Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy
Abstract
:1. Introduction
2. Marine Algal Peptides
Bioactivity | Peptide Name or Sequence | Source | Enzymatic Treatment/Cell Lines | IC50 | Mechanism of Action | References |
---|---|---|---|---|---|---|
Antiartherosclerosis | NIGK | Palmaria palmata | Papain | 2.32 mM ** | ↓ PAG-AH | [13] |
Antiartherosclerosis | VECYGPNRPQF | Chlorella sp. | Pepsin, Flavourzyme, Alcalase, and Papain | 2.32 mM ** | ↓ VCAM (E-selectin, ICAM, VCAM, MCP-1 and ET-1) gene expression | [14] |
Antiartherosclerosis | LDAVNR, MMLDF | Spirulina maxima | Trypsin, α-chymotrypsin, and pepsin | 2.32 mM ** | ↓ IL-6, IL-8, MCP-1, P-selectin, ROS, and Egr-1 | [15,16] |
Anticancer | Isomalyngamide A and A-1 | Lyngbya majuscula | MDA-MB-231 | 0.06—0.337 μM | ↓ VEGFR2, MMP-9 | [17] |
Anticancer | Cocosamides A-B | Lyngbya majuscula | MCF7 | A:30 μM; B:39 μM | ↓ cell viability | [18] |
Anticancer | VECYGPNRPQF | Chlorella vulgaris | Pepsin | 70 μg/mL ** | ↑ antiproliferation, post-G1 cell cycle arrest | [19] |
Anticancer | Desmethoxymajusculamide C | Lyngbya majuscula | MDA-MB-435 | 0.22 µM ** | Actin microfilament disruption | [20] |
Anticancer | Polypeptide CPAP | Chlorella pyrenoidosa | Papain, trypsin, and alcalase | 426 μg/mL ** | ↑ apoptosis | [21] |
Anticancer | Polypeptide Y2 | Spirulina platensis | Trypsin, alcalase, pepsin, and papain | 61 μg/mL ** | ↑ apoptosis | [22] |
Antihypertensive | Gln-Val-Glu-Tyr | Gracilariopsis lemaneiformis | Trypsin, favourzyme, papain, alkaline protease | 474.36 μM ** | ↑ ACE-I, ↓ BP | [23] |
Antihypertensive | FGMPLDR MELVLR | Ulva intestinalis | Protein hydrolysates | 219.35 μM ** | ↑ ACE-I, ↓ BP | [24] |
Antihypertensive | Val-Glu-Gly-Tyr | Chlorella ellipsoidea | Alcalase | 128.4 mM ** | ↓ radical formation, ROS | [25] |
Antihypertensive | Ile-Pro | Ulva rigida | Bromelain, chymotrypsin, ficin, pancreatin, pepsin, peptidases, protease, trypsin | 87.6 μM ** | ↑ ACE-I, ↓ BP | [26] |
Antihypertensive | Ala-Phe-Leu | Ulva rigida | Bromelain, chymotrypsin, ficin, pancreatin, pepsin, peptidases, protease, trypsin | 65.8 μM ** | ↑ ACE-I, ↓ BP | [26] |
Antihypertensive | Gly-Met-Asn-Asn-Leu-Thr-Pro | Nannochloropsis oculata | Pepsin | 123 mM ** | ↑ Bioavailbility, ↓ BP | [27] |
Antihypertensive | Leu-Glu-Gln | Nannochloropsis oculata | Pepsin | 173 mM ** | ↑ Bioavailbility, ↓ BP | [27] |
Antihypertensive | Val-Glu-Cys-Tyr-Gly-Pro Asn-Arg-Pro-Gln-Phe | Chlorella vulgaris | Pepsin | 29.6 mM ** | ↓ BP | [19] |
Antihypertensive | Ile-Val-Val-Glu | Chlorella vulgaris | Pepsin | 315.3 mM ** | ↑ ACE-I, ↓ BP | [28] |
Antihypertensive | Ile-Ala-Glu | Spirulina platensis | Pepsin | 34.7 mM ** | ↑ ACE-I, ↓ BP | [28] |
Antihypertensive | Ala-Phe-Leu | Chlorella vulgaris | Pepsin | 63.8 mM ** | ↑ ACE-I, ↓ BP | [28] |
Antihypertensive | Phe-Ala-Leu | Spirulina platensis | Pepsin | 11.4 mM ** | ↑ ACE-I, ↓ BP | [28] |
Antihypertensive | Phe-Ala-Leu | Chlorella vulgaris | Pepsin | 26.3 mM ** | ↑ ACE-I, ↓ BP | [28] |
Antihypertensive | Ala-Glu-Leu | Spirulina platensis | Pepsin | 11.4 mM ** | ↑ ACE-I, ↓ BP | [28] |
Antihypertensive | Ala-Glu-Leu | Chlorella vulgaris | Pepsin | 57.1 mM ** | ↑ ACE-I, ↓ BP | [29] |
Antihypertensive | Ile-Ala-Pro-Gly | Spirulina platensis | Pepsin | 11.4 mM ** | ↑ ACE-I, ↓ BP | [29] |
Antihypertensive | Val-Val-Pro-Pro-Ala | Chlorella vulgaris | Pepsin | 79.5 mM ** | ↑ ACE-I, ↓ BP | [29] |
Antihypertensive | Val-Ala-Phe | Spirulina platensis | Pepsin | 35.8 mM ** | ↑ ACE-I, ↓ BP | [29] |
Antihypertensive | YH, KY, FY, IY | Undaria pinnatifida | No enzyme use | 2.7–43.7 μmol/L | ↑ ACE-I, ↓ BP | [30] |
Antioxidant | Protease extract | Scytosiphon lomentaria | Multienzyme complex | <125 µg/mL ** | ↑ radical scavenging, ↑ antioxidative | [31] |
Antioxidant | VECYGPNRPQF | Chlorella vulgaris | Pepsin | * ND | ↓ superoxide radical quenching growth, ↓ cell cycle arrest | [32,33] |
Antioxidant | Enzymatic digests | Ishige okamurae | Multienzyme complex | <25 µg/mL ** | ↑ antioxidative | [34] |
Antioxidant | NIPP-1 (Pro-GlyTrp-Asn-Gln-Trp-Phe-Leu), and NIPP-2 (Val-Glu-Val-Leu-Pro-Pro-Ala-Glu-Leu) | Naviculla incerta | Papain | * ND | Cytotoxic | [35] |
Antioxidant | Phe-Ser-Glu-Ser-Ser-Ala-Pro-Glu-Gln-His-Tyr | Spirulina platensis | Thermolysin | 171.47 µg/mL ** | ↑ antioxidant | [36] |
