Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region
Abstract
:1. Introduction
2. Results
2.1. Step 1: Analysis. Setting the Scene: Fundamental Requirements to Advance in Marine Biotechnology in the Northern Mediterranean Region
2.2. Step 2: Transfer. Identification of Most Promising Value Chains in the Northern Mediterranean Region
2.3. Step 3: Capitalization. Creation of the Community by Establishment of Blue Biotechnology Hubs
3. Discussion
3.1. Step 1: Analysis—Identification of Bottlenecks
3.1.1. Policy Support
3.1.2. Increase Funding at National Level
3.1.3. Education, Training, Mentoring and Coaching
3.2. Step 2: Transfer—Promising Value Chains in the Northern Mediterranean Region
3.2.1. Algae Production for Added-Value Compounds
Macroalgal Production
Microalgal Production
3.2.2. Integrated Multi-Trophic Aquaculture—IMTA
3.2.3. Aquaculture/Fisheries/Processing By-Products Category 3, Discards and Bycatch Valorization in Added Value Sectors
3.2.4. Identified Specific Bottlenecks for Promising Northern Mediterranean Value Chains
3.3. Step 3: Capitalization—Creation of National Mediterranean Blue Biotechnology Hubs
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission. Directorate General for Research and Innovation. Innovating for Sustainable Growth: A Bioeconomy for Europe; Publications Office: Luxembourg, 2012. [Google Scholar]
- Rotter, A.; Bacu, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Dalay, M.C.; et al. A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Front. Mar. Sci. 2020, 7, 278. [Google Scholar] [CrossRef]
- Doussineau, M.; Gnamus, A.; Gomez, J.; Haarich, S.; Holstein, F. Smart Specialisation and Blue Biotechnology in Europe; Publications Office: Luxembourg, 2020. [Google Scholar]
- European Commission Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions on a New Approach for a Sustainable Blue Economy in the EU Transforming the EU’s Blue Economy for a Sustainable Future. COM(2021) 240 Final; European Commission: Brussels, Belgium, 2021.
- Haaf, A.; Hofmann, S.; Schüler, J. Measuring the Economic Footprint of the Biotechnology Industry in Europe. Ind. Biotechnol. 2021, 17, 117–124. [Google Scholar] [CrossRef]
- Timmis, K.; de Lorenzo, V.; Verstraete, W.; Ramos, J.L.; Danchin, A.; Brüssow, H.; Singh, B.K.; Timmis, J.K. The contribution of microbial biotechnology to economic growth and employment creation. Microb. Biotechnol. 2017, 10, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Martín-López, B.; Oteros-Rozas, E.; Cohen-Shacham, E.; Santos-Martín, F.; Nieto-Romero, M.; Carvalho-Santos, C.; González, J.A.; García-Llorente, M.; Klass, K.; Geijzendorffer, I.; et al. Ecosystem Services Supplied by Mediterranean Basin Ecosystems. In Routledge Handbook of Ecosystem Services; Potschin, M., Haines-Young, R., Fish, R., Turner, R.K., Eds.; Routledge: New York, NY, USA, 2016; pp. 405–414. [Google Scholar] [CrossRef]
- Casini, M.; Bastianoni, S.; Gagliardi, F.; Gigliotti, M.; Riccaboni, A.; Betti, G. Sustainable Development Goals Indicators: A Methodological Proposal for a Multidimensional Fuzzy Index in the Mediterranean Area. Sustainability 2019, 11, 1198. [Google Scholar] [CrossRef] [Green Version]
- Coll, M.; Piroddi, C.; Steenbeek, J.; Kaschner, K.; Ben Rais Lasram, F.; Aguzzi, J.; Ballesteros, E.; Bianchi, C.N.; Corbera, J.; Dailianis, T.; et al. The Biodiversity of the Mediterranean Sea: Estimates, Patterns, and Threats. PLoS ONE 2010, 5, e11842. [Google Scholar] [CrossRef] [Green Version]
- Piroddi, C.; Colloca, F.; Tsikliras, A.C. The living marine resources in the Mediterranean Sea Large Marine Ecosystem. Environ. Dev. 2020, 36, 100555. [Google Scholar] [CrossRef]
- Gedikli, A.; Derindağ, M. Innovation, Macroeconomic Effects, and Environmental Degradation: The Case of Mediterranean Countries. In Management and Conservation of Mediterranean Environments; Castanho, R.A., Gallardo, J.M., Eds.; IGI Global: Hershey, PE, USA, 2021; pp. 134–158. ISBN 978-1-79987-393-8. [Google Scholar]
