Next Article in Journal
Gene Expression Response in Peripheral Blood Cells of Petroleum Workers Exposed to Sub-Ppm Benzene Levels
Next Article in Special Issue
Methods for Evaluating the Combined Effects of Chemical and Nonchemical Exposures for Cumulative Environmental Health Risk Assessment
Previous Article in Journal
Spatial Analysis of Socio-Economic and Demographic Factors Associated with Contraceptive Use among Women of Childbearing Age in Rwanda
Previous Article in Special Issue
Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China
Open AccessArticle

Phenanthrene Mitigates Cadmium Toxicity in Earthworms Eisenia fetida (Epigeic Specie) and Aporrectodea caliginosa (Endogeic Specie) in Soil

1
Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Research Center of Micro-elements, College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China
2
Hubei Provincial Engineering Laboratory for New Fertilizers, Huazhong Agricultural University, Wuhan 430070, China
3
Faculty of Science and Technology, Department of Life Science, University of Comoros, Moroni 269, Comoros
*
Author to whom correspondence should be addressed.
Int. J. Environ. Res. Public Health 2018, 15(11), 2384; https://doi.org/10.3390/ijerph15112384
Received: 1 October 2018 / Revised: 22 October 2018 / Accepted: 23 October 2018 / Published: 27 October 2018
In classical toxicology studies, the interaction of combined doses of chemicals with dissimilar modes of toxic action in soil is complex and depending on the end point investigated and the experimental protocol employed. This study was used to examine the interactive effect of phenanthrene and Cadmium on two ecologically different species of earthworms; Eisenia. fetida and Aporrectodea. caliginosa. This interactive effect was scrutinized by using the acute toxicity test with the concentrations of 2.51 mg kg−1 and 3.74 mg kg−1, respectively, being lethal for 50% of E. fetida and A. caliginosa. The results showed that in the mixture treatment, phenanthrene at 5, 10, 15 and 20 mg kg−1 significantly mitigated both earthworms species mortality and body-mass loss. Moreover, the factor of Cd accumulated in E. fetida and A. caliginosa tissues was significantly decreased by about 12% and 16%, respectively. Linear regression correlation coefficient revealed that the reduction of both earthworm species mortality was negatively and significantly correlated (r2 = 0.98 ± 0.40 and 1 ± 3.9 p < 0.001) with phenanthrene concentration in soil. However, over 20 mg kg−1 of phenanthrene, both organisms mortality rate increased again, as was the Bioaccumulation factor of phenanthrene. Thus, this study proposes that the antagonistical effect of phenanthrene on Cd at a degree of concentration can be used to mitigate Cd effect on soil living organisms. However, as an implication of these results, the interpretation of standardized toxicity bioassays, including whole effluent toxicity tests and single-compound toxicity tests, should be performed with caution. In addition, risk assessment protocols for environment pollution by a mixture of metals and polycyclic aromatic hydrocarbons should include robust methods that can detect possible interactive effects between contaminants to optimize environmental protection. View Full-Text
Keywords: cadmium; phenanthrene; earthworms; toxicity; interaction effects; ecotype cadmium; phenanthrene; earthworms; toxicity; interaction effects; ecotype
Show Figures

Figure 1

MDPI and ACS Style

Elyamine, A.M.; Afzal, J.; Rana, M.S.; Imran, M.; Cai, M.; Hu, C. Phenanthrene Mitigates Cadmium Toxicity in Earthworms Eisenia fetida (Epigeic Specie) and Aporrectodea caliginosa (Endogeic Specie) in Soil. Int. J. Environ. Res. Public Health 2018, 15, 2384.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop