A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of SRP on Body Weight and Organ Indices
2.2. Histological Analysis
2.3. Biochemical Markers of Kidney Function
2.4. Exploration of Potential Targets and Networks of SRP
2.5. SRP Alleviated Serum Oxidative Indices in AKI Mice
2.6. SRP Reduced the Renal Inflammatory Reaction in AKI Mice
2.7. SRP Suppressed the Renal Cell Apoptosis in AKI Mice
3. Materials and Methods
3.1. Chemicals
3.2. Animal Housing and Acclimatization
3.3. Biochemical Assessment of Blood Indices
3.4. Renal Histopathological Assessment
3.5. Immunohistochemical Analysis
3.6. Network Pharmacology Analysis
3.6.1. In Silico ADMET and Drug-Likeness Prediction
3.6.2. Target Prediction Using Network Pharmacology
3.7. Western Blot Analysis
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satarug, S. Dietary Cadmium Intake and Its Effects on Kidneys. Toxics 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Xu, Y.; Wu, D.; Yu, F.; Yang, L.; Yao, Y.; Liang, Z.; Lau, A.T.Y. Progressive silencing of the zinc transporter Zip8 (Slc39a8) in chronic cadmium-exposed lung epithelial cells. Acta Biochim. Biophys. Sin. 2017, 5, 444–449. [Google Scholar] [CrossRef] [PubMed]
- Kandemir, F.M.; Caglayan, C.; Darendelioğlu, E.; Küçükler, S.; İzol, E.; Kandemir, Ö. Modulatory effects of carvacrol against cadmium-induced hepatotoxicity and nephrotoxicity by molecular targeting regulation. Life Sci. 2021, 277, 119610. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The Effects of Cadmium Toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef] [PubMed]
- Järup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lu, Q.; Huang, Q.; Zheng, C.; Chen, B.; Lei, Y. eIF3 regulates migration, invasion and apoptosis in cadmium transformed 16HBE cells and is a novel biomarker of cadmium exposure in a rat model and in workers. Toxicol. Res. 2016, 5, 761–772. [Google Scholar] [CrossRef] [PubMed]
- Doccioli, C.; Sera, F.; Francavilla, A.; Cupisti, A.; Biggeri, A. Association of cadmium environmental exposure with chronic kidney disease: A systematic review and meta-analysis. Sci. Total Environ. 2024, 906, 167165. [Google Scholar] [CrossRef] [PubMed]
- Kellum, J.A.-O.; Romagnani, P.; Ashuntantang, G.; Ronco, C.A.-O.; Zarbock, A.; Anders, H.A.-O. Acute kidney injury. Ann. Intern. Med. 2017, 167, 66–80. [Google Scholar]
- Tang, J.; Zhang, N.; Chen, S.; Hu, K.; Li, Y.; Fang, Y.; Wu, Z.; Zhang, Y.; Xu, L. Cadmium (Cd) and 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) co-exposure induces acute kidney injury through oxidative stress and RIPK3-dependent necroptosis. Environ. Toxicol. 2023, 38, 2332–2343. [Google Scholar] [CrossRef]
- Shen, R.; Liu, D.; Hou, C.; Liu, D.; Zhao, L.; Cheng, J.; Wang, D.; Bai, D. Protective effect of Potentilla anserina polysaccharide on cadmium-induced nephrotoxicity in vitro and in vivo. Food Funct. 2017, 8, 3636–3646. [Google Scholar] [CrossRef]
- Johri, N.; Jacquillet, G.; Unwin, R. Heavy metal poisoning: The effects of cadmium on the kidney. Biometals 2010, 23, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.A.-O.; Allen, D.C. Cadmium-Induced Kidney Injury: Oxidative Damage as a Unifying Mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, C.; Ge, J.; Lv, M.-W.; Talukder, M.; Guo, K.; Li, Y.-h.; Li, J.-L. Ameliorative effects of resveratrol against cadmium-induced nephrotoxicityviamodulating nuclear xenobiotic receptor response and PINK1/Parkin-mediated Mitophagy. Food Funct. 2020, 11, 1856–1868. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Taylor, A.W.; Riley, M.; Byles, J.; Liu, J.; Noakes, M. Association between dietary patterns, cadmium intake and chronic kidney disease among adults. Clin. Nutr. 2018, 37, 276–284. [Google Scholar] [CrossRef]