- Ronchi, F.; Galgani, F.; Binda, F.; Mandić, M.; Peterlin, M.; Tutman, P.; Anastasopoulou, A.; Fortibuoni, T. Fishing for Litter in the Adriatic-Ionian macroregion (Mediterranean Sea): Strengths, weaknesses, opportunities and threats. Mar. Policy 2019, 100, 226–237. [Google Scholar] [CrossRef]
- Rotter, A.; Gaudêncio, S.P.; Klun, K.; Macher, J.-N.; Thomas, O.P.; Deniz, I.; Edwards, C.; Grigalionyte-Bembič, E.; Ljubešić, Z.; Robbens, J.; et al. A New Tool for Faster Construction of Marine Biotechnology Collaborative Networks. Front. Mar. Sci. 2021, 8, 530. [Google Scholar] [CrossRef]
- Rotter, A.; Barbier, M.; Bertoni, F.; Bones, A.M.; Cancela, M.L.; Carlsson, J.; Carvalho, M.F.; Cegłowska, M.; Chirivella-Martorell, J.; Dalay, M.C.; et al. The Essentials of Marine Biotechnology. Front. Mar. Sci. 2021, 8, 158. [Google Scholar] [CrossRef]
- Fernández-Macías, E.; Hurley, J.; Peruffo, E.; Storrie, D.W.; Poel, M.; Packalén, E. Game Changing Technologies: Exploring the Impact on Production Processes and Work; Research Report/Eurofound; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-897-1628-4. [Google Scholar]
- Kaplinsky, R.; Morris, M. A Handbook for Value Chain Research; University of Sussex, Institute of Development Studies: Brighton, UK, 2000. [Google Scholar]
- Collins, J.E.; Vanagt, T.; Huys, I.; Vieira, H. Marine Bioresource Development—Stakeholder’s Challenges, Implementable Actions, and Business Models. Front. Mar. Sci. 2020, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Executive Agency for Small and Medium sized Enterprises; Technopolis Group; Wageningen Research. Blue Bioeconomy Forum. Highlights: Synthesis of the Roadmap and a Selection of Viable and Innovative Projects; Publications Office: Luxembourg, 2020. [Google Scholar]
- Hossain, M.; Leminen, S.; Westerlund, M. A systematic review of living lab literature. J. Clean. Prod. 2018, 213, 976–988. [Google Scholar] [CrossRef]
- European Commission the EU Blue Economy Report; Publications Office of the European Union: Luxembourg, 2021.
- Ribera d’Alcalà, M.; Buongiorno Nardelli, B.; Sprovieri, M.; Cappelletto, M. The BLUEMED Italian White Paper: An Overview of Relevance, Obstacles and Proposals of the Key Sectors for a Blue Growth; Zenodo: Honolulu, HI, USA, 2018. [Google Scholar]
- Farmery, A.K.; Allison, E.H.; Andrew, N.L.; Troell, M.; Voyer, M.; Campbell, B.; Eriksson, H.; Fabinyi, M.; Song, A.M.; Steenbergen, D. Blind spots in visions of a “blue economy” could undermine the ocean’s contribution to eliminating hunger and malnutrition. One Earth 2021, 4, 28–38. [Google Scholar] [CrossRef]
- Stentiford, G.D.; Bateman, I.J.; Hinchliffe, S.J.; Bass, D.; Hartnell, R.; Santos, E.M.; Devlin, M.J.; Feist, S.W.; Taylor, N.G.H.; Verner-Jeffreys, D.W.; et al. Sustainable aquaculture through the One Health lens. Nat. Food 2020, 1, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Capello, R.; Kroll, H. From theory to practice in smart specialization strategy: Emerging limits and possible future trajectories. Eur. Plan. Stud. 2016, 24, 1393–1406. [Google Scholar] [CrossRef]
- Asheim, B.; Grillitsch, M.; Trippl, M. Chapter 4—Smart Specialization as an Innovation-Driven Strategy for Economic Diversification: Examples from Scandinavian Regions. In Advances in the Theory and Practice of Smart Specialization; Radosevic, S., Curaj, A., Gheorghiu, R., Andreescu, L., Wade, I., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 73–97. ISBN 978-0-12-804137-6. [Google Scholar]
- Ruhrmann, H.; Fritsch, M.; Leydesdorff, L. Synergy and policy-making in German innovation systems: Smart Specialisation Strategies at national, regional, local levels? Reg. Stud. 2021, 56, 1468–1479. [Google Scholar] [CrossRef]
- Anderson, D.R. The Importance of Mentoring Programs to Women’s Career Advancement in Biotechnology. J. Career Dev. 2005, 32, 60–73. [Google Scholar] [CrossRef]
- Comi, S.; Resmini, L. Are export promotion programs effective in promoting the internalization of SMEs? Econ. Politi 2020, 37, 547–581. [Google Scholar] [CrossRef]
- National Institute of Oceanography and Applied Geophysics DeepBlue. Available online: https://blueskills.inogs.it/projects/deepblue (accessed on 10 July 2023).
