google Scholar] [CrossRef]
- Chen, G.C.; Yang, J.; Eggersdorfer, M.; Zhang, W.; Qin, L.Q. N-3 long-chain polyunsaturated fatty acids and risk of all-cause mortality among general populations: A meta-analysis. Sci. Rep. 2016, 16, 28165. [Google Scholar] [CrossRef]
- Sasaki, S. Introductory Guide of Dietary Reference Intakes―Sono Kokoro Wo Yomu; Dobunshoin: Tokyo, Japan, 2010. (In Japanese) [Google Scholar]
- Wakimoto, P.; Block, G. Dietary intake, dietary patterns, and changes with age: An epidemiological perspective. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, 65–80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Devine, A.; Suleska, A.; Tan, C.Y.; Toh, C.Z.; Kerr, D.; Prince, R.L. Adequacy and change in nutrient and food intakes with aging in a seven-year cohort study in elderly women. J. Nutr. Health Aging 2010, 14, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Kato, Y.; Imai, T.; Ando, F.; Shimokata, H. Higher serum EPA or DHA, and lower ARA compositions with age independent fatty acid intake in Japanese aged 40 to 79. Lipids 2013, 48, 719–727. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Range | |||
---|---|---|---|---|
Min | Max | Mean | SD | |
Men (n, %) | - | 520, 49.3 | ||
Age (years) | 60 | 79 | 68.6 | 5.5 |
Body mass index (kg/m2) | 14.1 | 42.4 | 22.9 | 3.1 |
Alcohol (mL/day) | 0 | 116.7 | 7.5 | 13.9 |
Physical activity (1000 METs × h/day) | 26.6 | 62.8 | 34.5 | 3.8 |
Current smoker (n, %) | - | 186, 17.7 | ||
Education | ||||
≤ 9 years (n, %) | - | 507, 48.1 | ||
10–12 years (n, %) | - | 379, 36.0 | ||
≥ 13 years (n, %) | - | 168, 15.9 | ||
Employment | ||||
Unemployed (n, %) | - | 733, 69.5 | ||
Regular employment (n, %) | - | 201, 19.1 | ||
Non-regular employment (n, %) | - | 120, 11.4 | ||
Diseases | ||||
Cancer (n, %) | - | 58, 5.5 | ||
Heart disease (n, %) | - | 181, 17.2 | ||
Stroke (n, %) | - | 49, 7.1 | ||
Hypertension (n, %) | - | 394, 37.4 | ||
Dyslipidemia (n, %) | - | 228, 21.6 | ||
Diabetes (n, %) | - | 119, 11.3 | ||
Dietary intake | ||||
Fish intake (g/day) | 0.0 | 346.2 | 98.8 | 50.5 |
Meat intake (g/day) | 0.0 | 222.7 | 51.0 | 31.7 |
EPA intake (mg/day) | 6.6 | 1638.8 | 319.1 | 240.3 |
DHA intake (mg/day) | 23.0 | 2722.5 | 569.4 | 382.5 |
ARA intake (mg/day) | 18.9 | 541.5 | 167.4 | 64.9 |
Serum fatty acid | ||||
EPA (μg/mL) | 5.8 | 269.1 | 70.7 | 37.0 |
DHA (μg/mL) | 30.2 | 460.6 | 152.5 | 47.1 |
ARA (μg/mL) | 61.8 | 337.4 | 149.2 | 35.9 |
EPA/ARA ratio | 0.1 | 2.3 | 0.5 | 0.3 |
Explanatory Variable | Tertile 1 | Tertile 2 | Tertile 3 | p trend | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Cases n /Alive n | HR (ref) | Median | Cases n /Alive n | HR (95% CI) | Median | Cases n /Alive n | HR (95% CI) | |||||
Fish intake | 55.0 | g/day | 142/208 | 1 | 89.5 | g/day | 142/208 | 1.16 (0.85–1.58) | 141.4 | g/day | 138/216 | 1.20 (0.89–1.63) | 0.23 |