- Guo, A.H.; Kumar, S.; Lombard, D.B. Epigenetic mechanisms of cadmium-induced nephrotoxicity. Curr. Opin. Toxicol. 2022, 32, 100372. [Google Scholar] [CrossRef] [PubMed]
- Almeer, R.S.; AlBasher, G.I.; Alarifi, S.A.-O.; Alkahtani, S.; Ali, D.; Abdel Moneim, A.A.-O. Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci. Rep. 2019, 9, 5825. [Google Scholar] [CrossRef]
- Ahmed, I.; Asgher, M.; Sher, F.; Hussain, S.M.; Nazish, N.; Joshi, N.; Sharma, A.; Parra-Saldívar, R.; Bilal, M.; Iqbal, H.M.N. Exploring Marine as a Rich Source of Bioactive Peptides: Challenges and Opportunities from Marine Pharmacology. Mar. Drugs 2022, 20, 208. [Google Scholar] [CrossRef] [PubMed]
- Ucak, İ.; Afreen, M.; Montesano, D.; Carrillo, C.; Tomasevic, I.; Simal-Gandara, J.; Barba, F. Functional and Bioactive Properties of Peptides Derived from Marine Side Streams. Mar. Drugs 2021, 19, 71. [Google Scholar] [CrossRef] [PubMed]
- Sangtanoo, P.; Srimongkol, P.; Saisavoey, T.; Reamtong, O.; Karnchanatat, A. Anti-inflammatory action of two novel peptides derived from peanut worms (Sipunculus nudus) in lipopolysaccharide-induced RAW264. 7 macrophages. Food Funct. 2020, 11, 552–560. [Google Scholar] [CrossRef]
- Zhang, C.X.; Dai, Z.R.; Cai, Q.X. Anti-inflammatory and anti-nociceptive activities of Sipunculus nudus L. extract. J. Ethnopharmacol. 2011, 137, 1177–1182. [Google Scholar] [CrossRef]
- Li, N.; Shen, X.; Liu, Y.; Zhang, J.; He, Y.; Liu, Q.; Jiang, D.; Zong, J.; Li, J.; Hou, D.; et al. Isolation, characterization, and radiation protection of Sipunculus nudus L. polysaccharide. Int. J. Biol. Macromol. 2016, 83, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Hesaka, A.; Sakai, S.; Hamase, K.; Ikeda, T.; Matsui, R.A.-O.X.; Mita, M.; Horio, M.; Isaka, Y.; Kimura, T. (D)-Serine reflects kidney function and diseases. Sci. Rep. 2019, 9, 5104. [Google Scholar] [CrossRef]
- Li, H.; Li, S.; Yang, H.; Wang, Y.; Wang, J.; Zheng, N. l-Proline Alleviates Kidney Injury Caused by AFB1 and AFM1 through Regulating Excessive Apoptosis of Kidney Cells. Toxins 2019, 11, 226. [Google Scholar] [CrossRef]
- Souza, M.K.; Moraes, M.R.; Rosa, T.S.; Passos, C.S.; Neves, R.V.P.; Haro, A.S.; Cenedeze, M.A.; Arias, S.C.A.; Fujihara, C.K.; Teixeira, S.A.; et al. l-Arginine supplementation blunts resistance exercise improvement in rats with chronic kidney disease. Life Sci. 2019, 232, 116604. [Google Scholar] [CrossRef]
- Choi, M.R.; Fernández, B.E. Protective Renal Effects of Atrial Natriuretic Peptide: Where Are We Now? Front. Physiol. 2021, 12, 680213. [Google Scholar] [CrossRef]
- Wang, J.; Fang, Z.; Li, Y.; Sun, L.; Liu, Y.; Deng, Q.; Zhong, S. Ameliorative Effects of Oyster Protein Hydrolysates on Cadmium-Induced Hepatic Injury in Mice. Mar. Drugs 2022, 20, 758. [Google Scholar] [CrossRef]
- Matsuura, S.; Katsumi, H.; Suzuki, H.; Hirai, N.; Takashima, R.; Morishita, M.A.-O.; Sakane, T.; Yamamoto, A. l-Cysteine and l-Serine Modified Dendrimer with Multiple Reduced Thiols as a Kidney-Targeting Reactive Oxygen Species Scavenger to Prevent Renal Ischemia/Reperfusion Injury. Pharmaceutics 2018, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Jiménez, J.; Berraquero-García, C.; Pérez-Gálvez, R.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: Sources, structural features and modulation mechanisms. Food Funct. 2022, 13, 12510–12540. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Huang, M.; Huang, X.; Liu, H.; Wang, T.; Li, L.; Yang, W.; Luo, H.; Lu, Y. Properties of ACE inhibitory peptides isolated from Sipunculus nudus L and a DSPE-PEG modification for sustained release anti-hypertension agent. Process Biochem. 2023, 127, 56–65. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, H.; Wang, K.; Yang, Z.; Liu, Z. Protective effect of quercetin on rat testes against cadmium toxicity by alleviating oxidative stress and autophagy. Environ. Sci. Pollut. Res. 2020, 27, 25278–25286. [Google Scholar] [CrossRef]
- Huang, R.; Ding, L.; Ye, Y.; Wang, K.; Yu, W.; Yan, B.; Liu, Z.; Wang, J. Protective effect of quercetin on cadmium-induced renal apoptosis through cyt-c/caspase-9/caspase-3 signaling pathway. Front. Pharmacol. 2022, 13, 990993. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.A.-O.; Zhang, J.A.-O.; Wang, J.A.-O.; Wang, J.A.-O.; Chai, J.A.-O. Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury. Nutr. Res. Pract. 2022, 16, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Sakemi, T.; Ikeda, Y.; Shimazu, K. Effect of Soy Protein Added to Casein Diet on the Development of Glomerular Injury in Spontaneous Hypercholesterolemic Male Imai Rats. Am. J. Nephrol. 2002, 22, 548–554. [Google Scholar] [CrossRef] [PubMed]
- McGraw, N.J.; Krul, E.S.; Grunz-Borgmann, E.; Parrish, A.R. Soy-based renoprotection. World J. Nephrol. 2016, 5, 233–257. [Google Scholar] [CrossRef] [PubMed]
- Eshraghi-Jazi, F.; Nematbakhsh, M.; Nasri, H.R.; Talebi, A.; Haghighi, M.; Pezeshki, Z.; Safari, T.; Ashrafi, F. The protective role of endogenous nitric oxide donor (L-arginine) in cisplatin-induced nephrotoxicity: Gender related differences in rat model. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2011, 16, 1389–1396. [Google Scholar]
- Langroudi, F.E.; Narani, M.S.; Kheirollahi, A.; Vatannejad, A.; Shokrpoor, S.; Alizadeh, S. Effect of L-serine on oxidative stress markers in the kidney of streptozotocin-induced diabetic mice. Amino Acids 2023, 55, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, N.S.; Shneiderman, A.N.; Guseva, A.A.; Umarova, B.A. Prolyl-glycyl-proline (PGP) Peptide Prevents an Increase in Vascular Permeability in Inflammation. Acta Naturae 2017, 9, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Shang, Y.; Chen, X.; Midgley, A.C.; Wang, Z.; Zhu, D.; Wu, J.; Chen, P.; Wu, L.; Wang, X.; et al. Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair. ACS Nano 2020, 14, 12133–12147. [Google Scholar] [CrossRef] [PubMed]
- Hira, K.; Sharma, P.; Mahale, A.; Prakash Kulkarni, O.; Sajeli Begum, A. Cyclo(Val-Pro) and Cyclo(Leu-Hydroxy-Pro) from Pseudomonas sp. (ABS-36) alleviates acute and chronic renal injury under in vitro and in vivo models (Ischemic reperfusion and unilateral ureter obstruction). Int. Immunopharmacol. 2022, 103, 108494. [Google Scholar] [CrossRef]
- Boraschi-Diaz, I.; Wang, J.; Mort, J.S.; Komarova, S.V. Collagen Type I as a Ligand for Receptor-Mediated Signaling. Front. Phys. 2017, 5, 12. [Google Scholar] [CrossRef]
- Cao, C.; Xiao, Z.; Tong, H.; Liu, Y.; Wu, Y.; Ge, C. Oral Intake of Chicken Bone Collagen Peptides Anti-Skin Aging in Mice by Regulating Collagen Degradation and Synthesis, Inhibiting Inflammation and Activating Lysosomes. Nutrients 2022, 14, 1622. [Google Scholar] [CrossRef] [PubMed]
- Karna, E.; Szoka, L.; Huynh, T.Y.L.; Palka, J.A. Proline-dependent regulation of collagen metabolism. Cell. Mol. Life Sci. CMLS 2020, 77, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Kamel, E.O.; Gad-Elrab, W.M.; Ahmed, M.A.; Mohammedsaleh, Z.M.; Hassanein, E.H.M.; Ali, F.E.M. Candesartan Protects Against Cadmium-Induced Hepatorenal Syndrome by Affecting Nrf2, NF-κB, Bax/Bcl-2/Cyt-C, and Ang II/Ang 1-7 Signals. Biol. Trace Elem. Res. 2023, 201, 1846–1863. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Wang, L.; Xu, L.; Liu, Q.; Jiang, L.; Zhi, Y.; Zhou, P. The role of nitric oxide synthase in an early phase Cd-induced acute cytotoxicity in MCF-7 cells. Biol. Trace Elem. Res. 2015, 164, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.K.; Li, H.Y.; Bai, L.H.; Wang, L.S.; Zou, X.T. Histological changes, lipid metabolism, and oxidative and endoplasmic reticulum stress in the liver of laying hens exposed to cadmium concentrations. Poult. Sci. 2020, 99, 3215–3228. [Google Scholar] [CrossRef] [PubMed]
- Karmakova, T.; Sergeeva, N.S.; Kanukoev, K.Y.; Alekseev, B.Y.; Kaprin, A.D. Kidney Injury Molecule 1 (KIM-1): A Multifunctional Glycoprotein and Biological Marker (Review). Sovremennye Tekhnologii v Meditsine 2021, 13, 64–78. [Google Scholar] [CrossRef]
- Pócsi, I.; Dockrell, M.E.; Price, R.A.-O. Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health. Pócsi, I.; Dockrell, M.E.; Price, R.A.-O., Nephrotoxic Biomarkers with Specific Indications for Metallic Pollutants: Implications for Environmental Health. Biomark. Insights 2022, 17, 177–2719. [Google Scholar]
- Ko, G.J.; Grigoryev, D.N.; Linfert, D.; Jang, H.R.; Watkins, T.; Cheadle, C.; Racusen, L.; Rabb, H. Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. American journal of physiology. Ren. Physiol. 2010, 298, 1472–1483. [Google Scholar] [CrossRef]
- Tian, L.; Shao, X.; Xie, Y.; Wang, Q.; Che, X.; Zhang, M.; Xu, W.; Xu, Y.; Mou, S.; Ni, Z. Kidney Injury Molecule-1 is Elevated in Nephropathy and Mediates Macrophage Activation via the Mapk Signalling Pathway. Cell. Physiol. Biochem. 2017, 41, 769–783. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jiang, Q.; Zhang, X.; Zhu, X.; Dong, X.; Shen, L.; Zhang, S.; Niu, L.; Chen, L.; Zhang, M.; et al. l-Arginine Alleviates LPS-Induced Oxidative Stress and Apoptosis via Activating SIRT1-AKT-Nrf2 and SIRT1-FOXO3a Signaling Pathways in C2C12 Myotube Cells. Antioxidants 2021, 10, 1957. [Google Scholar] [CrossRef]
- Liu, B.; Jie, X.; Deng, J.; Zhang, S.; Lu, F.; Liu, X.; Zhang, D. Bupi Yishen formula may prevent kidney fibrosis by modulating fatty acid metabolism in renal tubules. Phytomedicine 2023, 114, 154767. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, S.; Shi, T.; Dong, Z.; Cheng, M.; Li, N.; Zhao, H.; Zhu, H.; Han, C.; Xu, L. Masson pine pollen aqueous extract ameliorates cadmium-induced kidney damage in rats. Front. Mol. Biosci. 2023, 10, 1249744. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, S.; Liu, H.; Xu, S. MAPK/iNOS pathway is involved in swine kidney necrosis caused by cadmium exposure. Environ. Pollut. 2021, 274, 116497. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, S.; Wu, M.; Wei, J.; Ren, Y.; Du, C.; Wu, H.; Han, C.; Duan, H.; Shi, Y. Mitochondria-targeted peptide SS-31 attenuates renal injury via an antioxidant effect in diabetic nephropathy. Am. J. Physiol.-Ren. Physiol. 2016, 310, 547–559. [Google Scholar] [CrossRef]