- Union for the Mediterranean BlueSkills: Blue Jobs and Responsible Growth in the Mediterranean. Available online: https://ufmsecretariat.org/project/blueskills/ (accessed on 10 July 2023).
- View Data. EMODnet Human Activities. Available online: https://www.emodnet-humanactivities.eu/view-data.php (accessed on 5 January 2023).
- de Morais, M.G.; Vaz, B.d.S.; de Morais, E.G.; Costa, J.A.V. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds. BioMed Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sili, C.; Torzillo, G.; Vonshak, A. Arthrospira (Spirulina). In Ecology of Cyanobacteria II; Whitton, B.A., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 677–705. ISBN 978-94-007-3854-6. [Google Scholar]
- Nowicka-Krawczyk, P.; Mühlsteinová, R.; Hauer, T. Detailed characterization of the Arthrospira type species separating commercially grown taxa into the new genus Limnospira (Cyanobacteria). Sci. Rep. 2019, 9, 694. [Google Scholar] [CrossRef] [Green Version]
- Araújo, R.; Vázquez Calderón, F.; Sánchez López, J.; Azevedo, I.C.; Bruhn, A.; Fluch, S.; Garcia Tasende, M.; Ghaderiardakani, F.; Ilmjärv, T.; Laurans, M.; et al. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations; Food Agriculture Organization of the United Nations. FAO Yearbook. Fishery and Aquaculture Statistics 2019; FAO: Rome, Italy, 2021; ISBN 978-92-5-135410-0. [Google Scholar]
- Visch, W.; Kononets, M.; Hall, P.O.; Nylund, G.M.; Pavia, H. Environmental impact of kelp (Saccharina latissima) aquaculture. Mar. Pollut. Bull. 2020, 155, 110962. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.; Stanley, A.; Ring, J. Hidden Champion of the Ocean: Seaweed as a Growth Engine for a Sustainable European Future. Seaweed for Europe. 2020. Available online: https://www.seaweedeurope.com/wp-content/uploads/2020/10/Seaweed_for_Europe-Hidden_Champion_of_the_ocean-Report.pdf (accessed on 9 January 2023).
- Filbee-Dexter, K.; Wernberg, T.; Barreiro, R.; Coleman, M.A.; Bettignies, T.; Feehan, C.J.; Franco, J.N.; Hasler, B.; Louro, I.; Norderhaug, K.M.; et al. Leveraging the blue economy to transform marine forest restoration. J. Phycol. 2022, 58, 198–207. [Google Scholar] [CrossRef]
- Orlando-Bonaca, M.; Savonitto, G.; Asnaghi, V.; Trkov, D.; Pitacco, V.; Šiško, M.; Makovec, T.; Slavinec, P.; Lokovšek, A.; Ciriaco, S.; et al. Where and How—New Insight for Brown Algal Forest Restoration in the Adriatic. Front. Mar. Sci. 2022, 9, 988584. [Google Scholar] [CrossRef]
- Lokovšek, A.; Pitacco, V.; Trkov, D.; Zamuda, L.L.; Falace, A.; Orlando-Bonaca, M. Keep It Simple: Improving the Ex Situ Culture of Cystoseira s.l. to Restore Macroalgal Forests. Plants 2023, 12, 2615. [Google Scholar] [CrossRef]
- Silva, C.O.; Lemos, M.F.; Gaspar, R.; Gonçalves, C.; Neto, J.M. The effects of the invasive seaweed Asparagopsis armata on native rock pool communities: Evidences from experimental exclusion. Ecol. Indic. 2021, 125, 107463. [Google Scholar] [CrossRef]
- Barbier, M.; Charrier, B. Pegasus: Phycormorph European Guidelines for a Sustainable Aquaculture of Seaweeds. Available online: https://www.phycomorph.org/pegasus-phycomorph-european-guidelines-for-a-sustainable-aquaculture-of-seaweeds (accessed on 9 January 2023).
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2007, 65, 535–543. [Google Scholar] [CrossRef]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from Seaweeds: An Ocean of Opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasselström, L.; Visch, W.; Gröndahl, F.; Nylund, G.M.; Pavia, H. The impact of seaweed cultivation on ecosystem services—A case study from the west coast of Sweden. Mar. Pollut. Bull. 2018, 133, 53–64. [Google Scholar] [CrossRef]
- Mac Monagail, M.; Cornish, L.; Morrison, L.; Araújo, R.; Critchley, A.T. Sustainable harvesting of wild seaweed resources. Eur. J. Phycol. 2017, 52, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Asociación Empresarial de Acuicultura Española (Apromar). Aquaculture in Spain. 2022. Available online: https://apromar.es/wp-content/uploads/2022/10/Aquaculture-in-Spain-2022_APROMAR.pdf (accessed on 13 July 2023).
- Minicante, S.A.; Bongiorni, L.; De Lazzari, A. Bio-Based Products from Mediterranean Seaweeds: Italian Opportunities and Challenges for a Sustainable Blue Economy. Sustainability 2022, 14, 5634. [Google Scholar] [CrossRef]
- Ktari, L.; Ajjabi, L.C.; De Clerck, O.; Pinchetti, J.L.G.; Rebours, C. Seaweeds as a promising resource for blue economy development in Tunisia: Current state, opportunities, and challenges. J. Appl. Phycol. 2022, 34, 489–505. [Google Scholar] [CrossRef]
- European Commission. Directorate General for Maritime Affairs and Fisheries; EUMOFA. In Blue Bio-Economy: Situation Report and Perspectives; Publications Office: Luxembourg, 2018. [Google Scholar]
- Buschmann, A.H.; Camus, C.; Infante, J.; Neori, A.; Israel, Á.; Hernández-González, M.C.; Pereda, S.V.; Gomez-Pinchetti, J.L.; Golberg, A.; Tadmor-Shalev, N.; et al. Seaweed production: Overview of the global state of exploitation, farming and emerging research activity. Eur. J. Phycol. 2017, 52, 391–406. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Generally Recognized as Safe (GRAS). Available online: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras (accessed on 5 January 2023).
- Nagappan, S.; Das, P.; AbdulQuadir, M.; Thaher, M.; Khan, S.; Mahata, C.; Al-Jabri, H.; Vatland, A.K.; Kumar, G. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 2021, 341, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.S.; Cardoso, C.; Lopes, P.A.; Coelho, D.; Afonso, C.; Bandarra, N.M.; Prates, J.A. Microalgae as feed ingredients for livestock production and meat quality: A review. Livest. Sci. 2017, 205, 111–121. [Google Scholar] [CrossRef]
- Galafat, A.; Vizcaíno, A.J.; Sáez, M.I.; Martínez, T.F.; Arizcun, M.; Chaves-Pozo, E.; Alarcón, F.J. Assessment of dietary inclusion of crude or hydrolysed Arthrospira platensis biomass in starter diets for gilthead seabream (Sparus aurata). Aquaculture 2022, 548, 737680. [Google Scholar] [CrossRef]
- Mutanda, T.; Naidoo, D.; Bwapwa, J.K.; Anandraj, A. Biotechnological Applications of Microalgal Oleaginous Compounds: Current Trends on Microalgal Bioprocessing of Products. Front. Energy Res. 2020, 8, 598803. [Google Scholar] [CrossRef]
- Barbosa, M.J.; Janssen, M.; Südfeld, C.; D’adamo, S.; Wijffels, R.H. Hypes, hopes, and the way forward for microalgal biotechnology. Trends Biotechnol. 2023, 41, 452–471. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Wijffels, R.H. Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol. 2008, 26, 26–31. [Google Scholar] [CrossRef]
- Narala, R.R.; Garg, S.; Sharma, K.K.; Thomas-Hall, S.R.; Deme, M.; Li, Y.; Schenk, P.M. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Front. Energy Res. 2016, 4, 29. [Google Scholar] [CrossRef] [Green Version]
- Acién, F.G.; Molina, E.; Reis, A.; Torzillo, G.; Zittelli, G.C.; Sepúlveda, C.; Masojídek, J. 1—Photobioreactors for the Production of Microalgae; Series in Energy. In Microalgae-Based Biofuels and Bioproducts; Gonzalez-Fernandez, C., Muñoz, R., Eds.; Woodhead Publishing: Delhi, India.