Meat intake | 20.0 | g/day | 159/188 | 1 | 46.7 | g/day | 136/215 | 0.77 (0.57–1.03) | 80.0 | g/day | 127/229 | 0.81 (0.60–1.11) | 0.19 |
Fatty acid intake | 31.9 | g/day | 171/179 | 1 | 43.5 | g/day | 134/217 | 0.80 (0.59–1.08) | 57.2 | g/day | 117/236 | 0.74 (0.55–1.01) | 0.06 |
Saturated fatty acid intake | 9.7 | g/day | 160/190 | 1 | 14.0 | g/day | 143/208 | 0.75 (0.55–1.01) | 19.5 | g/day | 119/234 | 0.73 (0.53–0.99) | 0.04 |
Unsaturated fatty acid intake | 21.2 | g/day | 171/179 | 1 | 29.2 | g/day | 134/217 | 0.72 (0.53–0.97) | 38.9 | g/day | 117/236 | 0.78 (0.57–1.05) | 0.10 |
n-6 polyunsaturated fatty acid intake | 6.8 | g/day | 160/190 | 1 | 9.6 | g/day | 140/211 | 0.69 (0.50–0.93) | 12.6 | g/day | 122/231 | 0.80 (0.59–1.07) | 0.13 |
ARA intake | 104.4 | mg/day | 159/191 | 1 | 159.0 | mg/day | 134/217 | 0.98 (0.73–1.33) | 226.1 | mg/day | 129/224 | 0.95 (0.69–1.30) | 0.74 |
n-3 polyunsaturated fatty acid intake | 1.5 | g/day | 166/184 | 1 | 2.2 | g/day | 122/229 | 0.77 (0.57–1.05) | 3.3 | g/day | 134/219 | 0.83 (0.61–1.12) | 0.22 |
EPA intake | 101.7 | mg/day | 162/188 | 1 | 268.8 | mg/day | 120/231 | 0.85 (0.63–1.16) | 530.3 | mg/day | 140/213 | 0.96 (0.71–1.30) | 0.78 |
DHA intake | 226.1 | mg/day | 160/190 | 1 | 499.4 | mg/day | 130/221 | 0.85 (0.62–1.16) | 864.2 | mg/day | 132/221 | 0.95 (0.70–1.28) | 0.72 |
Explanatory Variable | Tertile 1 | Tertile 2 | Tertile 3 | p trend | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Median | Cases n /Alive n | HR (ref) | Median | Cases n /Alive n | HR (95% CI) | Median | Cases n /Alive n | HR (95% CI) | |||||
Serum EPA | 38.1 | μg/mL | 150/200 | 1 | 62.9 | μg/mL | 133/218 | 0.82 (0.61–1.10) | 101.9 | μg/mL | 139/214 | 0.81 (0.60–1.09) | 0.17 |
Serum DHA | 111.6 | μg/mL | 151/197 | 1 | 147.1 | μg/mL | 143/210 | 0.82 (0.61–1.10) | 191.0 | μg/mL | 128/225 | 0.73 (0.53–0.99) | 0.047 |
Serum ARA | 116.7 | μg/mL | 136/213 | 1 | 144.0 | μg/mL | 156/195 | 1.47 (1.10–1.98) | 184.2 | μg/mL | 130/224 | 0.90 (0.64–1.24) | 0.51 |
Serum EPA/ARA | 0.3 | 141/212 | 1 | 0.4 | 128/223 | 0.62 (0.45–0.84) | 0.7 | 141/212 | 0.71 (0.53–0.96) | 0.02 |
Characteristics | Tertile 1 | Tertile 2 | Tertile 3 | p1 | p2 | |||
---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |||
Number of subjects | 348 | 353 | 353 | |||||
Serum DHA (μg/mL) | 108.0 | 17.4 | 146.5 | 10.4 | 202.3 | 41.8 | <0.0001 | *, **, *** |
Men (n, %) | 172, 49.3 | 174, 49.3 | 174, 49.3 | 0.99 | ||||
Age (years) | 68.9 | 5.4 | 68.6 | 5.6 | 68.4 | 5.4 | 0.47 | |
Body mass index (kg/m2) | 22.7 | 3.1 | 22.6 | 3.4 | 23.3 | 2.9 | 0.01 | *, ** |
Alcohol (mL/day) | 6.3 | 12.9 | 7.5 | 13.8 | 8.7 | 14.8 | 0.08 | |
Physical activity (1000 METs × h/day) | 34.8 | 3.9 | 34.6 | 4.0 | 34.0 | 3.3 | 0.01 | ** |
Current smoker (n, %) | 59, 17.0 | 70, 19.8 | 57, 16.2 | 0.40 | ||||
