Marine Invasive Algae’s Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study
Abstract
:1. Introduction
2. Methods
3. Invasive Marine Algae
3.1. Sargassum muticum’s Bioactive Ingredients
3.2. Caulerpa taxifolia’s Bioactive Ingredients
3.3. Undaria pinnatifida’s Bioactive Ingredients
Species | Impact | Remarkable Ingredients | Other Described Uses |
---|---|---|---|
S. muticum | Habitat destruction, losses in fishing and tourism [105]. | Polysaccharides and polyphenols
| Fertilizers Food additives Biodegradable materials Textiles Pharmaceutical development |
C. taxifolia | Habitat destruction and losses in fishing [106]. | Polyphenols and alkaloids
| Human consumption Pharmaceutical development Water filter Fertilizer Decorative plant |
U. pinnatifida | Biofouling in aquaculture [107] | Fucoidans and fucoxanthin
| Human consumption Pharmaceutical development |
4. Case-Study: Marine-Derived Ingredients and the Azores Islands
4.1. The Azores Archipelago as a Susceptible Ecosystem for Thriving Invasive Species
4.2. Bioactive Ingredients from Invasive Algae in the Azores
4.2.1. Rugulopteryx okamurae’s Bioactive Ingredients
4.2.2. Asparagopsis armata’s Bioactive Ingredients
4.3. Valorization of Invasive Algae in the Azores—Is It Worth It?
5. Cosmetics Derived from Invasive Species—A Brief Overview of Regulatory Framework
5.1. European Union (EU)
5.2. United States of America (USA)
5.3. Japan
5.4. Republic of China
5.5. Considerations on Invasive Biomass Valorization and the Role of Policy Makers
6. Challenges for Algal Biomass Upcycling
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
α-MSH | α-melanocyte-stimulating hormone |
AP-1 | activator protein-1 |
COX-2 | ciclooxigenase-2 |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
ERH | Enemy Release Hypothesis |
ERK | extracellular signal-regulated kinase |
EU | European Union |
FDA | Food and Drug Administration |
HAE | hydrothermal extraction |
ICCR | International Cooperation on Cosmetics Regulation |
IL-1 | interleukin 1 |
ISO | International Organization for Standardization |
LPS | lipopolysaccharide |
M/G | mannuronic acid and glucuronic acid ratio |
MAA | mycosporine-like amino acids |
MAPK | mitogen-activated protein kinase |
MITF | microphthalmia transcription factor |
MMPs | zinc-dependent metalloproteinases |
MoCRA | Modernization of Cosmetic Regulation Act |
MUFA | monounsaturated fatty acid |
NF-κB | nuclear factor kappa B |
NMPA | National Medical Products Administration |
Nrf2 | nuclear factor erythroid 2-like |
NWH | Novel Weapons Hypothesis |
PIF | product information file |
PUFA | polyunsaturated fatty acids |
ROS | reactive oxygen species |
SAE | supercritical carbon dioxide extraction |
SIRT1 | sirtuin 1 |
TNF-α | tumor necrosis factor-alpha |
TPM | tetraprenyltoluquinol chromane meroterpenoid |
TRP | tyrosinase related proteins |
USA | United States of America |
UV | ultraviolet |
References
- Lockwood, J.L.; Hoopes, M.F.; Marchetti, M.P. Invasion Ecology; Blackwell Publishing: Hoboken, NJ, USA, 2007; ISBN 978-1-4051-1418-9. [Google Scholar]
- Mabey, A.L.; Rius, M.; Smale, D.A.; Catford, J.A. The Use of Species Traits in Invasive Seaweed Research: A Systematic Review. NeoBiota 2023, 86, 123–149. [Google Scholar] [CrossRef]
- Molnar, J.L.; Gamboa, R.L.; Revenga, C.; Spalding, M.D. Assessing the Global Threat of Invasive Species to Marine Biodiversity. Front. Ecol. Environ. 2008, 6, 485–492. [Google Scholar] [CrossRef]
- Occhipinti-Ambrogi, A. Biopollution by Invasive Marine Non-Indigenous Species: A Review of Potential Adverse Ecological Effects in a Changing Climate. Int. J. Environ. Res. Public Health 2021, 18, 4268. [Google Scholar] [CrossRef]
- Dimitriadis, C.; Fournari-konstantinidou, I.; Sourbès, L.; Koutsoubas, D.; Katsanevakis, S. Long Term Interactions of Native and Invasive Species in a Marine Protected Area Suggest Complex Cascading Effects Challenging Conservation Outcomes. Diversity 2021, 13, 71. [Google Scholar] [CrossRef]
- Cardoso, A.C.; Arenas, F.; Sousa-Pinto, I.; Barreiro, A.; Franco, J.N. Sea Urchin Grazing Preferences on Native and Non-Native Macroalgae. Ecol. Indic. 2020, 111, 106046. [Google Scholar] [CrossRef]
- Giakoumi, S.; Katsanevakis, S.; Albano, P.G.; Azzurro, E.; Cardoso, A.C.; Cebrian, E.; Deidun, A.; Edelist, D.; Francour, P.; Jimenez, C.; et al. Management Priorities for Marine Invasive Species. Sci. Total Environ. 2019, 688, 976–982. [Google Scholar] [CrossRef] [PubMed]
- Míguez, C.; Cancela, Á.; Álvarez, X.; Sánchez, Á. The Reuse of Bio-Waste from the Invasive Species Tradescantia fluminensis as a Source of Phenolic Compounds. J. Clean. Prod. 2022, 336, 130293. [Google Scholar] [CrossRef]
- Warguła, Ł.; Wieczorek, B.; Kukla, M.; Krawiec, P.; Szewczyk, J.W. The Problem of Removing Seaweed from the Beaches: Review of Methods and Machines. Water 2021, 13, 736. [Google Scholar] [CrossRef]
- Harb, T.B.; Chow, F. An Overview of Beach-Cast Seaweeds: Potential and Opportunities for the Valorization of Underused Waste Biomass. Algal Res. 2022, 62, 102643. [Google Scholar] [CrossRef]
