C-Phycoerythrin Prevents Chronic Kidney Disease-Induced Systemic Arterial Hypertension, Avoiding Oxidative Stress and Vascular Dysfunction in Remanent Functional Kidney
Abstract
:1. Introduction
2. Results
2.1. Effect of CPE on Biochemical Markers Related to CKD
2.2. Effect of CPE on CKD-Induced SAH
2.3. Effect of CPE on CKD-Induced Oxidative Stress and REDOX Environment Disturbance
2.4. Effect of CPE on CKD-Disturbances Angiotensin II Receptors (AT1R and AT2R) Expression
2.5. Protein Expression of the Mas1/Akt1/eNOS/Pathway
2.6. Effect of CPE on CKD-Induced Renal Damage
3. Discussion
4. Materials and Methods
4.1. CPE Obtention
4.2. Animals
4.3. 5/6 NFx-Induced CKD Model
4.4. Cardiovascular Evaluation
4.5. Renal Function Analysis
4.6. Oxidative Stress and REDOX Environment Markers
4.7. Western Blotting
4.8. Histopathologic Stain
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- González-Pérez, A.; Saéz, M.E.; Vizcaya, D.; Lind, M.; García Rodríguez, L.A. Impact of Chronic Kidney Disease Definition on Assessment of Its Incidence and Risk Factors in Patients with Newly Diagnosed Type 1 and Type 2 Diabetes in the UK: A Cohort Study Using Primary Care Data from the United Kingdom. Prim. Care Diabetes 2020, 14, 381–387. [Google Scholar] [CrossRef]
- KDIGO Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Off. J. Int. Soc. Nephrol. 2013, 3, 1–150.
- Cortés-Valencia, A.; Ortiz-Rodríguez, S.; Balderas-Arteaga, N.; Catzin-Kuhlmann, A.; Correa-Rotter, R.; González-Villalpando, C.; Jiménez-Corona, A.; López-Ridaura, R.; Mejia, M.; Salmerón, J. The Mexican Consortium of Epidemiological Studies for the Prevention, Diagnosis, and Treatment of Chronic Kidney Disease: A Review of Collaborating Studies. Salud Publica Mex. 2022, 64, 434–442. [Google Scholar] [CrossRef]
- Helle, F.; Jouzel, C.; Chadjichristos, C.; Placier, S.; Flamant, M.; Guerrot, D.; François, H.; Dussaule, J.-C.; Chatziantoniou, C. Improvement of Renal Hemodynamics during Hypertension-Induced Chronic Renal Disease: Role of EGF Receptor Antagonism. Am. J. Physiol.-Ren. Physiol. 2009, 297, F191–F199. [Google Scholar] [CrossRef]
- Levey, A.; Coresh, J. Chronic Kidney Disease. Lancet 2011, 379, 165–180. [Google Scholar] [CrossRef]
- Ku, E.; Lee, B.J.; Wei, J.; Weir, M.R. Hypertension in CKD: Core Curriculum 2019. Am. J. Kidney Dis. 2019, 74, 120–131. [Google Scholar] [CrossRef]
- López-Novoa, J.M.; Martínez-Salgado, C.; Rodríguez-Peña, A.B.; Hernández, F.J.L. Common Pathophysiological Mechanisms of Chronic Kidney Disease: Therapeutic Perspectives. Pharmacol. Ther. 2010, 128, 61–81. [Google Scholar] [CrossRef]
- Sampaio, W.O.; Souza dos Santos, R.A.; Faria-Silva, R.; da Mata Machado, L.T.; Schiffrin, E.L.; Touyz, R.M. Angiotensin-(1-7) Through Receptor Mas Mediates Endothelial Nitric Oxide Synthase Activation via Akt-Dependent Pathways. Hypertension 2007, 49, 185–192. [Google Scholar] [CrossRef]
- Roumeliotis, S.; Mallamaci, F.; Zoccali, C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J. Clin. Med. 2020, 9, 2359. [Google Scholar] [CrossRef]
- Sosa-Hernández, J.; Romero-Castillo, K.; Parra-Arroyo, L.; Aguilar-Aguila-Isaías, M.; García-Reyes, I.; Ahmed, I.; Parra-Saldivar, R.; Bilal, M.; Iqbal, H. Mexican Microalgae Biodiversity and State-of-the-Art Extraction Strategies to Meet Sustainable Circular Economy Challenges: High-Value Compounds and Their Applied Perspectives. Mar. Drugs 2019, 17, 174. [Google Scholar] [CrossRef]
- Kumar, V.; Sonani, R.R.; Sharma, M.; Gupta, G.D.; Madamwar, D. Crystal Structure Analysis of C-Phycoerythrin from Marine Cyanobacterium Phormidium Sp. A09DM. Photosynth. Res. 2016, 129, 17–28. [Google Scholar] [CrossRef]