Immunomodulatory | Protein hydrolysates | Ecklonia cava | Kojizyme | * ND | ↑ lymphocytes, monocytes, granulocytes; ↓ regulation of TNF-α, IFN-γ; ↑ regulation of IL-4, IL-10 | [37] |
Immunomodulatory | Protein hydrolysates | Porphyra columbina | trypsin, alcalase | 2.1–5.6 g/L ** | ↓ TNF, IFN-γ; ↑IL-10 | [38] |
Immunomodulatory | Protein hydrolysates | Chlorella vulgaris | pancreatin | * ND | ↑ humoral and cell-mediated immune functions (TDAR, DTHR) | [39] |
3. Mechanisms of Actions of Selected Marine Peptides in Combating Cancer
3.1. Apoptosis
3.2. Tubulin–Microtubule Balance
3.3. Angiogenesis
3.4. Cell Cycle Disturbance
3.5. Membrane Disruption
4. Sensitization of Cancer Cells to Chemotherapy by Certain Algal
5. Preclinical and Patents of Certain Algal Peptides as an Anticancer Agent
References | Methods, Aim | Algae Species | Results |
---|---|---|---|
[83] | Methanolic extracts, Assess anticancer potential in cervical cancer cells (SiHa) | Ulva intestinalis, Ulva lactuca | - Algal fractions inhibited proliferation of SiHa cells in a dose-dependent manner - IC50 values against SiHa cells: 141.38 µg/mL (U. intestinalis) and 445.278 µg/mL (U. lactuca) |
[84] | Methanolic extracts, Assess anticancer potential in oral squamous cell carcinoma (OSCC) | Enteromorpha compressa | - Methanolic extract of E. compressa exhibited robust free radical scavenging activity - Enhanced intrinsic apoptosis against OSCC by downregulating protective antioxidant enzymes - Induction of autophagy to promote cell death in oral cancer cells |
[85] | Aqueous extracts, Assess antiviral potential in HeLa cells co-cultured with HTLV-I infected-T-cell line (causative agent of adult T-cell leukemia/lymphoma) | Ulva fasciata, Sargassum vulgare, Vidalia obtusiloba, Laminaria abyssalis | - U. fasciata extract showed 60.2% syncytium inhibition at 2.5% concentration - S. vulgare and V. obtusiloba extracts presented 78.8% and 76% syncytium inhibition, respectively, at 5% concentration - L. abyssalis extract exhibited 100% syncytium inhibition at 2.5% concentration |
[86] | Methanolic extracts, Assess anticancer potential in HeLa cells | Enteromorpha intestinalis, Rhizoclonium riparium | - IC50 values of 309.048 ± 3.083 μg/mL (E. intestinalis) and 506.081 ± 3.714 μg/mL (R. riparium) - Treated cells exhibited morphological changes including rounding with blebbing and condensed nuclei - Formation of acidic lysosomal vacuoles observed in treated cells - Expression of apoptotic genes in both mRNA and protein levels decreased - Expression of LC3B-II suggested occurrence of autophagy in treated cells |
[87] | Assess anticancer potential in Human lung cancer cell lines (A549, H460 and H1299) and lung fibroblast MRC-5 cells | Bryopsis plumosa | - Treated cells exhibited morphological changes involved in the typical EMT and apoptosis - Expression of E-cadherin increased - Expression of N-cadherin, Zeb1, snail and vimentin decreased - Suppressed migration and invasion in NSCLCs |
[88] | Assess anticancer potential in HT29 and LS174 cells | Pterocladiella capillacea | - Decreased the viability of LS174 and HT29 cells in a dose-dependent manner - IC50 values of 56.50 ± 8.68 µg/mL (HT29 cells) and 49.77 ± 4.51 µg/mL (LS174 cells) - Enhanced of AKT and ERK-1/-2 activation |
[89] | Assess potential anticancer in MDA-MB-231, MDA-MB-453, MCF7, A549, H1299, HCT116, SW620, CT26, PC3, DU145, HeLa | Sargassum macrocarpum | - Induced apoptosis -Expression of Bcl2 decreased - Expression of cleaved caspase-3 and PARP increased - Enhanced DNA fragmentation - STAT3 signaling pathway inhibition |
Inventor, Year | Country | Identifier | Polypeptide Names | Method | Type of Formulations |
---|---|---|---|---|---|
Figueirdo et al., 2018 [100] | China | CN104812381B | No specific data | Therapeutic nanoparticle preparation | Nanoparticles for targeted drug delivery |
Miller et al., 2017 [101] | USA | US9668951B2 | No specific data | Pharmaceutical compositions comprising renewably based biodegradable 1,3-propanediol | Oral, topical, or injectable formulations include biodegradable pharmaceutical compositions |
Lin et al., 2014 [102] | USA | US8859727B2 | Fused in sarcoma-1 | Nanoparticle–polypeptide complexes | Bioactive peptide–nanoparticle complexes |
Aharoni et al., 2024 [103] | USA | US20200354759A1 | Cyp76ad1-beta clade | Genetic engineering | Polynucleotide-encoded polypeptides |
Foger et al., 2021 [104] | USA | US10905744B2 | Glucagon-like peptide-1 | Oral delivery drugs | Peptide drugs formulations |
Bradbury et al., 2023 [105] | Canada | CA2900363C | Tyr3-octreotide | Silica-based nanoparticles | Multimodal silica-based nanoparticle formulations |
Klein et al., 2019 [106] | USA | US20190022228A1 | Glucagon-like peptide-1 | Microparticle/nanoparticle formulations | Drug delivery particles |
6. Current Challenges and Future Perspectives for Using Peptides as Anticancer Agents
7. Conclusion and Highlights
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.; Cao, Z.; Prettner, K.; Kuhn, M.; Yang, J.; Jiao, L.; Wang, Z.; Li, W.; Geldsetzer, P.; Bärnighausen, T.; et al. Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories from 2020 to 2050. JAMA Oncol. 2023, 9, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Brianna; Lee, S.H. Chemotherapy: How to Reduce Its Adverse Effects While Maintaining the Potency? Med. Oncol. 2023, 40, 88. [Google Scholar] [CrossRef] [PubMed]
- Syahputra, R.A.; Harahap, U.; Dalimunthe, A.; Nasution, M.P.; Satria, D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. Molecules 2022, 27, 1320. [Google Scholar] [CrossRef] [PubMed]
- Sundaramoorthy, S.; Dakshinamoorthi, A.; Chithra, K. Evaluation of Anti-Oxidant and Anticancer Effect of Marine Algae Cladophora Glomerata in HT29 Colon Cancer Cell Lines-an in-Vitro Study. Int. J. Physiol. Pathophysiol. Pharmacol. 2022, 14, 332–339. [Google Scholar] [PubMed]
- Sharma, V.; Kumar, D.; Dev, K.; Sourirajan, A. Anticancer Activity of Essential Oils: Cell Cycle Perspective. S. Afr. J. Bot. 2023, 157, 641–647. [Google Scholar] [CrossRef]
- Cheriyamundath, S.; Sirisha, V.L. Marine Algal-derived Pharmaceuticals. In Encyclopedia of Marine Biotechnology; John Wiley & Sons Ltd.: Oxford, UK, 2020; pp. 2691–2724. [Google Scholar]
- Ferdous, U.T.; Yusof, Z.N.B. Medicinal Prospects of Antioxidants from Algal Sources in Cancer Therapy. Front. Pharmacol. 2021, 12, 593116. [Google Scholar] [CrossRef] [PubMed]
- Sansone, C.; Brunet, C. Marine Algal Antioxidants. Antioxidants 2020, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-C.; Hou, M.-F.; Huang, H.-W.; Chang, F.-R.; Yeh, C.-C.; Tang, J.-Y.; Chang, H.-W. Marine Algal Natural Products with Anti-Oxidative, Anti-Inflammatory, and Anti-Cancer Properties. Cancer Cell Int. 2013, 13, 55. [Google Scholar] [CrossRef]
- Wali, A.F.; Majid, S.; Rasool, S.; Shehada, S.B.; Abdulkareem, S.K.; Firdous, A.; Beigh, S.; Shakeel, S.; Mushtaq, S.; Akbar, I.; et al. Natural Products against Cancer: Review on Phytochemicals from Marine Sources in Preventing Cancer. Saudi Pharm. J. 2019, 27, 767–777. [Google Scholar] [CrossRef]
- Kumari, A.; Garima; Bharadvaja, N. A Comprehensive Review on Algal Nutraceuticals as Prospective Therapeutic Agent for Different Diseases. 3 Biotech 2023, 13, 44. [Google Scholar] [CrossRef]
- Fitzgerald, C.; Gallagher, E.; O’Connor, P.; Prieto, J.; Mora-Soler, L.; Grealy, M.; Hayes, M. Development of a Seaweed Derived Platelet Activating Factor Acetylhydrolase (PAF-AH) Inhibitory Hydrolysate, Synthesis of Inhibitory Peptides and Assessment of Their Toxicity Using the Zebrafish Larvae Assay. Peptides 2013, 50, 119–124. [Google Scholar] [CrossRef]
- Shih, M.F.; Chen, L.C.; Cherng, J.Y. Chlorella 11-Peptide Inhibits the Production of Macrophage-Induced Adhesion Molecules and Reduces Endothelin-1 Expression and Endothelial Permeability. Mar. Drugs 2013, 11, 3861–3874. [Google Scholar] [CrossRef] [PubMed]
- Vo, T.-S.; Kim, S.-K. Down-Regulation of Histamine-Induced Endothelial Cell Activation as Potential Anti-Atherosclerotic Activity of Peptides from Spirulina Maxima. Eur. J. Pharm. Sci. 2013, 50, 198–207. [Google Scholar] [CrossRef]
- Vo, T.-S.; Ryu, B.; Kim, S.-K. Purification of Novel Anti-Inflammatory Peptides from Enzymatic Hydrolysate of the Edible Microalgal Spirulina Maxima. J. Funct. Foods 2013, 5, 1336–1346. [Google Scholar] [CrossRef]
- Chang, T.T.; More, S.V.; Lu, I.-H.; Hsu, J.-C.; Chen, T.-J.; Jen, Y.C.; Lu, C.-K.; Li, W.-S. Isomalyngamide A, A-1 and Their Analogs Suppress Cancer Cell Migration in Vitro. Eur. J. Med. Chem. 2011, 46, 3810–3819. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, S.P.; Owle, C.S.; Montaser, R.; Luesch, H.; Paul, V.J. Malyngamide 3 and Cocosamides A and B from the Marine Cyanobacterium Lyngbya Majuscula from Cocos Lagoon, Guam. J. Nat. Prod. 2011, 74, 871–876. [Google Scholar] [CrossRef]
- Sheih, I.-C.; Fang, T.J.; Wu, T.-K.; Lin, P.-H. Anticancer and antioxidant activities of the peptide fraction from algae protein waste. J. Agric. Food Chem. 2010, 58, 1202–1207. [Google Scholar] [CrossRef]
- Senapati, S.; Mahanta, A.K.; Kumar, S.; Maiti, P. Controlled Drug Delivery Vehicles for Cancer Treatment and Their Performance. Signal Transduct. Target. Ther. 2018, 3, 7. [Google Scholar] [CrossRef]
- Waghray, D.; Zhang, Q. Inhibit or Evade Multidrug Resistance P-Glycoprotein in Cancer Treatment. J. Med. Chem. 2018, 61, 5108–5121. [Google Scholar] [CrossRef]
- Marqus, S.; Pirogova, E.; Piva, T.J. Evaluation of the Use of Therapeutic Peptides for Cancer Treatment. J. Biomed. Sci. 2017, 24, 21. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Liu, Y.; Wang, J.; Wu, S.; Geng, L.; Sui, Z.; Zhang, Q. Antihypertensive Effects of Two Novel Angiotensin I-Converting Enzyme (ACE) Inhibitory Peptides from Gracilariopsis lemaneiformis (Rhodophyta) in Spontaneously Hypertensive Rats (SHRs). Mar. Drugs 2018, 16, 299. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.-H.; Wang, Y.-J.; Sheng, J.; Wang, F.; Zheng, Y.; Lin, X.-K.; Sun, M. Antitumor Peptides from Marine Organisms. Mar. Drugs 2011, 9, 1840–1859. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, S.A.M.; Elias, N.; Farag, M.A.; Chen, L.; Saeed, A.; Hegazy, M.-E.F.; Moustafa, M.S.; Abd El-Wahed, A.; Al-Mousawi, S.M.; Musharraf, S.G.; et al. Marine Natural Products: A Source of Novel Anticancer Drugs. Mar. Drugs 2019, 17, 491. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, P.C.; Wilke, D.V.; Costa-Lotufo, L.V. Marine Drugs for Cancer: Surfacing Biotechnological Innovations from the Oceans. Clinics 2018, 73, e482s. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Torres, V.; Encinar, J.A.; Herranz-López, M.; Pérez-Sánchez, A.; Galiano, V.; Barrajón-Catalán, E.; Micol, V. An Updated Review on Marine Anticancer Compounds: The Use of Virtual Screening for the Discovery of Small-Molecule Cancer Drugs. Molecules 2017, 22, 1037. [Google Scholar] [CrossRef]
- Malve, H. Exploring the Ocean for New Drug Developments: Marine Pharmacology. J. Pharm. Bioallied Sci. 2016, 8, 83–91. [Google Scholar] [CrossRef]
- Call, J.A.; Eckhardt, S.G.; Camidge, D.R. Targeted Manipulation of Apoptosis in Cancer Treatment. Lancet Oncol. 2008, 9, 1002–1011. [Google Scholar] [CrossRef] [PubMed]
- Burz, C.; Berindan-Neagoe, I.; Balacescu, O.; Irimie, A. Apoptosis in Cancer: Key Molecular Signaling Pathways and Therapy Targets. Acta Oncol. 2009, 48, 811–821. [Google Scholar] [CrossRef]
- Fulda, S.; Pervaiz, S. Apoptosis Signaling in Cancer Stem Cells. Int. J. Biochem. Cell Biol. 2010, 42, 31–38. [Google Scholar] [CrossRef]
- von Schwarzenberg, K.; Vollmar, A.M. Targeting Apoptosis Pathways by Natural Compounds in Cancer: Marine Compounds as Lead Structures and Chemical Tools for Cancer Therapy. Cancer Lett. 2013, 332, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Liu, M.; Hu, C.; Liao, D.J. Targeting Cellular Proapoptotic Molecules for Developing Anticancer Agents from Marine Sources. Curr. Drug Targets 2010, 11, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Kroemer, G. Mitochondrial Control of Apoptosis: An Introduction. Biochem. Biophys. Res. Commun. 2003, 304, 433–435. [Google Scholar] [CrossRef] [PubMed]
- Oliver, L.; Vallette, F.M. The Role of Caspases in Cell Death and Differentiation. Drug Resist. Updat. 2005, 8, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Cory, S.; Adams, J.M. The Bcl2 Family: Regulators of the Cellular Life-or-Death Switch. Nat. Rev. Cancer 2002, 2, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-J.; Kim, B.-C.; Kim, S.-J.; Choi, K.S. Role of MAP Kinases and Their Cross-Talk in TGF-Beta1-Induced Apoptosis in FaO Rat Hepatoma Cell Line. Hepatology 2002, 35, 1360–1371. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Choi, M.-C.; Seo, C.; Park, Y. Therapeutic Properties and Biological Benefits of Marine-Derived Anticancer Peptides. Int. J. Mol. Sci. 2018, 19, 919. [Google Scholar] [CrossRef]
- Hadfield, J.A.; Ducki, S.; Hirst, N.; McGown, A.T. Tubulin and Microtubules as Targets for Anticancer Drugs. Prog. Cell Cycle Res. 2003, 5, 309–325. [Google Scholar] [PubMed]
- Fanale, D.; Bronte, G.; Passiglia, F.; Calò, V.; Castiglia, M.; Di Piazza, F.; Barraco, N.; Cangemi, A.; Catarella, M.T.; Insalaco, L.; et al. Stabilizing versus Destabilizing the Microtubules: A Double-Edge Sword for an Effective Cancer Treatment Option? Anal. Cell Pathol. 2015, 2015, 690916. [Google Scholar] [CrossRef]
- Bielenberg, D.R.; Zetter, B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015, 21, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Angiogenesis in Cancer, Vascular, Rheumatoid and Other Disease. Nat. Med. 1995, 1, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Role of Angiogenesis in Tumor Growth and Metastasis. Semin. Oncol. 2002, 29, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Bouck, N.; Stellmach, V.; Hsu, S.C. How Tumors Become Angiogenic. Adv. Cancer Res. 1996, 69, 135–174. [Google Scholar] [PubMed]
- Ferrara, N. VEGF: An Update on Biological and Therapeutic Aspects. Curr. Opin. Biotechnol. 2000, 11, 617–624. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The Biology of VEGF and Its Receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Nakamura, S.; Chikaraishi, Y.; Tsuruma, K.; Shimazawa, M.; Hara, H. Ruboxistaurin, a PKCbeta Inhibitor, Inhibits Retinal Neovascularization via Suppression of Phosphorylation of ERK1/2 and Akt. Exp. Eye Res. 2010, 90, 137–145. [Google Scholar] [CrossRef]
- Ushio-Fukai, M. Redox Signaling in Angiogenesis: Role of NADPH Oxidase. Cardiovasc. Res. 2006, 71, 226–235. [Google Scholar] [CrossRef]
- Chiavarina, B.; Whitaker-Menezes, D.; Migneco, G.; Martinez-Outschoorn, U.E.; Pavlides, S.; Howell, A.; Tanowitz, H.B.; Casimiro, M.C.; Wang, C.; Pestell, R.G.; et al. HIF1-Alpha Functions as a Tumor Promoter in Cancer Associated Fibroblasts, and as a Tumor Suppressor in Breast Cancer Cells: Autophagy Drives Compartment-Specific Oncogenesis. Cell Cycle 2010, 9, 3534–3551. [Google Scholar] [CrossRef]
- Fukushima, K.; Murata, M.; Hachisuga, M.; Tsukimori, K.; Seki, H.; Takeda, S.; Asanoma, K.; Wake, N. Hypoxia Inducible Factor 1 Alpha Regulates Matrigel-Induced Endovascular Differentiation under Normoxia in a Human Extravillous Trophoblast Cell Line. Placenta 2008, 29, 324–331. [Google Scholar] [CrossRef]
- Shibuya, M. Vascular Endothelial Growth Factor (VEGF) and Its Receptor (VEGFR) Signaling in Angiogenesis: A Crucial Target for Anti- and pro-Angiogenic Therapies. Genes Cancer 2011, 2, 1097–1105. [Google Scholar] [CrossRef] [PubMed]
- Winer, A.; Adams, S.; Mignatti, P. Matrix Metalloproteinase Inhibitors in Cancer Therapy: Turning Past Failures into Future Successes. Mol. Cancer Ther. 2018, 17, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.B.; Mahdi, F.; Liu, Y.; Coothankandaswamy, V.; Jekabsons, M.B.; Johnson, T.A.; Sashidhara, K.V.; Crews, P.; Nagle, D.G.; Zhou, Y.-D. The Marine Sponge Metabolite Mycothiazole: A Novel Prototype Mitochondrial Complex I Inhibitor. Bioorg. Med. Chem. 2010, 18, 5988–5994. [Google Scholar] [CrossRef] [PubMed]
- Malumbres, M.; Barbacid, M. Mammalian Cyclin-Dependent Kinases. Trends Biochem. Sci. 2005, 30, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Suryadinata, R.; Sadowski, M.; Sarcevic, B. Control of Cell Cycle Progression by Phosphorylation of Cyclin-Dependent Kinase (CDK) Substrates. Biosci. Rep. 2010, 30, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.C.; Clurman, B.E. Cyclin E in Normal and Neoplastic Cell Cycles. Oncogene 2005, 24, 2776–2786. [Google Scholar] [CrossRef] [PubMed]
- Hardwick, L.J.A.; Philpott, A. Nervous Decision-Making: To Divide or Differentiate. Trends Genet. 2014, 30, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Visconti, R.; Della Monica, R.; Grieco, D. Cell Cycle Checkpoint in Cancer: A Therapeutically Targetable Double-Edged Sword. J. Exp. Clin. Cancer Res. 2016, 35, 153. [Google Scholar] [CrossRef]
- Cazzalini, O.; Scovassi, A.I.; Savio, M.; Stivala, L.A.; Prosperi, E. Multiple Roles of the Cell Cycle Inhibitor p21CDKN1A in the DNA Damage Response. Mutat. Res. 2010, 704, 12–20. [Google Scholar] [CrossRef]
- Shamloo, B.; Usluer, S. P21 in Cancer Research. Cancers 2019, 11, 1178. [Google Scholar] [CrossRef]