- Li, H.; Geng, Y.; Shi, H.; Wu, C.; Yu, Z.; Zhang, H.; Chen, L.; Xing, R. Biological Mechanisms of Invasive Algae and Meta-Analysis of Ecological Impacts on Local Communities of Marine Organisms. Ecol. Indic. 2023, 146, 109763. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Wernberg, T.; South, P.M.; Schiel, D.R. Non-Native Seaweeds Drive Changes in Marine Coastal Communities around the World. In Seaweed Phylogeography: Adaptation and Evolution of Seaweeds Under Environmental Change; Springer: Dordrecht, The Netherlands, 2016; pp. 147–185. ISBN 9789401775342. [Google Scholar]
- Colautti, R.I.; Grigorovich, I.A.; MacIsaac, H.J. Propagule Pressure: A Null Model for Biological Invasions. Biol. Invasions 2006, 8, 1023–1037. [Google Scholar] [CrossRef]
- Heger, T.; Jeschke, J.; Bernard-Verdier, M.; Musseau, C.; Mietchen, D. Hypothesis Description: Enemy Release Hypothesis. Res. Ideas Outcomes 2024, 10, e107393. [Google Scholar] [CrossRef]
- Brian, J.I.; Catford, J.A. A Mechanistic Framework of Enemy Release. Ecol. Lett. 2023, 26, 2147–2166. [Google Scholar] [CrossRef] [PubMed]
- Callaway, R.M.; Ridenour, W.M. Novel Weapons: Invasive Success and the Evolution of Increased Competitive Ability. Front. Ecol. Environ. 2004, 2, 436–443. [Google Scholar] [CrossRef]
- Rico-Martínez, R.; Rivera-Dávila, O.L.; Santos-Medrano, G.E.; Robles-Vargas, D.; Carbajal-Hernández, A.L.; Alvarado-Flores, J.; Pérez-Legaspi, I.A.; Garza-León, C.V. Fate and Adverse Effects of Pesticides in the Environment. In Pesticides in the Natural Environment: Sources, Health Risks, and Remediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 65–119. [Google Scholar] [CrossRef]
- Goyal, N.; Jerold, F. Biocosmetics: Technological Advances and Future Outlook. Environ. Sci. Pollut. Res. 2023, 30, 25148–25169. [Google Scholar] [CrossRef]
- Fonseca, S.; Amaral, M.N.; Reis, C.P.; Custódio, L. Marine Natural Products as Innovative Cosmetic Ingredients. Mar. Drugs 2023, 21, 170. [Google Scholar] [CrossRef]
- Costa, J.P.; Custódio, L.; Reis, C.P. Exploring the Potential of Using Marine-Derived Ingredients: From the Extraction to Cutting-Edge Cosmetics. Mar. Drugs 2023, 21, 620. [Google Scholar] [CrossRef] [PubMed]
- Global Invasive Species Database 100 of the World’s Worst Invasive Alien Species. Available online: https://www.iucngisd.org/gisd/100_worst.php (accessed on 21 September 2024).
- Gabriel, D.; Ferreira, A.I.; Micael, J.; Fredericq, S. Non-Native Marine Macroalgae of the Azores: An Updated Inventory. Diversity 2023, 15, 1089. [Google Scholar] [CrossRef]
- Chan, F.T.; Briski, E. An Overview of Recent Research in Marine Biological Invasions. Mar. Biol. 2017, 164, 121. [Google Scholar] [CrossRef]
- Papacostas, K.J.; Rielly-Carroll, E.W.; Georgian, S.E.; Long, D.J.; Princiotta, S.D.; Quattrini, A.M.; Reuter, K.E.; Freestone, A.L. Biological Mechanisms of Marine Invasions. Mar. Ecol. Prog. Ser. 2017, 565, 251–268. [Google Scholar] [CrossRef]
- Guiasu, R.; Boltovskoy, D. Invasion Biology: Evidence, Assumptions, and Conservationism. An. Acad. Nac. Cienc. Exactas Fısicas Nat. 2021, 72, 171–215. [Google Scholar]
- Holden, J.J.; Kingzett, B.C.; MacNeill, S.; Smith, W.; Juanes, F.; Dudas, S.E. Beach-Cast Biomass and Commercial Harvesting of a Non-Indigenous Seaweed, Mazzaella japonica, on the East Coast of Vancouver Island, British Columbia. J. Appl. Phycol. 2018, 30, 1175–1184. [Google Scholar] [CrossRef]
- Davidson, M.; Kelly, C.; Fellers, T. Brightfield Digital Image Gallery—Polysiphonia Red Algae. Available online: https://micro.magnet.fsu.edu/optics/olympusmicd/galleries/brightfield/polysiphonia.html (accessed on 9 October 2024).
- Moshfegh, A.; Jalali, A.; Salehzadeh, A.; Sadeghi Jozani, A. Biological Synthesis of Silver Nanoparticles by Cell-free Extract of Polysiphonia Algae and Their Anticancer Activity against Breast Cancer MCF-7 Cell Lines. Micro Nano Lett. 2019, 14, 581–584. [Google Scholar] [CrossRef]
- Geoffroy, A.; Destombe, C.; Kim, B.; Mauger, S.; Raffo, M.P.; Kim, M.S.; Le Gall, L. Patterns of Genetic Diversity of the Cryptogenic Red Alga P Olysiphonia Morrowii (Ceramiales, Rhodophyta) Suggest Multiple Origins of the Atlantic Populations. Ecol. Evol. 2016, 6, 5635–5647. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.A.; Kimpara, J.M.; Valenti, W.C. A Simple Substrate to Produce the Tropical Epiphytic Algae Hypnea pseudomusciformis. Aquac. Eng. 2020, 89, 102066. [Google Scholar] [CrossRef]
- Ceylan, S.; Topcu, Y.; Ceylan, Z. Thermal Behaviour and Kinetics of Alga Polysiphonia elongata Biomass During Pyrolysis. Bioresour. Technol. 2014, 171, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Annemarie Börlind AQUANATURE—Glättende Tagescreme. Available online: https://www.boerlind.com/de-de/produkte/aquanature-glaettende-tagescreme.html (accessed on 12 October 2024).
- Stiger-Pouvreau, V.; Bourgougnon, N.; Deslandes, E. Carbohydrates From Seaweeds. In Seaweed in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2016; pp. 223–274. [Google Scholar]
- Torres, P.; Santos, J.P.; Chow, F.; dos Santos, D.Y.A.C. A Comprehensive Review of Traditional Uses, Bioactivity Potential, and Chemical Diversity of the Genus Gracilaria (Gracilariales, Rhodophyta). Algal Res. 2019, 37, 288–306. [Google Scholar] [CrossRef]
- Dr. M. Bernstein. The Secret Power of Gracilaria in Skincare|Dr. M. Bernstein. Available online: https://www.drmbernstein.com/blogs/news/power-of-gracilaria?srsltid=AfmBOoodm9DViayB8kiBjHTXUM0KV6Ow7Tfd2qHiOsdu60Mg_wIDhhEF (accessed on 12 October 2024).
