New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains
Abstract
:1. Introduction
2. Results
2.1. Isolation and Taxonomy of the Producing Microorganisms
2.2. Fermentation of the Producing Microorganisms, Extraction and Isolation of the Compounds
2.3. Structural Elucidation
2.4. Antimicrobial and Cytotoxic Activity
2.5. Zebrafish Eleuthero Embryos Toxicity Assay
3. Discussion
4. Materials and Methods
4.1. General Experimental Procedures
4.2. Taxonomical Identification of the Producing Microorganisms
4.3. Fermentation of the Producing Microorganisms
4.4. Extraction and Isolation of the Compounds
4.5. Characterization Data
4.6. Antibacterial Activity and Cytotoxicity Assay
4.7. Zebrafish Eleuthero Embryos Toxicity Assay
4.7.1. Zebrafish Care and Maintenance
4.7.2. Compound Preparation and Toxicity Evaluation
4.7.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneghini, M.; Rüfenacht, S.; Babouee-Flury, B.; Flury, D.; Schlegel, M.; Kuster, S.P.; Kohler, P.P. It is complicated: Potential short- and long-term impact of coronavirus disease 2019 (COVID-19) on antimicrobial resistance—An expert review. Antimicrob. Steward. Healthc. Epidemiol. 2022, 2, e27. [Google Scholar] [CrossRef]
- Silva, D.L.; Lima, C.M.; Magalhães, V.C.R.; Baltazar, L.M.; Peres, N.T.A.; Caligiorne, R.B.; Moura, A.S.; Fereguetti, T.; Martins, J.C.; Rabelo, L.F.; et al. Fungal and bacterial coinfections increase mortality of severely ill COVID-19 patients. J. Hosp. Infect. 2021, 113, 145–154. [Google Scholar] [CrossRef]
- Adebisi, Y.A.; Alaran, A.J.; Okereke, M.; Oke, G.I.; Amos, O.A.; Olaoye, O.C.; Oladunjoye, I.; Olanrewaju, A.Y.; Ukor, N.A.; Lucero-Prisno, D.E. COVID-19 and Antimicrobial Resistance: A Review. Infect. Dis. Res. Treat. 2021, 14, 117863372110338. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Orhan, I.E.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; et al. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta—Gen. Subj. 2013, 1830, 3670–3695. [Google Scholar] [CrossRef] [Green Version]
- Harvey, A.L. Natural products as a screening resource. Curr. Opin. Chem. Biol. 2007, 11, 480–484. [Google Scholar] [CrossRef]
- Vieweg, L.; Reichau, S.; Schobert, R.; Leadlay, P.F.; Süssmuth, R.D. Recent advances in the field of bioactive tetronates. Nat. Prod. Rep. 2014, 31, 1554–1584. [Google Scholar] [CrossRef] [Green Version]
- Braddock, A.A.; Theodorakis, E.A. Marine spirotetronates: Biosynthetic edifices that inspire drug discovery. Mar. Drugs 2019, 17, 232. [Google Scholar] [CrossRef] [Green Version]
- Tsunakawa, M.; Tenmyo, O.; Tomita, K.; Naruse, N.; Kotake, C.; Miyaki, T.; Konishi, M.; Oki, T. Quartromicin1, a complex of novel antiviral antibiotics: I. Production, isolation, physico-chemical properties and antiviral activity. J. Antibiot. 1992, 45, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Lacoske, M.H.; Theodorakis, E.A. Spirotetronate polyketides as leads in drug discovery. J. Nat. Prod. 2015, 78, 562–575. [Google Scholar] [CrossRef]
- Ochoa, J.L.; Sanchez, L.M.; Koo, B.M.; Doherty, J.S.; Rajendram, M.; Huang, K.C.; Gross, C.A.; Linington, R.G. Marine Mammal Microbiota Yields Novel Antibiotic with Potent Activity against Clostridium difficile. ACS Infect. Dis. 2018, 4, 59–67. [Google Scholar] [CrossRef]
- Pérez-Bonilla, M.; Oves-Costales, D.; De La Cruz, M.; Kokkini, M.; Martín, J.; Vicente, F.; Genilloud, O.; Reyes, F. Phocoenamicins B and C, new antibacterial spirotetronates isolated from a marine Micromonospora sp. Mar. Drugs 2018, 16, 95. [Google Scholar] [CrossRef] [Green Version]
- Kokkini, M.; González Heredia, C.; Oves-Costales, D.; de la Cruz, M.; Sánchez, P.; Martín, J.; Vicente, F.; Genilloud, O.; Reyes, F. Exploring micromonospora as phocoenamicins producers. Mar. Drugs 2022, 20, 769. [Google Scholar] [CrossRef]
- Igarashi, Y.; Ogura, H.; Furihata, K.; Oku, N.; Indananda, C.; Thamchaipenet, A. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J. Nat. Prod. 2011, 74, 670–674. [Google Scholar] [CrossRef]
- Miyawaki, I. Application of zebrafish to safety evaluation in drug discovery. J. Toxicol. Pathol. 2020, 33, 197–210. [Google Scholar] [CrossRef]
- Zicarelli, G.; Multisanti, C.R.; Falco, F.; Faggio, C. Evaluation of toxicity of Personal Care Products (PCPs) in freshwaters: Zebrafish as a model. Environ. Toxicol. Pharmacol. 2022, 94, 103923. [Google Scholar] [CrossRef]
- Jayasinghe, C.D.; Jayawardena, U.A. Toxicity Assessment of Herbal Medicine Using Zebrafish Embryos: A Systematic Review. Evid.-Based Complement. Altern. Med. 2019, 2019, 7272808. [Google Scholar] [CrossRef] [Green Version]
- Pensado-López, A.; Fernández-Rey, J.; Reimunde, P.; Crecente-Campo, J.; Sánchez, L.; Torres Andón, F. Zebrafish models for the safety and therapeutic testing of nanoparticles with a focus on macrophages. Nanomaterials 2021, 11, 1784. [Google Scholar] [CrossRef]
- Ali, S.; van Mil, H.G.J.; Richardson, M.K. Large-Scale assessment of the zebrafish embryo as a possible predictive model in toxicity testing. PLoS ONE 2011, 6, e21076. [Google Scholar] [CrossRef] [Green Version]
- Copmans, D.; Rateb, M.; Tabudravu, J.N.; Pérez-Bonilla, M.; Dirkx, N.; Vallorani, R.; Diaz, C.; Pérez Del Palacio, J.; Smith, A.J.; Ebel, R.; et al. Zebrafish-Based Discovery of Antiseizure Compounds from the Red Sea: Pseurotin A2 and Azaspirofuran A. ACS Chem. Neurosci. 2018, 9, 1652–1662. [Google Scholar] [CrossRef] [Green Version]
- Guarin, M.; Faelens, R.; Giusti, A.; De Croze, N.; Léonard, M.; Cabooter, D.; Annaert, P.; de Witte, P.; Ny, A. Spatiotemporal imaging and pharmacokinetics of fluorescent compounds in zebrafish eleuthero-embryos after different routes of administration. Sci. Rep. 2021, 11, 12229. [Google Scholar] [CrossRef]
- Guarin, M.; Ny, A.; De Croze, N.; Maes, J.; Léonard, M.; Annaert, P.; de Witte, P.A.M. Pharmacokinetics in zebrafish embryos (Zfe) following immersion and intrayolk administration: A fluorescence-based analysis. Pharmaceuticals 2021, 14, 576. [Google Scholar] [CrossRef]
- Daduang, R.; Kitani, S.; Sudoh, Y.; Grace Umadhay Pait, I.; Thamchaipenet, A.; Ikeda, H.; Igarashi, Y.; Nihira, T. 29-Deoxymaklamicin, a new maklamicin analogue produced by a genetically engineered strain of Micromonospora sp. NBRC 110955. J. Biosci. Bioeng. 2015, 120, 608–613. [Google Scholar] [CrossRef]
- Igarashi, Y.; Iida, T.; Oku, N.; Watanabe, H.; Furihata, K.; Miyanouchi, K. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J. Antibiot. 2012, 65, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.D.; Jensen, P.R.; Fenical, W. Lobophorins A and B, new antiinflammatory macrolides produced by a tropical marine bacterium. Bioorganic Med. Chem. Lett. 1999, 9, 2003–2006. [Google Scholar] [CrossRef]
- Zhang, H.; White-Phillip, J.A.; Melançon, C.E.; Kwon, H.; Yu, W.; Liu, H. Elucidation of the kijanimicin gene cluster: Insights into the biosynthesis of spirotetronate antibiotics and nitrosugars. J. Am. Chem. Soc. 2007, 129, 14670–14683. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.Y.; Tian, Z.H.; Shao, L.; Qu, X.D.; Zhao, Q.F.; Tang, J.; Tang, G.L.; Liu, W. Genetic Characterization of the Chlorothricin Gene Cluster as a Model for Spirotetronate Antibiotic Biosynthesis. Chem. Biol. 2006, 13, 575–585. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, M.; Kawamura, Y.; Yoshimura, Y.; Terui, Y.; Nakai, H.; Yoshida, T.; Shoji, J. Isolation, characterization and structures of PA-46101 A and B. J. Antibiot. 1990, 43, 739–747. [Google Scholar] [CrossRef]
- Momose, I.; Iinuma, H.; Kinoshita, N.; Momose, Y.; Kunimoto, S.; Hamada, M.; Takeuchi, T. Decatromicins A and B, new antibiotics produced by Actinomadura sp. MK73-NF4. 1. Taxonomy, isolation, physico-chemical properties and biological activities. J. Antibiot. 1999, 52, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Nemoto, A.; Yazawa, K.; Mikami, Y. (12) United States Patent. US 6,693,085 B2 17 February 2004. Volume 43, pp. 1387–1393. [Google Scholar]
- Wu, T.; Salim, A.A.; Khalil, Z.G.; Bernhardt, P.V.; Capon, R.J. Glenthmycins A-M: Macrocyclic Spirotetronate Polyketide Antibacterials from the Australian Pasture Plant-Derived Streptomyces sp. CMB-PB041. J. Nat. Prod. 2022, 85, 1641–1657. [Google Scholar] [CrossRef]
- Lin, Z.; Koch, M.; Pond, C.D.; Mabeza, G.; Seronay, R.A.; Concepcion, G.P.; Barrows, L.R.; Olivera, B.M.; Schmidt, E.W. Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J. Antibiot. 2014, 67, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Ashton, R.J.; Kenig, M.D.; Luk, K.; Planterose, D.N.; Scott-Wood, G. Mm 46115, a new antiviral antibiotic from Actinomadura pelletieri. Characteristics of the producing cultures, fermentation, isolation, physico-chemical and biological properties. J. Antibiot. 1990, 43, 1387–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, J.; Crespo, G.; González-Menéndez, V.; Pérez-Moreno, G.; Sánchez-Carrasco, P.; Pérez-Victoria, I.; Ruiz-Pérez, L.M.; González-Pacanowska, D.; Vicente, F.; Genilloud, O.; et al. MDN-0104, an Antiplasmodial Betaine Lipid from Heterospora chenopodii. J. Nat. Prod. 2014, 77, 2118–2123. [Google Scholar] [CrossRef] [PubMed]
- Lacret, R.; Pérez-Victoria, I.; Oves-Costales, D.; De La Cruz, M.; Domingo, E.; Martín, J.; Díaz, C.; Vicente, F.; Genilloud, O.; Reyes, F. MDN-0170, a new napyradiomycin from Streptomyces sp. Strain CA-271078. Mar. Drugs 2016, 14, 188. [Google Scholar] [CrossRef] [Green Version]
- Prabst, K.; Engelhardt, H.; Ringgeler, S.; Hubner, H.; Ates, G.; Vanhaeke, T.; Rogiers, V.; Rodrigues, R.; Chan, L.L.-Y.; McCulley, K.J.; et al. Cell Viability Assays; Springer Science+Business Media LLC: New York, NY, USA, 2017; Volume 1601, ISBN 978-1-4939-6959-3. Chapters 1–4, 8. [Google Scholar]
- Audoin, C.; Bonhomme, D.; Ivanisevic, J.; De La Cruz, M.; Cautain, B.; Monteiro, M.C.; Reyes, F.; Rios, L.; Perez, T.; Thomas, O.P. Balibalosides, an original family of glucosylated sesterterpenes produced by the Mediterranean sponge Oscarella balibaloi. Mar. Drugs 2013, 11, 1477–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, M.C.; De La Cruz, M.; Cantizani, J.; Moreno, C.; Tormo, J.R.; Mellado, E.; De Lucas, J.R.; Asensio, F.; Valiante, V.; Brakhage, A.A.; et al. A new approach to drug discovery: High-throughput screening of microbial natural extracts against Aspergillus fumigatus using resazurin. J. Biomol. Screen. 2012, 17, 542–549. [Google Scholar] [CrossRef]
- Lauritano, C.; Martín, J.; De La Cruz, M.; Reyes, F.; Romano, G.; Ianora, A. First identification of marine diatoms with anti-tuberculosis activity. Sci. Rep. 2018, 8, 2284. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.H.; Chung, T.D.; Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73. [Google Scholar] [CrossRef]
- Giusti, A.; Nguyen, X.B.; Kislyuk, S.; Mignot, M.; Ranieri, C.; Nicolaï, J.; Oorts, M.; Wu, X.; Annaert, P.; De Croze, N.; et al. Safety assessment of compounds after in vitro metabolic conversion using zebrafish eleuthero embryos. Int. J. Mol. Sci. 2019, 20, 1712. [Google Scholar] [CrossRef] [Green Version]
- Danieau’s Solution (30×). Cold Spring Harbor Protocols. 2011. Available online: http://cshprotocols.cshlp.org/content/2011/7/pdb.rec12467.full (accessed on 6 July 2023).
- Kilkenny, C.; Browne, W.J.; Cuthill, I.C.; Emerson, M.; Altman, D.G. Improving bioscience research reporting: The arrive guidelines for reporting animal research. PLoS Biol. 2010, 8, 6–10. [Google Scholar] [CrossRef]
Strain | Geographic Origin | Ecology | Micromonospora Species | Similarity (%) |
---|---|---|---|---|
CA-214658 | Gran Canaria, Spain | marine cave sediments | M. endophytica | 99.63 |
CA-214671 | Gran Canaria, Spain | marine cave sediments | M. chaiyaphumensis | 99.84 |
CA-218877 | Gran Canaria, Spain | marine invertebrate Porifera | M. endophytica | 100 |
Phocoenamicin D (1) | Phocoenamicin E (2) | |||
---|---|---|---|---|
Position | δC, Type | δH, Mult. (J in Hz) | δC, Type | δH, Mult. (J in Hz) |
1 | 165.6, C | - | 186.3, C | - |
2 | * nd | - | 99.7, C | - |
3 | 175.6, C | - | 201.5, C | - |
4 | 47.7, C | - | 50.5, C | - |
5 | 43.9, CH | 1.60, m | 43.6, CH | 1.81, m |
6 | 38.4, CH | 1.53, m | 39.2, CH | 1.57, m |
7α | 45.8, CH2 | 1.78, m | 45.2, CH2 | 1.79, t (9.6) |
7β | 1.10, m | 1.19, t (9.6) | ||
8 | 40.7, CH | 1.64, m | 40.7, CH | 1.65 a, s |
9 | 87.9, CH | 3.03, t (9.9) | 87.8, CH | 3.08, t (10.1) |
10 | 48.1, CH | 1.94, m | 47.9, CH | 2.02, m |
11 | 126.8, CH | 6.33, t (9.3) | 126.9, CH | 6.37, d (9.2) |
12 | 127.1, CH | 5.65, ddd (9.8, 5.9, 2.4) | 125.8, CH | 5.60, m |
13 | 51.0, CH | 1.99, m | 43.9, CH | 2.61, m |
14 | 40.7, CH | 2.17, m | 40.2, CH | 2.01, m |
15 | 137.8, CH | 4.90, *** w | 145.9, CH | 5.44, t (11.5) |
16 | 128.5, CH | 5.29, dd (14.6, 11.4) | 122.2, CH | 5.15, dd (14.0, 11.9) |
17α | 42.2, CH2 | 2.28, m | 43.5, CH2 | 2.31, m |
17β | 1.88, m | 1.99, m | ||
18 | 44.9, C | - | 41.0, C | - |
19 | 132.7, CH | 5.34, s | 131.0, CH | 5.34, s |
20 | 139.1, C | - | 138.7, C | - |
21 | 30.1, CH | 2.68, m | 30.7, CH | 2.68, m |
22α | 29.6, CH2 | 1.87, m | 30.6, CH2 | 1.85, d (15.4) |
22β | 2.44, m | 2.36 b, s | ||
23 | 86.5, C | - | 88.4, C | - |
24 | 177.5, C | - | 206.7, C | - |
25 | 17.4, CH3 | 1.33, ** brs | 17.2, CH3 | 1.65 a, s |
26 | 22.6, CH3 | 0.91, ** brs | 23.2, CH3 | 0.82, d (6.34) |
27 | 19.9, CH3 | 1.04, d (6.2) | 19.9, CH3 | 1.05, d (6.2) |
28 | 22.5, CH3 | 0.91, ** brs | 21.5, CH3 | 0.87, d (6.8) |
29 | 23.5, CH3 | 1.33, ** brs | 24.1, CH3 | 1.31, s |
30α | 65.1, CH2 | 4.14, d (13.3) | 65.0, CH2 | 4.14, d (13.5) |
30β | 4.03, d (13.3) | 4.03, d (13.5) | ||
31α | 33.8, CH2 | 1.76, m | 42.4, CH2 | 1.63, m |
31β | 186, m | 1.77, t (9.6) | ||
32 | 74.0, CH | 3.84, dd (11.6, 1.9) | 66.0, CH | 3.81, m |
33 | 83.4, C | - | 24.6, CH3 | 1.18, d (6.1) |
34 | 215.4, C | - | 17.8, CH3 | 2.36 b, s |
35 | 25.8, CH3 | 2.24, s | - | - |
36 | 22.0, CH3 | 1.19, s | - | - |
1′ | 104.0, CH | 4.35, d (5.4) | 103.9, CH | 4.36, d (6.8) |
2′ | 75.3, CH | 3.46, m | 75.2 d, CH | 3.46 c, m |
3′ | 88.6, CH | 3.48, m | 88.5, CH | 3.46 c, m |
4′ | 75.6, CH | 3.11, t (8.8) | 75.5, CH | 3.12, t (8.6) |
5′ | 72.9, CH | 3.25, m | 72.7, CH | 3.24, m |
6′ | 18.3, CH3 | 1.28, d (6.2) | 18.3, CH3 | 1.28, d (5.8) |
1″ | 105.4, CH | 4.61, d (7.7) | 105.2, CH | 4.61, d (7.8) |
2″ | 76.0, CH | 3.43, t (8.3) | 75.9, CH | 3.43, t (7.8) |
3″ | 75.3, CH | 3.65, t (9.4) | 75.2 d, CH | 3.64, t (9.2) |
4″ | 77.8, CH | 4.88, *** w | 77.8, CH | 4.90, *** w |
5″ | 71.7, CH | 3.69, m | 71.6, CH | 3.69, m |
6″ | 18.0, CH3 | 1.35, d (6.1) | 18.0, CH3 | 1.36, d (5.3) |
1‴ | 124.4, C | - | 124.3, C | - |
2‴ | 135.6, C | - | 135.4, C | - |
3‴ | 126.0, C | - | 125.9, C | - |
4‴ | 132.4, CH | 7.25, d (8.8) | 132.3, CH | 7.26, d (8.3) |
5‴ | 115.9, CH | 6.71, d (8.8) | 115.9, CH | 6.71, d (7.9) |
6‴ | 155.3, C | - | 155.1, C | - |
7‴ | 169.2, C | - | 169.3, C | - |
37 | 17.9, CH3 | 2.36, s | - | - |
Maklamicin B (6) | Maklamicin (7) | |||
---|---|---|---|---|
Position | δC, Type | δH, Mult. (J in Hz) | δC, Type | δH, Mult. (J in Hz) |
1 | * nd | - | 169.5, C | - |
2 | 100.2, C | - | 100.2, C | - |
3 | 202.4, C | - | 202.5, C | - |
4 | 52.1, C | - | 52.1, C | - |
5 | 43.9, CH | 1.50, dd (8.3, 12.5) | 43.9, CH | 1.51, dd (8.3, 10.3) |
6α | 24.4, CH2 | 1.24, m | 24.4, CH2 | 1.29, m |
6β | 2.08, m | 2.08, m | ||
7α | 34.1, CH2 | 1.57, m | 34.0, CH2 | 1.60, m |
7β | 1.75, m | 1.77, m | ||
8 | 29.2, CH | 2.07, m | 29.3, CH | 2.07, m |
9α | 40.9, CH2 | 1.62, m | 40.8, CH2 | 1.64, m |
9β | 1.42, d (4.8) | 1.43, d (4.9) | ||
10 | 34.3, CH | 2.04, m | 34.3, CH | 2.05, m |
11 | 131.3, CH | 5.41, d (9.3) | 131.9, CH | 5.40, d (10.0) |
12 | 126.3, CH | 5.48, ddd (9.9, 6.2, 2.4) | 126.2, CH | 5.49, ddd (10.0, 6.3, 2.3) |
13 | 42.5, CH | 2.85, m | 42.6, CH | 2.84, m |
14 | 41.2, CH | 1.88, m | 41.3, CH | 1.89, m |
15 | 144.9, CH | 5.43, m | 145.2, CH | 5.46, m |
16 | 122.9, CH | 5.07, ddd (13.6, 11.8, 2.5) | 122.7, CH | 5.09, ddd (13.9, 11.6, 2.7) |
17α | 43.7, CH2 | 2.30, dd (14.3, 10.9) | 43.4, CH2 | 2.33, dd (14.7, 8.0) |
17β | 1.95, d (14.5) | 2.02, d (14.5) | ||
18 | 40.6, C | - | 40.5, C | - |
19 | 130.9, CH | 5.03, s | 131.1, CH | 5.33, s |
20 | 135.0, C | - | 138.9, C | - |
21 | 34.5, CH | 2.42, br dd (8.8, 7.2) | 30.5, CH | 2.67, br dd (7.7, 7.4) |
22α | 30.9, CH2 | 1.77, m | 31.0, CH2 | 1.83, d (15.6) |
22β | 2.33, dd (14.3, 7.2) | 2.33, dd (14.7, 8.0) | ||
23 | 87.9, C | - | 88.2, C | - |
24 | 205.0, C | - | 204.9, C | - |
25 | 16.3, CH3 | 1.56, s | 16.4, CH3 | 1.58, s |
26 | 19.5, CH3 | 1.06, d (7.2) | 19.4, CH3 | 1.07, d (7.7) |
27 | 21.3, CH3 | 0.87, d (7.1) | 21.2, CH3 | 0.88, d (7.5) |
28 | 24.4, CH3 | 1.24, s | 24.1, CH3 | 1.29, s |
29α | 22.3, CH3 | 1.75, s | 65.1, CH2 | 4.16, d (13.5) |
29β | 4.01, d (13.5) | |||
30α | 42.6, CH2 | 1.63, dd (14.0, 11.1) | 42.7, CH2 | 1.62, m 1.79, m |
30β | 1.75, m | |||
31 | 65.9, CH | 3.78, dq (9.3, 6.6) | 66.1, CH | 3.79, dq (9.6, 6.7) |
32 | 24.6, CH3 | 1.17, d (6.2) | 24.6, CH3 | 1.17, d (6.3) |
MIC (μM) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Compounds | (1) | (2) | (3) | (4) | (5) | (6) | (7) | Control * | |
Pathogen | Strain | ||||||||
MRSA | MB5393 | 58 | 31.5–63 | 3.7 | 7.4 | 29.4 | 2 | <0.5 | 1.4 (V) |
M. tuberculosis | H37Ra | 58 | 31.5–63 | 7.5 | 14.7 | 29.4–58.8 | 2 | 61 | 2.8–5.4 (S) |
E. faecalis | VANS 144492 | >58 | >63 | 7.5 | >58.8 | >58.8 | 62.9 | 1.9 | 1.4 (V) |
E. faecium | VANS 144754 | ≥116 | >63 | 3.7–7.5 | ≥58.8 | >58.8 | 1 | 1 | 1.4 (V) |
N. gonorrhoeae | ATCC49226 | >116 | >126 | >119.4 | >117.7 | >58.8 | >251.6 | >244 | 5.6 (P) |
IC50 (μM) | |||||||||
Hep G2 (liver) cell line | - | 21 | - | 17.6 | - | - | 40.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkini, M.; Oves-Costales, D.; Sánchez, P.; Melguizo, Á.; Mackenzie, T.A.; Pérez-Bonilla, M.; Martín, J.; Giusti, A.; de Witte, P.; Vicente, F.; et al. New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains. Mar. Drugs 2023, 21, 443. https://doi.org/10.3390/md21080443
Kokkini M, Oves-Costales D, Sánchez P, Melguizo Á, Mackenzie TA, Pérez-Bonilla M, Martín J, Giusti A, de Witte P, Vicente F, et al. New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains. Marine Drugs. 2023; 21(8):443. https://doi.org/10.3390/md21080443
Chicago/Turabian StyleKokkini, Maria, Daniel Oves-Costales, Pilar Sánchez, Ángeles Melguizo, Thomas A. Mackenzie, Mercedes Pérez-Bonilla, Jesús Martín, Arianna Giusti, Peter de Witte, Francisca Vicente, and et al. 2023. "New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains" Marine Drugs 21, no. 8: 443. https://doi.org/10.3390/md21080443
APA StyleKokkini, M., Oves-Costales, D., Sánchez, P., Melguizo, Á., Mackenzie, T. A., Pérez-Bonilla, M., Martín, J., Giusti, A., de Witte, P., Vicente, F., Genilloud, O., & Reyes, F. (2023). New Phocoenamicin and Maklamicin Analogues from Cultures of Three Marine-Derived Micromonospora Strains. Marine Drugs, 21(8), 443. https://doi.org/10.3390/md21080443