- Hientz, K.; Mohr, A.; Bhakta-Guha, D.; Efferth, T. The Role of P53 in Cancer Drug Resistance and Targeted Chemotherapy. Oncotarget 2017, 8, 8921–8946. [Google Scholar] [CrossRef] [PubMed]
- Andavan, G.S.B.; Lemmens-Gruber, R. Cyclodepsipeptides from Marine Sponges: Natural Agents for Drug Research. Mar. Drugs 2010, 8, 810–834. [Google Scholar] [CrossRef]
- Shaik, M.I.; Sarbon, N.M. A Review on Purification and Characterization of Anti-Proliferative Peptides Derived from Fish Protein Hydrolysate. Food Rev. Int. 2022, 38, 1389–1409. [Google Scholar] [CrossRef]
- Gaspar, D.; Veiga, A.S.; Castanho, M.A.R.B. From Antimicrobial to Anticancer Peptides. A Review. Front. Microbiol. 2013, 4, 294. [Google Scholar] [CrossRef]
- Xie, M.; Liu, D.; Yang, Y. Anti-Cancer Peptides: Classification, Mechanism of Action, Reconstruction and Modification. Open Biol. 2020, 10, 200004. [Google Scholar] [CrossRef]
- Huang, Y.-B.; Wang, X.-F.; Wang, H.-Y.; Liu, Y.; Chen, Y. Studies on Mechanism of Action of Anticancer Peptides by Modulation of Hydrophobicity within a Defined Structural Framework. Mol. Cancer Ther. 2011, 10, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Teerasak, E.; Thongararm, P.; Roytrakul, S.; Meesuk, L.; Chumnanpuen, P. Prediction of Anticancer Peptides against MCF-7 Breast Cancer Cells from the Peptidomes of Achatina Fulica Mucus Fractions. Comput. Struct. Biotechnol. J. 2016, 14, 49–57. [Google Scholar]
- Raucher, D.; Ryu, J.S. Cell-Penetrating Peptides: Strategies for Anticancer Treatment. Trends Mol. Med. 2015, 21, 560–570. [Google Scholar] [CrossRef]
- Harris, F.; Dennison, S.R.; Singh, J.; Phoenix, D.A. On the Selectivity and Efficacy of Defense Peptides with Respect to Cancer Cells. Med. Res. Rev. 2013, 33, 190–234. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Willbanks, A.; Leary, M.; Greenshields, M.; Tyminski, C.; Heerboth, S.; Lapinska, K.; Haskins, K.; Sarkar, S. The Evolution of Epigenetics: From Prokaryotes to Humans and Its Biological Consequences. Genet. Epigenet. 2016, 8, 25–36. [Google Scholar] [CrossRef]
- Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug Resistance in Cancer: An Overview. Cancers 2014, 6, 1769–1792. [Google Scholar] [CrossRef] [PubMed]
- Easwaran, H.; Tsai, H.-C.; Baylin, S.B. Cancer Epigenetics: Tumor Heterogeneity, Plasticity of Stem-like States, and Drug Resistance. Mol. Cell 2014, 54, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Konieczkowski, D.J.; Johannessen, C.M.; Garraway, L.A. A Convergence-Based Framework for Cancer Drug Resistance. Cancer Cell 2018, 33, 801–815. [Google Scholar] [CrossRef] [PubMed]
- Al-Lazikani, B.; Banerji, U.; Workman, P. Combinatorial Drug Therapy for Cancer in the Post-Genomic Era. Nat. Biotechnol. 2012, 30, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L. Characterization of Bioactive Components in Edible Algae. Mar. Drugs 2020, 18, 65. [Google Scholar] [CrossRef] [PubMed]
- Wan, D.-H.; Zheng, B.-Y.; Ke, M.-R.; Duan, J.-Y.; Zheng, Y.-Q.; Yeh, C.-K.; Huang, J.-D. C-Phycocyanin as a Tumour-Associated Macrophage-Targeted Photosensitiser and a Vehicle of Phthalocyanine for Enhanced Photodynamic Therapy. Chem. Commun. 2017, 53, 4112–4115. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Wang, Y.; Yin, Q.; Liu, G.; Liu, H.; Huang, Y.; Li, B. Phycocyanin: A Potential Drug for Cancer Treatment. J. Cancer 2017, 8, 3416–3429. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, J.; Rahban, D.; Aghamiri, S.; Teymouri, A.; Bahador, A. Photosensitizers in Antibacterial Photodynamic Therapy: An Overview. Laser Ther. 2018, 27, 293–302. [Google Scholar] [CrossRef]
- Jin, J.-O.; Chauhan, P.S.; Arukha, A.P.; Chavda, V.; Dubey, A.; Yadav, D. The Therapeutic Potential of the Anticancer Activity of Fucoidan: Current Advances and Hurdles. Mar. Drugs 2021, 19, 265. [Google Scholar] [CrossRef]
- Reyes, M.E.; Riquelme, I.; Salvo, T.; Zanella, L.; Letelier, P.; Brebi, P. Brown Seaweed Fucoidan in Cancer: Implications in Metastasis and Drug Resistance. Mar. Drugs 2020, 18, 232. [Google Scholar] [CrossRef] [PubMed]
- Pal, A.; Verma, P.; Paul, S.; Majumder, I.; Kundu, R. Two Species of Ulva Inhibits the Progression of Cervical Cancer Cells SiHa by Means of Autophagic Cell Death Induction. 3 Biotech 2021, 11, 52. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, B.; Patra, S.; Behera, C.; Nayak, R.; Patil, S.; Bhutia, S.K.; Jena, M. Enteromorpha Compressa Extract Induces Anticancer Activity through Apoptosis and Autophagy in Oral Cancer. Mol. Biol. Rep. 2020, 47, 9567–9578. [Google Scholar] [CrossRef] [PubMed]