- Rushdi, M.I.; Abdel-Rahman, I.A.M.; Attia, E.Z.; Abdelraheem, W.M.; Saber, H.; Madkour, H.A.; Amin, E.; Hassan, H.M.; Abdelmohsen, U.R. A Review on the Diversity, Chemical and Pharmacological Potential of the Green Algae Genus Caulerpa. S. Afr. J. Bot. 2020, 132, 226–241. [Google Scholar] [CrossRef]
- Creative Commons Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Deed. Available online: https://creativecommons.org/licenses/by-nc-sa/4.0/ (accessed on 26 October 2024).
- Ignacio, B. Polysiphonia Nigra—WoRMS Image. Available online: https://www.marinespecies.org/aphia.php?p=image&tid=144651&pic=14948 (accessed on 26 October 2024).
- Guiry, M.D.; Guiry, G.M. AlgaeBase—Hypnea Rosea Papenfuss 1947. Available online: https://www.algaebase.org/search/species/detail/?species_id=2723 (accessed on 31 October 2024).
- Casa das Ciências Alga Marinha Codium Tomentosum. Available online: https://www.casadasciencias.org/imagem/8400 (accessed on 26 October 2024).
- OMARE Gracilaria Gracilis—OMARE. Available online: http://www.omare.pt/pt/especie/gracilaria-gracilis/ (accessed on 26 October 2024).
- Biosecurity New Zealand Marine Biosecurity Porthole—Aquarium Caulerpa. Available online: https://www.marinebiosecurity.org.nz/caulerpa-taxifolia/ (accessed on 26 October 2024).
- OMARE Sargassum Muticum (Yendo) Fensholt, 1955. Available online: http://www.omare.pt/pt/especie/sargassum-muticum/ (accessed on 2 October 2024).
- Susano, P.; Silva, J.; Alves, C.; Martins, A.; Pinteus, S.; Gaspar, H.; Goettert, M.I.; Pedrosa, R. Mitigating the Negative Impacts of Marine Invasive Species—Sargassum muticum—A Key Seaweed for Skincare Products Development. Algal Res. 2022, 62, 102634. [Google Scholar] [CrossRef]
- Want, A.; Matejusova, I.; Kakkonen, J.E. The Establishment of the Invasive Non-Native Macroalga sargassum Muticum in the North of Scotland. J. Mar. Biol. Assoc. UK 2023, 103, e69. [Google Scholar] [CrossRef]
- Rushdi, M.I.; Abdel-Rahman, I.A.M.; Saber, H.; Attia, E.Z.; Abdelraheem, W.M.; Madkour, H.A.; Hassan, H.M.; Elmaidomy, A.H.; Abdelmohsen, U.R. Pharmacological and Natural Products Diversity of the Brown Algae Genus: Sargassum. RSC Adv. 2020, 10, 24951–24972. [Google Scholar] [CrossRef] [PubMed]
- Jesumani, V.; Du, H.; Pei, P.; Zheng, C.; Cheong, K.L.; Huang, N. Unravelling Property of Polysaccharides from Sargassum Sp. as an Anti-Wrinkle and Skin Whitening Property. Int. J. Biol. Macromol. 2019, 140, 216–224. [Google Scholar] [CrossRef]
- Lee, M.K.; Ryu, H.; Lee, J.Y.; Jeong, H.H.; Baek, J.; Van, J.Y.; Kim, M.J.; Jung, W.K.; Lee, B. Potential Beneficial Effects of Sargassum spp. in Skin Aging. Mar. Drugs 2022, 20, 540. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, L.; Fu, X.; Wang, L.; Fu, X.; Yang, M.; Han, Z.; Mou, H.; Jeon, Y.J. Anti-Oxidant and Anti-Inflammatory Activities of Ultrasonic-Assistant Extracted Polyphenol-Rich Compounds from Sargassum Muticum. J. Oceanol. Limnol. 2019, 37, 836–847. [Google Scholar] [CrossRef]
- Lee, M.C.; Yeh, H.Y.; Chang, C.M.; Liou, Y.F.; Nan, F.H.; Wungen-Sani, J. Tracking and Utilizing Sargassum, an Abundant Resource from the Caribbean Sea. Water 2023, 15, 2694. [Google Scholar] [CrossRef]
- Kim, M.J.; Hyun, K.H.; Kim, J.H.; Im, S.; Sim, J.; Lee, N.H.; Hyun, C.G. Anti-Melanogenic Activities of Sargassum muticum via MITF Downregulation. Orient. J. Chem. 2017, 33, 1589–1594. [Google Scholar] [CrossRef]
- Pereira, A.G.; Fraga-Corral, M.; Garcia-Oliveira, P.; Lourenço-Lopes, C.; Carpena, M.; Prieto, M.A.; Simal-Gandara, J. The Use of Invasive Algae Species as a Source of Secondary Metabolites and Biological Activities: Spain as Case-Study. Mar. Drugs 2021, 19, 178. [Google Scholar] [CrossRef] [PubMed]
- Jesumani, V.; Du, H.; Aslam, M.; Pei, P.; Huang, N. Potential Use of Seaweed Bioactive Compounds in Skincare—A Review. Mar. Drugs 2019, 17, 688. [Google Scholar] [CrossRef] [PubMed]
- Pangestuti, R.; Shin, K.H.; Kim, S.K. Anti-Photoaging and Potential Skin Health Benefits of Seaweeds. Mar. Drugs 2021, 19, 172. [Google Scholar] [CrossRef]
- Flores-Contreras, E.A.; Araújo, R.G.; Rodríguez-Aguayo, A.A.; Guzmán-Román, M.; García-Venegas, J.C.; Nájera-Martínez, E.F.; Sosa-Hernández, J.E.; Iqbal, H.M.N.; Melchor-Martínez, E.M.; Parra-Saldivar, R. Polysaccharides from the Sargassum and Brown Algae Genus: Extraction, Purification, and Their Potential Therapeutic Applications. Plants 2023, 12, 2445. [Google Scholar] [CrossRef] [PubMed]