- Li, B.; Liu, C.; Tang, K.; Dong, X.; Xue, L.; Su, G.; Zhang, W.; Jin, Y. Aquaporin-1 attenuates macrophage-mediated inflammatory responses by inhibiting p38 mitogen-activated protein kinase activation in lipopolysaccharide-induced acute kidney injury. Inflamm. Res. 2019, 68, 1035–1047. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Liu, Y.; Li, Y.; Yang, P.; Hu, H.; Yu, G.; Ai, Q.; Xu, W.; Zhang, W.; Zhang, Y.A.; et al. Dietary arginine supplementation mitigates the soybean meal induced enteropathy in juvenile turbot, Scophthalmus maximus L. Aquac. Res. 2018, 49, 1535–1545. [Google Scholar] [CrossRef]
- Mantovani, A.; Dinarello, C.A.; Molgora, M.; Garlanda, C. Interleukin-1 and Related Cytokines in the Regulation of Inflammation and Immunity. Immunity 2019, 50, 778–795. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.U.; Shahzadi, S.; Hamza, A.; Azmat, R.; Anwar, H.; Afsar, T.; Shafique, H.; Bhat, M.A.; Naglah, A.M.; Al-Omar, M.A.; et al. Alleviative effects of pinostrobin against cadmium-induced renal toxicity in rats by reducing oxidative stress, apoptosis, inflammation, and mitochondrial dysfunction. Front. Nutr. 2023, 10, 1175008. [Google Scholar] [CrossRef]
- Senbel, A.M.; Omar, A.G.; Abdel-Moneim, L.M.; Mohamed, H.F.; Daabees, T.T. Evaluation of l-arginine on kidney function and vascular reactivity following ischemic injury in rats: Protective effects and potential interactions. Pharmacol. Rep. PR 2014, 66, 976–983. [Google Scholar] [CrossRef]
- Kagemann, G.; Sies, H.; Schnorr, O. Limited availability of L-arginine increases DNA-binding activity of NF-kappaB and contributes to regulation of iNOS expression. J. Mol. Med. 2007, 85, 723–732. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, J.Y.; Mun, C.H.; Suh, M.; Lee, J.E. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats. Exp. Neurobiol. 2017, 26, 278–286. [Google Scholar] [CrossRef]
- Al-Awaida, W.J.; Hameed, W.S.; Al Hassany, H.J.; Al-Dabet, M.M.; Al-Bawareed, O.; Hadi, N.R. Evaluation of the Genetic Association and Expressions of Notch-2/Jagged-1 in Patients with Type 2 Diabetes Mellitus. Med. Arch. 2021, 75, 2. [Google Scholar]
- Souza-Arroyo, V.; Fabián, J.J.; Bucio-Ortiz, L.; Miranda-Labra, R.U.; Gomez-Quiroz, L.E.; Gutiérrez-Ruiz, M.C. The mechanism of the cadmium-induced toxicity and cellular response in the liver. Toxicology 2022, 480, 153339. [Google Scholar] [CrossRef] [PubMed]
- Sedik, A.A.; Hassan, A.; Salama, A. Synergistic effect of arginine and Lactobacillus plantarum against potassium dichromate induced-acute liver and kidney injury in rats: Role of iNOS and TLR4/NF-κB signaling pathways. Iran. J. Basic Med. Sci. 2023, 26, 941–952. [Google Scholar] [PubMed]
- Mabalirajan, U.; Ahmad, T.; Leishangthem, G.D.; Dinda, A.K.; Agrawal, A.; Ghosh, B. L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation. Int. Immunopharmacol. 2010, 10, 1514–1519. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, Y.; Wang, M.; Elsabagh, M.; Loor, J.J.; Wang, H. Dietary supplementation of l-arginine and N-carbamylglutamate enhances duodenal barrier and mitochondrial functions and suppresses duodenal inflammation and mitophagy in suckling lambs suffering from intrauterine-growth-restriction. Food Funct. 2020, 11, 4456–4470. [Google Scholar] [CrossRef] [PubMed]