- Romanos, M.; Andrada-Serpa, M.J.; Dos, S.; Ribeiro, A.; Yoneshigue-Valentin, Y.; Costa, S.S.; Wigg, M.D. Inhibitory Effect of Extracts of Brazilian Marine Algae on Human T-Cell Lymphotropic Virus Type 1 (HTLV-1)-Induced Syncytium Formation in Vitro. Cancer Investig. 2002, 20, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Kundu, R. Antiproliferative Activity of Methanolic Extracts from Two Green Algae, Enteromorpha Intestinalis and Rizoclonium Riparium on HeLa Cells. Daru 2013, 21, 72. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Kim, H.-T.; Jung, S.-H.; Han, J.W.; Jo, S.; Kim, I.-G.; Kim, R.-K.; Kahm, Y.-J.; Choi, T.-I.; Kim, C.-H.; et al. A Novel Anticancer Peptide Derived from Bryopsis Plumosa Regulates Proliferation and Invasion in Non-Small Cell Lung Cancer Cells. Mar. Drugs 2023, 21, 607. [Google Scholar] [CrossRef] [PubMed]
- Tarhouni-Jabberi, S.; Zakraoui, O.; Ioannou, E.; Riahi-Chebbi, I.; Haoues, M.; Roussis, V.; Kharrat, R.; Essafi-Benkhadir, K. Mertensene, a Halogenated Monoterpene, Induces G2/M Cell Cycle Arrest and Caspase Dependent Apoptosis of Human Colon Adenocarcinoma HT29 Cell Line through the Modulation of ERK-1/-2, AKT and NF-ΚB Signaling. Mar. Drugs 2017, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.K.; Kim, J.; Lee, K.M.; Choi, Y.-J.; Ye, B.-R.; Kim, M.-S.; Ko, S.-G.; Lee, S.-H.; Kang, D.-H.; Heo, S.-J. Tuberatolide B Suppresses Cancer Progression by Promoting ROS-Mediated Inhibition of STAT3 Signaling. Mar. Drugs 2017, 15, 55. [Google Scholar] [CrossRef] [PubMed]
- Bleakley, S.; Hayes, M. Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods 2017, 6, 33. [Google Scholar] [CrossRef]
- Trigo, J.P.; Engström, N.; Steinhagen, S.; Juul, L.; Harrysson, H.; Toth, G.B.; Pavia, H.; Scheers, N.; Undeland, I. In Vitro Digestibility and Caco-2 Cell Bioavailability of Sea Lettuce (Ulva Fenestrata) Proteins Extracted Using PH-Shift Processing. Food Chem. 2021, 356, 129683. [Google Scholar] [CrossRef]
- Menaa, F.; Wijesinghe, U.; Thiripuranathar, G.; Althobaiti, N.A.; Albalawi, A.E.; Khan, B.A.; Menaa, B. Marine Algae-Derived Bioactive Compounds: A New Wave of Nanodrugs? Mar. Drugs 2021, 19, 484. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, S.; Alizadeh, M.; Mirzapour, P.; Miller, A.; Rezakhani, L. The Effect of Marine Algae-Derived Exosomes on Breast Cancer Cells: Hypothesis on a New Treatment for Cancer. J. Cancer Res. Ther. 2023, 19, 218–220. [Google Scholar] [PubMed]
- Salih, R.; Bajou, K.; Shaker, B.; Elgamouz, A. Antitumor Effect of Algae Silver Nanoparticles on Human Triple Negative Breast Cancer Cells. Biomed. Pharmacother. 2023, 168, 115532. [Google Scholar] [CrossRef] [PubMed]
- Tchokouaha Yamthe, L.; Appiah-Opong, R.; Tsouh Fokou, P.; Tsabang, N.; Fekam Boyom, F.; Nyarko, A.; Wilson, M. Marine Algae as Source of Novel Antileishmanial Drugs: A Review. Mar. Drugs 2017, 15, 323. [Google Scholar] [CrossRef] [PubMed]
- Krylova, N.V.; Gorbach, V.I.; Iunikhina, O.V.; Pott, A.B.; Glazunov, V.P.; Kravchenko, A.O.; Shchelkanov, M.Y.; Yermak, I.M. Antiherpetic Activity of Carrageenan Complex with Echinochrome A and Its Liposomal Form. Int. J. Mol. Sci. 2022, 23, 15754. [Google Scholar] [CrossRef] [PubMed]
- Muthuirulappan, S.; Francis, S.P. Anti-Cancer Mechanism and Possibility of Nano-Suspension Formulations for a Marine Algae Product Fucoxanthin. Asian Pac. J. Cancer Prev. 2013, 14, 2213–2216. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Murugan, S.S.; Seong, G.H. Fucoidan-Based Nanoparticles: Preparations and Applications. Int. J. Biol. Macromol. 2022, 217, 652–667. [Google Scholar] [CrossRef] [PubMed]
- Al Monla, R.; Dassouki, Z.; Sari-Chmayssem, N.; Mawlawi, H.; Gali-Muhtasib, H. Fucoidan and Alginate from the Brown Algae Colpomenia Sinuosa and Their Combination with Vitamin C Trigger Apoptosis in Colon Cancer. Molecules 2022, 27, 358. [Google Scholar] [CrossRef] [PubMed]
- Figuerdo, M.; Pick, E.; DeWitt, D.; Van Genhoven, C.; Troiano, G.; Wright, J.; Song, Y.-H.; Wang, H. Method for Preparing Therapeutic Nano Particle. Available online: https://patents.google.com/patent/CN104812381B/en?oq=CN104812381B (accessed on 19 July 2024).
- Miller, R.; Desalvo, J.; Fenyvesi, G.; Joerger, M.; Poladi, R.H.; Wehner, A. Pharmaceutical Compositions Comprising Renewably-Based Biodegradable 1,3-Propanediol. Available online: https://patents.google.com/patent/US9668951B2/en?oq=US9668951B2 (accessed on 19 July 2024).
- Lin, J.; Arlinghaus, R.; Sun, T.; Ji, L.; Ozpolat, B.; Lopez-Berestein, G.; Roth, J.A. Bioactive FUS1 Peptides and Nanoparticle-Polypeptide Complexes. Available online: https://patents.google.com/patent/US8859727B2/en?oq=US8859727B2 (accessed on 19 July 2024).
- Aharoni, A.; Polturak, G. Cyp76ad1-Beta Clade Polynucleotides, Polypeptides, and Uses Thereof. Available online: https://patents.google.com/patent/US20200354759A1/en?oq=US20200354759A1#patentCitations (accessed on 19 July 2024).
- Foger, F.; Werle, M. Pharmaceutical Formulations for the Oral Delivery of Peptide Drugs. Available online: https://patents.google.com/patent/US10905744B2/en?oq=US10905744B2 (accessed on 19 July 2024).
- Bradbury, M.; Wiesner, U.; Medina, O.P.; Burns, A.; Lewis, J.; Larson, S.; Quinn, T. Multimodal Silica-Based Nanoparticles. Available online: https://patents.google.com/patent/CA2900363C/en?oq=CA2900363C (accessed on 19 July 2024).
- Klein, G.; Majuru, S.; Liu, P.; Dinh, S.; Liao, J.; Lee, J.; Levchik, H.; Arbit, E.; Dhoot, N.; Harris, J.; et al. Pharmaceutical Formulations Containing Microparticles or Nanoparticles of a Delivery Agent. Available online: https://patents.google.com/patent/US20190022228A1/en?oq=US20190022228A1 (accessed on 19 July 2024).
- Correnti, C.E.; Gewe, M.M.; Mehlin, C.; Bandaranayake, A.D.; Johnsen, W.A.; Rupert, P.B.; Brusniak, M.-Y.; Clarke, M.; Burke, S.E.; De Van Der Schueren, W.; et al. Screening, Large-Scale Production and Structure-Based Classification of Cystine-Dense Peptides. Nat. Struct. Mol. Biol. 2018, 25, 270–278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Visuddho, V.; Halim, P.; Helen, H.; Muhar, A.M.; Iqhrammullah, M.; Mayulu, N.; Surya, R.; Tjandrawinata, R.R.; Ribeiro, R.I.M.A.; Tallei, T.E.; et al. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Mar. Drugs 2024, 22, 338. https://doi.org/10.3390/md22080338
Visuddho V, Halim P, Helen H, Muhar AM, Iqhrammullah M, Mayulu N, Surya R, Tjandrawinata RR, Ribeiro RIMA, Tallei TE, et al. Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Marine Drugs. 2024; 22(8):338. https://doi.org/10.3390/md22080338
Chicago/Turabian StyleVisuddho, Visuddho, Princella Halim, Helen Helen, Adi Muradi Muhar, Muhammad Iqhrammullah, Nelly Mayulu, Reggie Surya, Raymond Rubianto Tjandrawinata, Rosy Iara Maciel Azambuja Ribeiro, Trina Ekawati Tallei, and et al. 2024. "Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy" Marine Drugs 22, no. 8: 338. https://doi.org/10.3390/md22080338
APA StyleVisuddho, V., Halim, P., Helen, H., Muhar, A. M., Iqhrammullah, M., Mayulu, N., Surya, R., Tjandrawinata, R. R., Ribeiro, R. I. M. A., Tallei, T. E., Taslim, N. A., Kim, B., Syahputra, R. A., & Nurkolis, F. (2024). Modulation of Apoptotic, Cell Cycle, DNA Repair, and Senescence Pathways by Marine Algae Peptides in Cancer Therapy. Marine Drugs, 22(8), 338. https://doi.org/10.3390/md22080338