- Kalasariya, H.S.; Yadav, V.K.; Yadav, K.K.; Tirth, V.; Algahtani, A.; Islam, S.; Gupta, N.; Jeon, B.H. Seaweed-Based Molecules and Their Potential Biological Activities: An Eco-Sustainable Cosmetics. Molecules 2021, 26, 5313. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Hortas, L.; Florez-Fernandez, N.; Torres, M.D.; Ferreira-Anta, T.; Casas, M.P.; Balboa, E.M.; Falque, E.; Domínguez, H. Applying Seaweed Compounds in Cosmetics, Cosmeceuticals and Nutricosmetics. Mar. Drugs 2021, 19, 552. [Google Scholar] [CrossRef] [PubMed]
- Jayawardhana, H.H.A.C.K.; Jayawardena, T.U.; Sanjeewa, K.K.A.; Liyanage, N.M.; Nagahawatta, D.P.; Lee, H.G.; Kim, J.I.; Jeon, Y.J. Marine Algal Polyphenols as Skin Protective Agents: Current Status and Future Prospectives. Mar. Drugs 2023, 21, 285. [Google Scholar] [CrossRef]
- Jesus, B.C.; Saenz De Miera, B.; Santiago, R.; Martins, A.; Pedrosa, R.; Gonzalez-Miquel, M.; Marrucho, I.M. Valorisation of Sargassum muticum through the Extraction of Phenolic Compounds Using Eutectic Solvents and Intensification Techniques. RSC Sustain. 2023, 1, 1245–1258. [Google Scholar] [CrossRef]
- Puspita, M.; Déniel, M.; Widowati, I.; Radjasa, O.K.; Douzenel, P.; Marty, C.; Vandanjon, L.; Bedoux, G.; Bourgougnon, N. Total Phenolic Content and Biological Activities of Enzymatic Extracts from Sargassum muticum (Yendo) Fensholt. J. Appl. Phycol. 2017, 29, 2521–2537. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.; Sousa, E.; Sousa, E.; Kijjoa, A.; Pinto, M.; Pinto, M. Marine-Derived Compounds with Potential Use as Cosmeceuticals and Nutricosmetics. Molecules 2020, 25, 2536. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Zhao, Y.; Guo, L. A Bioactive Substance Derived from Brown Seaweeds: Phlorotannins. Mar. Drugs 2022, 20, 742. [Google Scholar] [CrossRef]
- Zheng, H.; Du, H.; Ye, E.; Xu, X.; Wang, X.; Jiang, X.; Min, Z.; Zhuang, L.; Li, S.; Guo, L. Optimized Extraction of Polyphenols with Antioxidant and Anti-Biofilm Activities and LC-MS/MS-Based Characterization of Phlorotannins from Sargassum muticum. LWT 2024, 198, 116069. [Google Scholar] [CrossRef]
- Phang, S.J.; Teh, H.X.; Looi, M.L.; Arumugam, B.; Fauzi, M.B.; Kuppusamy, U.R. Phlorotannins from Brown Algae: A Review on Their Antioxidant Mechanisms and Applications in Oxidative Stress-Mediated Diseases. J. Appl. Phycol. 2023, 35, 867–892. [Google Scholar] [CrossRef]
- Nazir, M.; Saleem, M.; Tousif, M.I.; Anwar, M.A.; Surup, F.; Ali, I.; Wang, D.; Mamadalieva, N.Z.; Alshammari, E.; Ashour, M.L.; et al. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021, 11, 957. [Google Scholar] [CrossRef] [PubMed]
- Saraswati; Giriwono, P.E.; Iskandriati, D.; Tan, C.P.; Andarwulan, N. Sargassum Seaweed as a Source of Anti-Inflammatory Substances and the Potential Insight of the Tropical Species: A Review. Mar. Drugs 2019, 17, 590. [Google Scholar] [CrossRef] [PubMed]
- Zbakh, H.; Zubía, E.; de los Reyes, C.; Calderón-Montaño, J.M.; López-Lázaro, M.; Motilva, V. Meroterpenoids from the Brown Alga Cystoseira Usneoides as Potential Anti-Inflammatory and Lung Anticancer Agents. Mar. Drugs 2020, 18, 207. [Google Scholar] [CrossRef] [PubMed]
- Balboa, E.M.; Li, Y.X.; Ahn, B.N.; Eom, S.H.; Domínguez, H.; Jiménez, C.; Rodríguez, J. Photodamage Attenuation Effect by a Tetraprenyltoluquinol Chromane Meroterpenoid Isolated from Sargassum muticum. J. Photochem. Photobiol. B 2015, 148, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.J.; Ham, Y.M.; Lee, W.J.; Lee, N.H.; Hyun, C.G. Anti-Inflammatory Effects of Apo-9′-Fucoxanthinone from the Brown Alga, Sargassum muticum. DARU J. Pharm. Sci. 2013, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Dmytryk, A.; Chojnacka, K. Algae Cosmetics. In Encyclopedia of Marine Biotechnology; Wiley: Hoboken, NJ, USA, 2020; pp. 65–85. [Google Scholar]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Jimenez-Lopez, C.; Carpena, M.; Pereira, A.G.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Biological Action Mechanisms of Fucoxanthin Extracted from Algae for Application in Food and Cosmetic Industries. Trends Food Sci. Technol. 2021, 117, 163–181. [Google Scholar] [CrossRef]
- Global Invasive Species Database (GISD). Available online: https://www.iucngisd.org/gisd/ (accessed on 28 April 2024).
- Minchin, D. Exotic Species, Introduction Of. In Encyclopedia of Ocean. Sciences; Academic Press: Cambridge, MA, USA, 2009; pp. 332–344. [Google Scholar] [CrossRef]
- Zubia, M.; Draisma, S.G.A.; Morrissey, K.L.; Varela-Álvarez, E.; De Clerck, O. Concise Review of the Genus Caulerpa J.V. Lamouroux. J. Appl. Phycol. 2020, 32, 23–39. [Google Scholar] [CrossRef]
- Ruslan, F.S.; Susanti, D.; Noor, N.M.; Aminudin, N.I.; Taher, M. Bioactive Compounds, Cosmeceutical and Nutraceutical Applications of Green Seaweed Species (Chlorophyta). Squalen Bull. Mar. Fish. Postharvest Biotechnol. 2021, 16, 41–55. [Google Scholar]
- Chi, Y.; Wang, P. Structure, Preparation, and Biological Activity of Sulfated Polysaccharides from the Genus Caulerpa (Chlorophyta): A Review. J. Appl. Phycol. 2023, 35, 3069–3085. [Google Scholar] [CrossRef]
- Bayro, A.M.; Manlusoc, J.K.; Alonte, R.; Caniel, C.; Conde, P.; Embralino, C. Preliminary Characterization, Antioxidant and Antiproliferative Properties of Polysaccharide from Caulerpa taxifolia. Pharm. Sci. Res. 2021, 8, 30–36. [Google Scholar]
- Lee, M.C.; Yeh, H.Y.; Shih, W.L. Extraction Procedure, Characteristics, and Feasibility of Caulerpa microphysa (Chlorophyta) Polysaccharide Extract as a Cosmetic Ingredient. Mar. Drugs 2021, 19, 524. [Google Scholar] [CrossRef]
- Shin, E.J.; Lee, J.S.; Hong, S.; Lim, T.G.; Byun, S. Quercetin Directly Targets JAK2 and PKCδ and Prevents UV-Induced Photoaging in Human Skin. Int. J. Mol. Sci. 2019, 20, 5262. [Google Scholar] [CrossRef]
- Yoon, J.H.; Kim, M.Y.; Cho, J.Y. Apigenin: A Therapeutic Agent for Treatment of Skin Inflammatory Diseases and Cancer. Int. J. Mol. Sci. 2023, 24, 1498. [Google Scholar] [CrossRef]
- Gde Putra Wiraguna, A.A.; Pangkahila, W.; Mantik Astawa, I.N. Antioxidant Properties of Topical caulerpa sp. Extract on UVB-Induced Photoaging in Mice. Dermatol. Rep. 2018, 10, 20–25. [Google Scholar] [CrossRef]
- Shah, S.A.A.; Ul Hassan, S.S.; Bungau, S.; Si, Y.; Xu, H.; Rahman, M.H.; Behl, T.; Gitea, D.; Pavel, F.M.; Aron, R.A.C.; et al. Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta. Mar. Drugs 2020, 18, 493. [Google Scholar] [CrossRef] [PubMed]
- Palaniyappan, S.; Sridhar, A.; Kari, Z.A.; Téllez-Isaías, G.; Ramasamy, T. Evaluation of Phytochemical Screening, Pigment Content, In Vitro Antioxidant, Antibacterial Potential and GC-MS Metabolite Profiling of Green Seaweed Caulerpa racemosa. Mar. Drugs 2023, 21, 278. [Google Scholar] [CrossRef] [PubMed]
- Barbier, P.; Guise, S.; Huitorel, P.; Amade, P.; Pesando, D.; Briand, C.; Peyrot, V. Caulerpenyne from Caulerpa Taxifolia Has. an Antiproliferative Activity on Tumor Cell Line SK-N-SH and Modifies the Microtubule Network. Life Sci. 2001, 70, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mathieu, C.; Berthelet, J.; Zhang, W.; Dupret, J.-M.; Rodrigues Lima, F. Human Protein Tyrosine Phosphatase 1B (PTP1B): From Structure to Clinical Inhibitor Perspectives. Int. J. Mol. Sci. 2022, 23, 7027. [Google Scholar] [CrossRef]
- Koh, H.S.A.; Lu, J.; Zhou, W. Structure Characterization and Antioxidant Activity of Fucoidan Isolated from Undaria pinnatifida Grown in New Zealand. Carbohydr. Polym. 2019, 212, 178–185. [Google Scholar] [CrossRef]
- Fitton, J.H.; Dell’Acqua, G.; Gardiner, V.A.; Karpiniec, S.S.; Stringer, D.N.; Davis, E. Topical Benefits of Two Fucoidan-Rich Extracts from Marine macroalgae. Cosmetics 2015, 2, 66–81. [Google Scholar] [CrossRef]
- Zolghadri, S.; Beygi, M.; Mohammad, T.F.; Alijanianzadeh, M.; Pillaiyar, T.; Garcia-Molina, P.; Garcia-Canovas, F.; Munoz-Munoz, J.; Saboury, A.A. Targeting Tyrosinase in Hyperpigmentation: Current Status, Limitations and Future Promises. Biochem. Pharmacol. 2023, 212, 115574. [Google Scholar] [CrossRef]
- Queffelec, J.; Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Microwave Hydrothermal Processing of Undaria pinnatifida for Bioactive Peptides. Bioresour. Technol. 2021, 342, 125882. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.P.; Martinho, N.; Rosado, C.; Fernandes, A.S.; Roberto, A. Design of Polymeric Nanoparticles and Its Applications as Drug Delivery Systems for Acne Treatment. Drug Dev. Ind. Pharm. 2014, 40, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Reis, C.; Neufeld, R.J.; Ribeiro, A.; Veiga, F. Design of Insulin-Loaded Alginate Nanoparticles: Influence of the Calcium Ion on Polymer Gel Matrix Properties. Chem. Ind. Chem. Eng. Q. 2006, 12, 47–52. [Google Scholar] [CrossRef]
- Roque, L.; Castro, P.; Molpeceres, J.; Viana, A.S.; Roberto, A.; Reis, C.; Rijo, P.; Tho, I.; Sarmento, B.; Reis, C. Bioadhesive Polymeric Nanoparticles as Strategy to Improve the Treatment of Yeast Infections in Oral Cavity: In-Vitro and Ex-Vivo Studies. Eur. Polym. J. 2018, 104, 19–31. [Google Scholar] [CrossRef]
- Shen, P.; Gu, Y.; Zhang, C.; Sun, C.; Qin, L.; Yu, C.; Qi, H. Metabolomic Approach for Characterization of Polyphenolic Compounds in Laminaria japonica, Undaria pinnatifida, Sargassum fusiforme and Ascophyllum nodosum. Foods 2021, 10, 192. [Google Scholar] [CrossRef]
- Carolina Oliveira dos Santos, L.; Spagnol, C.M.; Guillot, A.J.; Melero, A.; Corrêa, M.A. Caffeic Acid Skin Absorption: Delivery of Microparticles to Hair Follicles. Saudi Pharm. J. 2019, 27, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.A.M.; Januário, A.P.; Félix, R.; Alves, N.; Lemos, M.F.L.; Dias, J.R. Multifunctional Gelatin/Chitosan Electrospun Wound Dressing Dopped with Undaria pinnatifida Phlorotannin-Enriched Extract for Skin Regeneration. Pharmaceutics 2021, 13, 2152. [Google Scholar] [CrossRef]
- Ferreira, C.A.M.; Félix, R.; Félix, C.; Januário, A.P.; Alves, N.; Novais, S.C.; Dias, J.R.; Lemos, M.F.L. A Biorefinery Approach to the Biomass of the Seaweed Undaria pinnatifida (Harvey Suringar, 1873): Obtaining Phlorotannins-Enriched Extracts for Wound Healing. Biomolecules 2021, 11, 461. [Google Scholar] [CrossRef]
- Ferreira, M.S.; Resende, D.I.S.P.; Sousa Lobo, J.M.; Sousa, E.; Almeida, I.F. Marine Ingredients for Sensitive Skin: Market Overview. Mar. Drugs 2021, 19, 464. [Google Scholar] [CrossRef]
- Stabili, L.; Acquaviva, M.I.; Cecere, E.; Gerardi, C.; Petrocelli, A.; Fanizzi, F.P.; Angilè, F.; Rizzo, L. Screening of Undaria pinnatifida (Laminariales, Phaeophyceae) Lipidic Extract as a New Potential Source of Antibacterial and Antioxidant Compounds. J. Mar. Sci. Eng. 2023, 11, 2072. [Google Scholar] [CrossRef]
- Coniglio, D.; Bianco, M.; Ventura, G.; Calvano, C.D.; Losito, I.; Cataldi, T.R.I. Lipidomics of the Edible Brown Alga Wakame (Undaria pinnatifida) by Liquid Chromatography Coupled to Electrospray Ionization and Tandem Mass Spectrometry. Molecules 2021, 26, 4480. [Google Scholar] [CrossRef]
- Salehi, B.; Sharifi-Rad, J.; Seca, A.M.L.; Pinto, D.C.G.A.; Michalak, I.; Trincone, A.; Mishra, A.P.; Nigam, M.; Zam, W.; Martins, N. Current Trends on Seaweeds: Looking at Chemical Composition, Phytopharmacology, and Cosmetic Applications. Molecules 2019, 24, 4182. [Google Scholar] [CrossRef] [PubMed]
- Kalasariya, H.S.; Maya-Ramírez, C.E.; Cotas, J.; Pereira, L. Cosmeceutical Significance of Seaweed: A Focus on Carbohydrates and Peptides in Skin Applications. Phycology 2024, 4, 276–313. [Google Scholar] [CrossRef]
- Rafiquzzaman, S.M.; Kim, E.Y.; Kim, Y.R.; Nam, T.J.; Kong, I.S. Antioxidant Activity of Glycoprotein Purified from Undaria pinnatifida Measured by an In Vitro Digestion Model. Int. J. Biol. Macromol. 2013, 62, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Tanaka, K.; Higashiguchi, N.; Okawa, H.; Yamada, Y.; Tanaka, K.; Taira, S.; Aoyama, T.; Takanishi, M.; Natsume, C.; et al. Protective and Therapeutic Effects of Fucoxanthin against Sunburn Caused by UV Irradiation. J. Pharmacol. Sci. 2016, 132, 55–64. [Google Scholar] [CrossRef]
- Lourenço-Lopes, C.; Fraga-Corral, M.; Garcia-Perez, P.; Carreira-Casais, A.; Silva, A.; Simal-Gandara, J.; Prieto, M.A. A HPLC-DAD Method for Identifying and Estimating the Content of Fucoxanthin, Β-carotene and Chlorophyll a in Brown Algal Extracts. Food Chem. Adv. 2022, 1, 100095. [Google Scholar] [CrossRef]
- Global Invasive Species Databse (GISD) Species Profile: Sargassum muticum. Available online: https://www.iucngisd.org/gisd/speciesname/Sargassum+muticum (accessed on 12 October 2024).
- Global Invasive Species Database (GISD) Species Profile: Caulerpa taxifolia. Available online: https://www.iucngisd.org/gisd/speciesname/Caulerpa+taxifolia (accessed on 12 October 2024).
- Global Invasive Species Database (GISD) Species Profile: Undaria pinnatifida. Available online: https://www.iucngisd.org/gisd/speciesname/Undaria+pinnatifida (accessed on 12 October 2024).
- Castro, N.; Félix, P.M.; Gestoso, I.; Costa, J.L.; Canning-Clode, J. Management of Non-Indigenous Species in Macaronesia: Misconceptions and Alerts to Decision-Makers. Mar. Pollut. Bull. 2024, 204, 116506. [Google Scholar] [CrossRef]
- Borges, P.A.V.; Santos, A.M.C.; Elias, R.B.; Gabriel, R. The Azores Archipelago: Biodiversity Erosion and Conservation Biogeography. In Encyclopedia of the World’s Biomes: Volumes 1–5; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1, ISBN 9780128160961. [Google Scholar]
- Geoparque Açores Sobre Os Açores—Clima. Available online: https://www.azoresgeopark.com/acores/clima.php (accessed on 4 June 2024).
- Carreira, G.P.; Porteiro, M.F. O Mar Dos Açores e a Sua Valorização Estratégica: Descrição Do Espaço Marítimo e Socioeconómico. Nação E Def. 2015, 141, 79–95. [Google Scholar]
- Geoparque Açores Sobre Os Açores—Fauna e Flora. Available online: https://www.azoresgeopark.com/acores/fauna_flora.php (accessed on 4 June 2024).
- Spatz, D.R.; Zilliacus, K.M.; Holmes, N.D.; Butchart, S.H.M.; Genovesi, P.; Ceballos, G.; Tershy, B.R.; Croll, D.A. Globally Threatened Vertebrates on Islands with Invasive Species. Sci. Adv. 2017, 3, e1603080. [Google Scholar] [CrossRef]
- Wilson, E.O.; Peter, F.M. Diversity and Biological Invasions of Oceanic Islands. In Biodiversity; National Academies Press: Washington, DC, USA, 1988. [Google Scholar]
- Serviço Regional de Estatística dos Açores Atividade Turística—Dezembro 2023. Available online: https://srea.azores.gov.pt/Conteudos/Artigos/detalhe_artigo.aspx?idc=25&idsc=26&lang_id=1&ida=11572 (accessed on 31 October 2024).
- Costa, A.C.; Freitas, D.; Santos, A.I.; Botelho, A.Z.; Parente, M.I.; Behr, A.; Rodrigues, A.M.; Guerra, H.; Cascalho, J.; Mendes, A. Where Is Ocean Literacy in Oceanic Islands’ Schools? The Azores Case. Mar. Policy 2024, 163, 106062. [Google Scholar] [CrossRef]
- Azevedo Neto, A.I.; Moreu, I.; Rosas Alquicira, E.F.; León-Cisneros, K.; Cacabelos, E.; Botelho, A.Z.; Micael, J.; Costa, A.C.; Neto, R.M.A.; Azevedo, J.M.N.; et al. Marine Algal Flora of São Miguel Island, Azores. Biodivers. Data J. 2021, 9, e64969. [Google Scholar] [CrossRef]
- Cardigos, F.; Tempera, F.; Ávila, S.; Gonçalves, J.; Colaço, A.; Santos, R.S. Non-Indigenous Marine Species of the Azores. Helgol. Mar. Res. 2006, 60, 160–169. [Google Scholar] [CrossRef]
- Resolução Da Assembleia Legislativa Da Região Autónoma Dos. Açores n.o 33/2022/A; Diário da República: Lisbon, Portugal, 2022.
- Barcellos, L.; Pham, C.K.; Menezes, G.; Bettencourt, R.; Rocha, N.; Carvalho, M.; Felgueiras, H.P. A Concise Review on the Potential Applications of Rugulopteryx Okamurae Macroalgae. Mar. Drugs 2023, 21, 40. [Google Scholar] [CrossRef]
- Faria, J.; Rodrigues, A. Açores magazine—Uaciência; Portal do Governo dos Açores: Lisbon, Portugal, 2021; pp. 10–11. [Google Scholar]
- Vega, J.; Catalá, T.S.; García-Márquez, J.; Speidel, L.G.; Arijo, S.; Cornelius Kunz, N.; Geisler, C.; Figueroa, F.L. Molecular Diversity and Biochemical Content in Two Invasive Alien Species: Looking for Chemical Similarities and Bioactivities. Mar. Drugs 2023, 21, 5. [Google Scholar] [CrossRef] [PubMed]
- Santana, I.; Felix, M.; Bengoechea, C. Feasibility of Invasive Brown Seaweed Rugulopteryx Okamurae as Source of Alginate: Characterization of Products and Evaluation of Derived Gels. Polymers 2024, 16, 702. [Google Scholar] [CrossRef]
- Cebrián-Lloret, V.; Cartan-Moya, S.; Martínez-Sanz, M.; Gómez-Cortés, P.; Calvo, M.V.; López-Rubio, A.; Martínez-Abad, A. Characterization of the Invasive Macroalgae Rugulopteryx okamurae for Potential Biomass Valorisation. Food Chem. 2024, 440, 138241. [Google Scholar] [CrossRef] [PubMed]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Skin Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef]
- Cuevas, B.; Arroba, A.I.; de los Reyes, C.; Gómez-Jaramillo, L.; González-Montelongo, M.C.; Zubía, E. Diterpenoids from the Brown Alga Rugulopteryx okamurae and Their Anti-Inflammatory Activity. Mar. Drugs 2021, 19, 677. [Google Scholar] [CrossRef]
- Okukawa, M.; Yoshizaki, Y.; Yano, S.; Nonomura, Y. The Selective Antibacterial Activity of the Mixed Systems Containing Myristic Acid against Staphylococci. J. Oleo Sci. 2021, 70, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Pinto, D.C.G.A.; Lesenfants, M.L.; Rosa, G.P.; Barreto, M.C.; Silva, A.M.S.; Seca, A.M.L. GC-and UHPLC-MS Profiles as a Tool to Valorize the Red Alga Asparagopsis armata. Appl. Sci. 2022, 12, 892. [Google Scholar] [CrossRef]
- Calm Control Serum—Revea. Available online: https://www.myrevea.com/calm-control/ (accessed on 19 June 2024).
- Lee, K.W.; Hyeon Heo, S.; Lee, J.; Park, S.I.; Kim, M.; Shin, M.S. Antimicrobial, Antioxidative, Elastase and Tyrosinase Inhibitory Effect of Supercritical and Hydrothermal asparagopsis Armata Extract. Int. J. Adv. Cult. Technol. 2020, 8, 231–240. [Google Scholar] [CrossRef]
- Félix, R.; Dias, P.; Félix, C.; Cerqueira, T.; Andrade, P.B.; Valentão, P.; Lemos, M.F.L. The Biotechnological Potential of Asparagopsis Armata: What Is Known of Its Chemical Composition, Bioactivities and Current Market? Algal Res. 2021, 60, 102534. [Google Scholar] [CrossRef]
- Amaral, M.N.; Nunes, D.; Fortunato, E.; Martins, R.; Rodrigues, C.; Faísca, P.; Ferreira, H.A.; Coelho, J.M.P.; Gaspar, M.M.; Reis, C.P. Gold Nanoparticles for Photothermal Therapy—Influence of Experimental Conditions on the Properties of Resulting AuNPs. J. Drug Deliv. Sci. Technol. 2024, 101, 106215. [Google Scholar] [CrossRef]
- Wani, H.M.; Chen, C.W.; Huang, C.Y.; Singhania, R.R.; Sung, Y.J.; Di Dong, C.; Patel, A.K. Development of Bioactive Peptides Derived from Red Algae for Dermal Care Applications: Recent Advances. Sustainability 2023, 15, 8506. [Google Scholar] [CrossRef]
- Figueroa, F.L.; Bueno, A.; Korbee, N.; Santos, R.; Mata, L.; Schuenhoff, A. Accumulation of Mycosporine-like Amino Acids in Asparagopsis armata Grown in Tanks with Fishpond Effluents of Gilthead Sea Bream, Sparus aurata. J. World Aquac. Soc. 2008, 39, 692–699. [Google Scholar] [CrossRef]
- Martins, M.; Vieira, F.A.; Correia, I.; Ferreira, R.A.S.; Abreu, H.; Coutinho, J.A.P.; Ventura, S.P.M. Recovery of Phycobiliproteins from the Red Macroalga gracilaria sp. Using Ionic Liquid Aqueous Solutions. Green Chem. 2016, 18, 4287–4296. [Google Scholar] [CrossRef]
- Rocha, C.P.; Pacheco, D.; Cotas, J.; Marques, J.C.; Pereira, L.; Gonçalves, A.M.M. Seaweeds as Valuable Sources of Essential Fatty Acids for Human Nutrition. Int. J. Environ. Res. Public Health 2021, 18, 4968. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.L.; Li, G.; Wang, M.; Yang, Y.; Zhong, S. Unraveling the Chemical Identification and Biological Potential of the Genus Asparagopsis: A Comprehensive Review. Front. Mar. Sci. 2024, 11, 1360425. [Google Scholar] [CrossRef]
- Spatz, D.R.; Holmes, N.D.; Will, D.J.; Hein, S.; Carter, Z.T.; Fewster, R.M.; Keitt, B.; Genovesi, P.; Samaniego, A.; Croll, D.A.; et al. The Global Contribution of Invasive Vertebrate Eradication as a Key Island Restoration Tool. Sci. Rep. 2022, 12, 13391. [Google Scholar] [CrossRef] [PubMed]
- SeaExpert|Fornecedor de Algas Dos Açores|Observadores de Pesca. Available online: https://seaexpert-azores.com/ (accessed on 9 June 2024).
- Ignae—Plant-Based Skin Care Products from the Azores. Available online: https://ignae.com/pt (accessed on 8 June 2024).
- BAMandBOO Grounded Skincare—A Essência Dos Açores. Available online: https://thebamandboo.com/pt (accessed on 8 June 2024).
- Azora Astaxanthin—Algicel. Available online: https://algicel.pt/ (accessed on 8 June 2024).
- Ferreira, M.; Matos, A.; Couras, A.; Marto, J.; Ribeiro, H. Overview of Cosmetic Regulatory Frameworks around the World. Cosmetics 2022, 9, 72. [Google Scholar] [CrossRef]
- Terms of Reference for ICCR Summary Mission. 2007. Available online: https://www.iccr-cosmetics.org/component/attachments/?task=download&id=153 (accessed on 1 November 2024).
- Regulation (EC) No 1223/2009 of the European Parliament and of the Council; European Parliament: Brussels, Belgium, 2009.
- Lähteenmäki-Uutela, A.; Rahikainen, M.; Camarena-Gómez, M.T.; Piiparinen, J.; Spilling, K.; Yang, B. European Union Legislation on Macroalgae Products. Aquac. Int. 2021, 29, 487–509. [Google Scholar] [CrossRef]
- Regulation (EU) No 1143/2014 of the European Parliament and of the Council; European Parliament: Brussels, Belgium, 2014.
- Directive 2008/56/EC of the European Parliament and of the Council; European Parliament: Strasbourg, France, 2008.
- Modernization of Cosmetic Regulation Act (MoCRA); Food and Drug Administration (FDA): Silver Spring, MD, USA, 2022.
- Federal Food, Drug, and Cosmetic Act; Food and Drug Administration (FDA): Silver Spring, MD, USA, 2018.
- US Code—Protection of Water, Oceans, Coasts, and Wildlife from Invasive Species; United States Congress: Washington, DC, USA, 2020.
- Revised Code of Washington—Invasive Species; Washington State Legislature: Washington, DC, USA, 2017.
- Nonnative Species Permit Applications and Information|FWC. Available online: https://myfwc.com/license/wildlife/nonnative-species/ (accessed on 9 June 2024).
- Law on Ensuring the Quality, Efficacy and Safety of Pharmaceuticals, Medical Devices, etc.; Ministry of Health, Labor and Welfare: Washington, DC, USA, 2013.
- Invasive Alien Species Act (Law No. 78 (June 2, 2004)); Japanese Government: Tokyo, Japan, 2004.
- Regulations on the Supervision and Administration of Cosmetics—Food and Drug Administration; Chinese State Council: Beijing, China, 2021.
- Measures for the Management of Invasive Species; People’s Republic of China Government: Beijing, China, 2022.
- Katsanevakis, S.; Olenin, S.; Puntila-Dodd, R.; Rilov, G.; Stæhr, P.A.U.; Teixeira, H.; Tsirintanis, K.; Birchenough, S.N.R.; Jakobsen, H.H.; Knudsen, S.W.; et al. Marine Invasive Alien Species in Europe: 9 Years After the IAS Regulation. Front. Mar. Sci. 2023, 10, 1271755. [Google Scholar] [CrossRef]
- Herrick, C.N. A Review of the U.S. Invasive Species Policy Mix: Questioning the Prospect of an Integrated Regime. Environ. Policy Gov. 2019, 29, 262–278. [Google Scholar] [CrossRef]
- Green, S.J.; Grosholz, E.D. Functional Eradication as a Framework for Invasive Species Control. Front. Ecol. Environ. 2021, 19, 98–107. [Google Scholar] [CrossRef]
- Shannon, C.; Stebbing, P.D.; Dunn, A.M.; Quinn, C.H. Getting on Board with Biosecurity: Evaluating the Effectiveness of Marine Invasive Alien Species Biosecurity Policy for England and Wales. Mar. Policy 2020, 122, 104275. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Marfaing, H.; Desnica, N.; Jónsdóttir, R.; Skjermo, J.; Rebours, C.; Nitschke, U. Variations in Polyphenol and Heavy Metal Contents of Wild-Harvested and Cultivated Seaweed Bulk Biomass: Health Risk Assessment and Implication for Food Applications. Food Control 2019, 95, 121–134. [Google Scholar] [CrossRef]
- da Silva, T.L.; Reis, A. Scale-up Problems for the Large Scale Production of Algae. In Algal Biorefinery: An Integrated Approach; Springer International Publishing: Cham, Switzerland, 2015; pp. 125–149. [Google Scholar]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.K.; Lee, K.T. Scale-Up and Commercialization of Algal Cultivation and Biofuel Production. In Biofuels from Algae; Elsevier: Amsterdam, The Netherlands, 2014; pp. 261–286. [Google Scholar]
- Watkins, H.V.; Yan, H.F.; Dunic, J.C.; Côté, I.M. Research Biases Create Overrepresented “Poster Children” of Marine Invasion Ecology. Conserv. Lett. 2021, 14, e12802. [Google Scholar] [CrossRef]
Islands in General | Azores Islands |
---|---|
Reduced competitive ability | Lack of predators/enemies in Azorean native biota |
Relative lack of species diversity | Poor diversity in Azorean native flora and fauna. |
Lack of coevolved species | Lack of closely related species in Azorean flora |
Relative lack of natural disturbance, such as forest fires | Temperate, humid climate, allowing invasion from species with very different tolerances. |
Intensive human disturbance | Exotic species as ornaments in parks and gardens; intense pasture and maize production, hosting several insect pests. |
Species’ Classification | Invasive Risk | Management |
---|---|---|
Level 1 | High | Prevention and immediate measures |
Level 2 | High | Long-term disinfestation |
Level 3 | Moderate to High | Prevention, rapid response or other appropriate measures. |
Type A 1 | Low | Department-approved management of the species’ benefits |
Type B | Low or unknown | Can be used in aquariums, live food markets, or as non-domesticated pets. |
Type C | Low or unknown | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, M.; Custódio, L.; Reis, C.P. Marine Invasive Algae’s Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study. Mar. Drugs 2024, 22, 575. https://doi.org/10.3390/md22120575
Matos M, Custódio L, Reis CP. Marine Invasive Algae’s Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study. Marine Drugs. 2024; 22(12):575. https://doi.org/10.3390/md22120575
Chicago/Turabian StyleMatos, Marta, Luísa Custódio, and Catarina Pinto Reis. 2024. "Marine Invasive Algae’s Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study" Marine Drugs 22, no. 12: 575. https://doi.org/10.3390/md22120575
APA StyleMatos, M., Custódio, L., & Reis, C. P. (2024). Marine Invasive Algae’s Bioactive Ingredients as a Sustainable Pathway in Cosmetics: The Azores Islands as a Case Study. Marine Drugs, 22(12), 575. https://doi.org/10.3390/md22120575