- Sonani, R.R.; Sharma, M.; Gupta, G.D.; Kumar, V.; Madamwar, D. Phormidium Phycoerythrin Forms Hexamers in Crystals: A Crystallographic Study. Acta Crystallogr. F Struct. Biol. Commun. 2015, 71, 998–1004. [Google Scholar] [CrossRef]
- Yabuta, Y.; Fujimura, H.; Kwak, C.S.; Enomoto, T.; Watanabe, F. Antioxidant Activity of the Phycoerythrobilin Compound Formed from a Dried Korean Purple Laver (Porphyra Sp.) during in Vitro Digestion. Food Sci. Technol. Res. 2010, 16, 347–352. [Google Scholar] [CrossRef]
- Sakai, S.; Komura, Y.; Nishimura, Y.; Sugawara, T.; Hirata, T. Inhibition of Mast Cell Degranulation by Phycoerythrin and Its Pigment Moiety Phycoerythrobilin, Prepared from Porphyra Yezoensis. Food Sci. Technol. Res. 2011, 17, 171–177. [Google Scholar] [CrossRef]
- Soni, B.; Visavadiya, N.P.; Madamwar, D. Ameliorative Action of Cyanobacterial Phycoerythrin on CCl4-Induced Toxicity in Rats. Toxicology 2008, 248, 59–65. [Google Scholar] [CrossRef]
- Cano-Europa, E.; Ortiz-Butrón, R.; Gallardo-Casas, C.A.; Blas-Valdivia, V.; Pineda-Reynoso, M.; Olvera-Ramírez, R.; Franco-Colin, M. Phycobiliproteins from Pseudanabaena Tenuis Rich in C-Phycoerythrin Protect against HgCl2-Caused Oxidative Stress and Cellular Damage in the Kidney. J. Appl. Phycol. 2010, 22, 495–501. [Google Scholar] [CrossRef]
- Blas-Valdivia, V.; Rojas-Franco, P.R.; Serrano-Contreras, J.I.; Sfriso, A.A.; Garcia-Hernandez, C.; Franco-Colín, M.; Cano-Europa, E. C-Phycoerythrin from Phormidium Persicinum Prevents Acute Kidney Injury by Attenuating Oxidative and Endoplasmic Reticulum Stress. Mar. Drugs 2021, 19, 589. [Google Scholar] [CrossRef]
- Madamwar, D.; Patel, D.K.; Desai, S.N.; Upadhyay, K.K.; Devkar, R. V Apoptotic Potential of C-Phycoerythrin from Phormidium Sp. A27DM and Halomicronema Sp. A32DM on Human Lung Carcinoma Cells. EXCLI J. 2015, 14, 527–539. [Google Scholar] [CrossRef]
- Sonani, R.R.; Singh, N.K.; Kumar, J.; Thakar, D.; Madamwar, D. Concurrent Purification and Antioxidant Activity of Phycobiliproteins from Lyngbya Sp. A09DM: An Antioxidant and Anti-Aging Potential of Phycoerythrin in Caenorhabditis Elegans. Process Biochem. 2014, 49, 1757–1766. [Google Scholar] [CrossRef]
- Soni, B.; Visavadiya, N.P.; Madamwar, D. Attenuation of Diabetic Complications by C-Phycoerythrin in Rats: Antioxidant Activity of C-Phycoerythrin Including Copper-Induced Lipoprotein and Serum Oxidation. Br. J. Nutr. 2009, 102, 102–109. [Google Scholar] [CrossRef]
- Tapia-Martínez, J.A.; Centurión, D.; Franco-Colin, M.; Sánchez-López, A.; Beltran-Ornelas, J.H.; Silva-Velasco, D.L.; Franco, P.R.; Blas-Valdivia, V.; Cano-Europa, E. The Antihypertensive Action of C-Phycocyanin Is Related to the Prevention of Angiotensin II-Caused Vascular Dysfunction in Chronic Kidney Disease. Hypertens. Res. 2024, 47, 1024–1032. [Google Scholar] [CrossRef]
- Rojas-Franco, P.; Garcia-Pliego, E.; Vite-Aquino, A.G.; Franco-Colin, M.; Serrano-Contreras, J.I.; Paniagua-Castro, N.; Gallardo-Casas, C.A.; Blas-Valdivia, V.; Cano-Europa, E. The Nutraceutical Antihypertensive Action of C-Phycocyanin in Chronic Kidney Disease Is Related to the Prevention of Endothelial Dysfunction. Nutrients 2022, 14, 1464. [Google Scholar] [CrossRef]
- Garcia-Pliego, E.; Franco-Colin, M.; Rojas-Franco, P.; Blas-Valdivia, V.; Serrano-Contreras, J.I.; Pentón-Rol, G.; Cano-Europa, E. Phycocyanobilin Is the Molecule Responsible for the Nephroprotective Action of Phycocyanin in Acute Kidney Injury Caused by Mercury. Food Funct. 2021, 12, 2985–2994. [Google Scholar] [CrossRef]