Education | ||||||||
≤ 9 years (n, %) | 175, 50.3 | 171, 49.3 | 158, 44.8 | 0.48 | ||||
10–12 years (n, %) | 121, 34.8 | 119, 33.7 | 139, 39.4 | |||||
≥ 13 years (n, %) | 52, 14.9 | 60, 17.0 | 56, 15.9 | |||||
Employment | ||||||||
Unemployed (n, %) | 240, 69.0 | 245, 69.4 | 248, 70.3 | 0.94 | ||||
Regular employment (n, %) | 69, 19.8 | 63, 17.9 | 69, 19.6 | |||||
Non-regular employment (n, %) | 39, 11.2 | 45, 12.8 | 36, 10.2 | |||||
Diseases | ||||||||
Cancer (n, %) | 23, 6.6 | 19, 5.4 | 16, 4.6 | 0.49 | ||||
Heart disease (n, %) | 64, 18.4 | 62, 17.6 | 55, 15.6 | 0.60 | ||||
Stroke (n, %) | 16, 6.9 | 12, 5.0 | 21, 9.4 | 0.19 | ||||
Hypertension (n, %) | 128, 36.8 | 123, 34.8 | 143, 40.5 | 0.29 | ||||
Dyslipidemia (n, %) | 54, 15.5 | 67, 19.0 | 107, 30.3 | <0.0001 | ||||
Diabetes (n, %) | 41, 11.8 | 35, 9.9 | 43, 12.2 | 0.60 | ||||
Dietary intake | ||||||||
Fish intake (g/day) | 89.0 | 46.5 | 96.3 | 44.5 | 110.8 | 57.1 | <0.0001 | *, ** |
Meat intake (g/day) | 49.4 | 29.6 | 51.3 | 32.7 | 52.1 | 32.7 | 0.52 | |
EPA intake (mg/day) | 276.6 | 220.9 | 304.9 | 202.7 | 375.4 | 280.0 | <0.0001 | *, ** |
DHA intake (mg/day) | 500.8 | 338.2 | 547.8 | 332.8 | 658.7 | 448.3 | <0.0001 | *, ** |
ARA intake (mg/day) | 158.3 | 59.2 | 165.8 | 60.1 | 178.1 | 73.1 | <0.001 | *, ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otsuka, R.; Tange, C.; Nishita, Y.; Tomida, M.; Kato, Y.; Imai, T.; Ando, F.; Shimokata, H. Fish and Meat Intake, Serum Eicosapentaenoic Acid and Docosahexaenoic Acid Levels, and Mortality in Community-Dwelling Japanese Older Persons. Int. J. Environ. Res. Public Health 2019, 16, 1806. https://doi.org/10.3390/ijerph16101806
Otsuka R, Tange C, Nishita Y, Tomida M, Kato Y, Imai T, Ando F, Shimokata H. Fish and Meat Intake, Serum Eicosapentaenoic Acid and Docosahexaenoic Acid Levels, and Mortality in Community-Dwelling Japanese Older Persons. International Journal of Environmental Research and Public Health. 2019; 16(10):1806. https://doi.org/10.3390/ijerph16101806
Chicago/Turabian StyleOtsuka, Rei, Chikako Tange, Yukiko Nishita, Makiko Tomida, Yuki Kato, Tomoko Imai, Fujiko Ando, and Hiroshi Shimokata. 2019. "Fish and Meat Intake, Serum Eicosapentaenoic Acid and Docosahexaenoic Acid Levels, and Mortality in Community-Dwelling Japanese Older Persons" International Journal of Environmental Research and Public Health 16, no. 10: 1806. https://doi.org/10.3390/ijerph16101806
APA StyleOtsuka, R., Tange, C., Nishita, Y., Tomida, M., Kato, Y., Imai, T., Ando, F., & Shimokata, H. (2019). Fish and Meat Intake, Serum Eicosapentaenoic Acid and Docosahexaenoic Acid Levels, and Mortality in Community-Dwelling Japanese Older Persons. International Journal of Environmental Research and Public Health, 16(10), 1806. https://doi.org/10.3390/ijerph16101806