- Mayers, J.J.; Nilsson, A.E.; Svensson, E.; Albers, E. Integrating Microalgal Production with Industrial Outputs—Reducing Process Inputs and Quantifying the Benefits. Ind. Biotechnol. 2016, 12, 219–234. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Santos, T.D.; Mitchell, B.G.; Morais, M.G. Open Pond System for Microalgal Culture. In Biomass, Biofuels and Biochemicals: Biofuels from Algae, 2nd ed.; Pandey, A., Chang, J.-S., Soccol, C.R., Lee, D.J., Chist, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 199–223. ISBN 978-04-446-4192-2. [Google Scholar] [CrossRef]
- Benedetti, M.; Vecchi, V.; Barera, S.; Dall’osto, L. Biomass from microalgae: The potential of domestication towards sustainable biofactories. Microb. Cell Factories 2018, 17, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braña, C.B.C.; Cerbule, K.; Senff, P.; Stolz, I.K. Towards Environmental Sustainability in Marine Finfish Aquaculture. Front. Mar. Sci. 2021, 8, 666662. [Google Scholar] [CrossRef]
- Naylor, R.L.; Goldburg, R.J.; Primavera, J.H.; Kautsky, N.; Beveridge, M.C.M.; Clay, J.; Folke, C.; Lubchenco, J.; Mooney, H.; Troell, M. Effect of aquaculture on world fish supplies. Nature 2000, 405, 1017–1024. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.-G. Ecological engineering in aquaculture — Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Correia, M.; Azevedo, I.C.; Peres, H.; Magalhães, R.; Oliva-Teles, A.; Almeida, C.M.R.; Guimarães, L. Integrated Multi-Trophic Aquaculture: A Laboratory and Hands-on Experimental Activity to Promote Environmental Sustainability Awareness and Value of Aquaculture Products. Front. Mar. Sci. 2020, 7, 156. [Google Scholar] [CrossRef]
- Barrington, K.; Chopin, T.; Robinson, S.; Soto, D. Integrated Multi-Trophic Aquaculture (IMTA) in Marine Temperate Waters. In Integrated Mariculture: A Global Review; FAO Fisheries and Aquaculture Technical Paper. No. 592; FAO: Rome, Italy, 2009; pp. 7–46. [Google Scholar]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A.; et al. An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Quintã, R.; Santos, R.; Thomas, D.; Le Vay, L. Growth and nitrogen uptake by Salicornia europaea and Aster tripolium in nutrient conditions typical of aquaculture wastewater. Chemosphere 2015, 120, 414–421. [Google Scholar] [CrossRef]
- Grosso, L.; Rakaj, A.; Fianchini, A.; Morroni, L.; Cataudella, S.; Scardi, M. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 2021, 534, 736268. [Google Scholar] [CrossRef]
- Chopin, T. Aquaculture Aquaculture, Integrated Multi-Trophic (IMTA)Aquaculture integrated Multi-Trophic (IMTA). In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY, USA, 2013; pp. 184–205. ISBN 978-1-4614-5797-8. [Google Scholar]
- Food from the Oceans: How Can More Food and Biomass Be Obtained from the Oceans in a Way That Does Not Deprive Future Generations of Their Benefits? Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-67730-4.
- Rosa, J.; Lemos, M.F.; Crespo, D.; Nunes, M.; Freitas, A.; Ramos, F.; Pardal, M.; Leston, S. Integrated multitrophic aquaculture systems—Potential risks for food safety. Trends Food Sci. Technol. 2020, 96, 79–90. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Kitazawa, D.; Zhou, J.; Park, S.; Gao, S.; Shen, Y. Bio mitigation based on integrated multi trophic aquaculture in temperate coastal waters: Practice, assessment, and challenges. Lat. Am. J. Aquat. Res. 2019, 47, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Aquaculture in the EU—Products Eurostat News—Eurostat. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/edn-20191015-2 (accessed on 5 January 2023).