- Cirmi, S.; Maugeri, A.; Micali, A.; Marini, H.R.; Puzzolo, D.; Santoro, G.; Freni, J.; Squadrito, F.; Irrera, N.; Pallio, G.; et al. Cadmium-Induced Kidney Injury in Mice Is Counteracted by a Flavonoid-Rich Extract of Bergamot Juice, Alone or in Association with Curcumin and Resveratrol, via the Enhancement of Different Defense Mechanisms. Biomedicines 2021, 9, 1797. [Google Scholar] [CrossRef] [PubMed]
- Ehimigbai, R.O.A.; Nwosu, F.M. Effects of Phoenix dactylifera Tree Fruit Extract on Cadmium Induced Renal Damage in Adult Wistar Rats. J. Appl. Sci. Environ. Manag. 2022, 26, 859–864. [Google Scholar] [CrossRef]
- Deng, X.; Zeng, T.; Li, J.; Huang, C.; Yu, M.; Wang, X.; Tan, L.; Zhang, M.; Li, A.; Hu, J. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater. Sci. 2019, 7, 5312–5323. [Google Scholar] [CrossRef]
- Yang, S.; Zhong, S.; Deng, Z.; Xie, T.; Yin, G.; Wang, L.; Liu, J.; Yang, J.; Long, Z.; Jiang, X.; et al. Hyperforin regulates renal fibrosis via targeting the PI3K-AKT/ICAM1 axis. Int. Immunopharmacol. 2010, 10, 1514–1519. [Google Scholar] [CrossRef]
- Dalbøge, L.S.; Christensen, M.; Madsen, M.R.; Secher, T.A.-O.; Endlich, N.; Drenic, V.; Manresa-Arraut, A.; Hansen, H.H.; Rune, I.A.-O.; Fink, L.N.; et al. Nephroprotective Effects of Semaglutide as Mono- and Combination Treatment with Lisinopril in a Mouse Model of Hypertension-Accelerated Diabetic Kidney Disease. Biomedicines 2022, 10, 1661. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A.C. PockDrug-Server: A new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 2015, 43, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, S.; Jin, G.; Gao, K.; Wang, S.; Zhang, X.; Zhou, K.; Cai, Y.; Zhou, X.; Zhao, Z. Network pharmacology-based study on the mechanism of ShenKang injection in diabetic kidney disease through Keap1/Nrf2/Ho-1 signaling pathway. Phytomed. Int. J. Phytother. Phytopharm. 2023, 118, 154915. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Zhang, M.; Wang, W.; Zhou, S.; Yu, M.; Qiu, X.; Jiang, S.; Wang, X.; Tang, C.; Li, S.; et al. Dihydromyricetin attenuates cisplatin-induced acute kidney injury by reducing oxidative stress, inflammation and ferroptosis. Toxicol. Appl. Pharmacol. 2023, 473, 116595. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Peng, Z.; Fang, Z.; Iddrisu, L.; Sun, L.; Deng, Q.; Gooneratne, R. A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice. Mar. Drugs 2024, 22, 286. https://doi.org/10.3390/md22060286
Pan Y, Peng Z, Fang Z, Iddrisu L, Sun L, Deng Q, Gooneratne R. A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice. Marine Drugs. 2024; 22(6):286. https://doi.org/10.3390/md22060286
Chicago/Turabian StylePan, Yanmei, Zhilan Peng, Zhijia Fang, Lukman Iddrisu, Lijun Sun, Qi Deng, and Ravi Gooneratne. 2024. "A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice" Marine Drugs 22, no. 6: 286. https://doi.org/10.3390/md22060286
APA StylePan, Y., Peng, Z., Fang, Z., Iddrisu, L., Sun, L., Deng, Q., & Gooneratne, R. (2024). A Tripeptide (Ser-Arg-Pro, SRP) from Sipunculus nudus L. Improves Cadmium-Induced Acute Kidney Injury by Targeting the MAPK, Inflammatory, and Apoptosis Pathways in Mice. Marine Drugs, 22(6), 286. https://doi.org/10.3390/md22060286