- Hirata, T.; Tanaka, M.; Ooike, M.; Tsunomura, T.; Sakaguchi, M. Antioxidant Activities of Phycocyanobilin Prepared from Spirulina Platensis. J. Appl. Phycol. 2000, 12, 435–439. [Google Scholar] [CrossRef]
- Pentón-Rol, G.; Marín-Prida, J.; Falcón-Cama, V. C-Phycocyanin and Phycocyanobilin as Remyelination Therapies for Enhancing Recovery in Multiple Sclerosis and Ischemic Stroke: A Preclinical Perspective. Behav. Sci. 2018, 8, 15. [Google Scholar] [CrossRef]
- Ding, J.; Yu, M.; Jiang, J.; Luo, Y.; Zhang, Q.; Wang, S.; Yang, F.; Wang, A.; Wang, L.; Zhuang, M.; et al. Angiotensin II Decreases Endothelial Nitric Oxide Synthase Phosphorylation via AT1R Nox/ROS/PP2A Pathway. Front. Physiol. 2020, 11, 566410. [Google Scholar] [CrossRef]
- Daenen, K.; Andries, A.; Mekahli, D.; van Schepdael, A.; Jouret, F.; Bammens, B. Oxidative Stress in Chronic Kidney Disease. Pediatr. Nephrol. 2019, 34, 975–991. [Google Scholar] [CrossRef]
- Fassett, R.G.; Venuthurupalli, S.K.; Gobe, G.C.; Coombes, J.S.; Cooper, M.A.; Hoy, W.E. Biomarkers in Chronic Kidney Disease: A Review. Kidney Int. 2011, 80, 806–821. [Google Scholar] [CrossRef]
- Minic, S.L.; Stanic-Vucinic, D.; Mihailovic, J.; Krstic, M.; Nikolic, M.R.; Cirkovic Velickovic, T. Digestion by Pepsin Releases Biologically Active Chromopeptides from C-Phycocyanin, a Blue-Colored Biliprotein of Microalga Spirulina. J. Proteom. 2016, 147, 132–139. [Google Scholar] [CrossRef]
- Hernanz, R.; Martínez-Revelles, S.; Palacios, R.; Martín, A.; Cachofeiro, V.; Aguado, A.; García-Redondo, L.; Barrús, M.T.; de Batista, P.R.; Briones, A.M.; et al. Toll-like Receptor 4 Contributes to Vascular Remodelling and Endothelial Dysfunction in Angiotensin <scp>II</Scp> -induced Hypertension. Br. J. Pharmacol. 2015, 172, 3159–3176. [Google Scholar] [CrossRef]
- Memije-Lazaro, I.N.; Blas-Valdivia, V.; Franco-Colín, M.; Cano-Europa, E. Arthrospira Maxima (Spirulina) and C-Phycocyanin Prevent the Progression of Chronic Kidney Disease and Its Cardiovascular Complications. J. Funct. Foods 2018, 43, 37–43. [Google Scholar] [CrossRef]
- Hoffmann, B.R.; Stodola, T.J.; Wagner, J.R.; Didier, D.N.; Exner, E.C.; Lombard, J.H.; Greene, A.S. Mechanisms of Mas1 Receptor-Mediated Signaling in the Vascular Endothelium. Arter. Thromb. Vasc. Biol. 2017, 37, 433–445. [Google Scholar] [CrossRef] [PubMed]
- El-Hashim, A.Z.; Khajah, M.A.; Babyson, R.S.; Renno, W.M.; Ezeamuzie, C.I.; Benter, I.F.; Akhtar, S. Ang-(1-7)/ MAS1 Receptor Axis Inhibits Allergic Airway Inflammation via Blockade of Src-Mediated EGFR Transactivation in a Murine Model of Asthma. PLoS ONE 2019, 14, e0224163. [Google Scholar] [CrossRef]
- Patel, S.N.; Fatima, N.; Ali, R.; Hussain, T. Emerging Role of Angiotensin AT2 Receptor in Anti-Inflammation: An Update. Curr. Pharm. Des. 2020, 26, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Wegiel, B.; Baty, C.J.; Gallo, D.; Csizmadia, E.; Scott, J.R.; Akhavan, A.; Chin, B.Y.; Kaczmarek, E.; Alam, J.; Bach, F.H.; et al. Cell Surface Biliverdin Reductase Mediates Biliverdin-Induced Anti-Inflammatory Effects via Phosphatidylinositol 3-Kinase and Akt. J. Biol. Chem. 2009, 284, 21369–21378. [Google Scholar] [CrossRef]
- Harlacher, E.; Wollenhaupt, J.; Baaten, C.C.F.M.J.; Noels, H. Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 531. [Google Scholar] [CrossRef]
- NOM-062-ZOO-1999; Especificaciones Técnicas Para La Producción, Cuidado y Uso de Los Animales de Laboratorio. DOF: Ciudad de México, Mexico, 1999.
BUN (mg/dL) | Uric Acid (mg/dL) | Serum Creatinine (mg/dL) | Creatinine Clearance (mL/min) | Proteinuria (mg/dL) | |
---|---|---|---|---|---|
Sham | 58.61 ± 0.41 | 3.21 ± 0.13 | 0.80 ± 0.02 | 0.35 ± 0.08 | 2.03 ± 0.11 |
Sham + CPE | 59.73 ± 1.16 | 3.40 ± 0.12 | 0.75 ± 0.02 | 0.52 ± 0.04 | 2.28 ± 0.11 |
NFx | 83.56 ± 5.97 * | 6.16 ± 0.21 * | 1.28 ± 0.15 * | 1.40 ± 0.13 * | 5.71 ± 0.45 * |
NFx + CPE | 63.38 ± 3.05 ** | 4.45 ± 0. 10 *, ** | 0.96 ± 0.04 ** | 0.76 ± 0.07 *, ** | 3.60 ± 0.47 *, ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Florencio-Santiago, O.I.; Blas-Valdivia, V.; Serrano-Contreras, J.I.; Rojas-Franco, P.; Escalona-Cardoso, G.N.; Paniagua-Castro, N.; Franco-Colin, M.; Cano-Europa, E. C-Phycoerythrin Prevents Chronic Kidney Disease-Induced Systemic Arterial Hypertension, Avoiding Oxidative Stress and Vascular Dysfunction in Remanent Functional Kidney. Mar. Drugs 2024, 22, 337. https://doi.org/10.3390/md22080337
Florencio-Santiago OI, Blas-Valdivia V, Serrano-Contreras JI, Rojas-Franco P, Escalona-Cardoso GN, Paniagua-Castro N, Franco-Colin M, Cano-Europa E. C-Phycoerythrin Prevents Chronic Kidney Disease-Induced Systemic Arterial Hypertension, Avoiding Oxidative Stress and Vascular Dysfunction in Remanent Functional Kidney. Marine Drugs. 2024; 22(8):337. https://doi.org/10.3390/md22080337
Chicago/Turabian StyleFlorencio-Santiago, Oscar Iván, Vanesa Blas-Valdivia, José Iván Serrano-Contreras, Placido Rojas-Franco, Gerardo Norberto Escalona-Cardoso, Norma Paniagua-Castro, Margarita Franco-Colin, and Edgar Cano-Europa. 2024. "C-Phycoerythrin Prevents Chronic Kidney Disease-Induced Systemic Arterial Hypertension, Avoiding Oxidative Stress and Vascular Dysfunction in Remanent Functional Kidney" Marine Drugs 22, no. 8: 337. https://doi.org/10.3390/md22080337
APA StyleFlorencio-Santiago, O. I., Blas-Valdivia, V., Serrano-Contreras, J. I., Rojas-Franco, P., Escalona-Cardoso, G. N., Paniagua-Castro, N., Franco-Colin, M., & Cano-Europa, E. (2024). C-Phycoerythrin Prevents Chronic Kidney Disease-Induced Systemic Arterial Hypertension, Avoiding Oxidative Stress and Vascular Dysfunction in Remanent Functional Kidney. Marine Drugs, 22(8), 337. https://doi.org/10.3390/md22080337