- Hughes, A.D. Integrated Multi-Trophic Aquaculture in Europe: Will It Work for Us? In Proceedings of the Aquaculture Europe 2016, Edinburgh, UK, 20–23 September 2016. [Google Scholar]
- Kleitou, P.; Kletou, D.; David, J. Is Europe ready for integrated multi-trophic aquaculture? A survey on the perspectives of European farmers and scientists with IMTA experience. Aquaculture 2018, 490, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Domenech, T.; Davies, M. Structure and morphology of industrial symbiosis networks: The case of Kalundborg. Procedia Soc. Behav. Sci. 2011, 10, 79–89. [Google Scholar] [CrossRef] [Green Version]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef] [Green Version]
- GFCM. GFCM Data Collection Reference Framework (DCRF), Version 22.1; GFCM: Rome, Italy, 2018.
- Davies, R.; Cripps, S.; Nickson, A.; Porter, G. Defining and estimating global marine fisheries bycatch. Mar. Policy 2009, 33, 661–672. [Google Scholar] [CrossRef]
- Tsagarakis, K.; Palialexis, A.; Vassilopoulou, V. Mediterranean fishery discards: Review of the existing knowledge. ICES J. Mar. Sci. 2014, 71, 1219–1234. [Google Scholar] [CrossRef] [Green Version]
- Stithou, M.; Vassilopoulou, V.; Tsagarakis, K.; Edridge, A.; Machias, A.; Maniopoulou, M.; Dogrammatzi, A.; Bellido, J.M.; Carbonara, P.; Carbonell, A.; et al. Discarding in Mediterranean trawl fisheries—A review of potential measures and stakeholder insights. Marit. Stud. 2019, 18, 225–238. [Google Scholar] [CrossRef]
- Fish By-Products Utilization, Getting More Benefits from Fish Processing. Food Loss and Waste in Fish Value Chains. Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/flw-in-fish-value-chains/resources/articles/fish-by-products-utilization-getting-more-benefits-from-fish-processing/en/ (accessed on 5 January 2023).
- Borges, L. The evolution of a discard policy in Europe. Fish Fish. 2015, 16, 534–540. [Google Scholar] [CrossRef]
- Rudovica, V.; Rotter, A.; Gaudêncio, S.P.; Novoveská, L.; Akgül, F.; Akslen-Hoel, L.K.; Alexandrino, D.A.M.; Anne, O.; Arbidans, L.; Atanassova, M.; et al. Valorization of Marine Waste: Use of Industrial By-Products and Beach Wrack Towards the Production of High Added-Value Products. Front. Mar. Sci. 2021. [Google Scholar] [CrossRef]
- Iñarra, B.; Larsen, E.; Viðarsson, J.E. D6.5 Validation of Final Solution(s) for Best Use of Unavoidable Unwanted Catches; DiscardLess: Kongens Lyngby, Denmark, 2019. [Google Scholar]
- Venugopal, V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Front. Sustain. Food Syst. 2021, 5, 611835. [Google Scholar] [CrossRef]
- Uhlmann, S.S.; Ulrich, C.; Kennelly, S.J. (Eds.) The European Landing Obligation: Reducing Discards in Complex, Multi-Species and Multi-Jurisdictional Fisheries; Springer International Publishing: Cham, Switzerland, 2019; ISBN 978-3-030-03307-1. [Google Scholar]
- Patents. Available online: https://www.wipo.int/patents/en/ (accessed on 29 March 2023).
- Nemes, G.; Chiffoleau, Y.; Zollet, S.; Collison, M.; Benedek, Z.; Colantuono, F.; Dulsrud, A.; Fiore, M.; Holtkamp, C.; Kim, T.-Y.; et al. The impact of COVID-19 on alternative and local food systems and the potential for the sustainability transition: Insights from 13 countries. Sustain. Prod. Consum. 2021, 28, 591–599. [Google Scholar] [CrossRef]
- Fava, N.; Laganà, V.R.; Nicolosi, A. The Impact of COVID-19 on Municipal Food Markets: Resilience or Innovative Attitude? J. Open Innov. Technol. Mark. Complex. 2022, 8, 87. [Google Scholar] [CrossRef]
- Yarime, M.; Trencher, G.; Mino, T.; Scholz, R.W.; Olsson, L.; Ness, B.; Frantzeskaki, N.; Rotmans, J. Establishing sustainability science in higher education institutions: Towards an integration of academic development, institutionalization, and stakeholder collaborations. Sustain. Sci. 2012, 7, 101–113. [Google Scholar] [CrossRef]
- Towe, V.L.; Leviton, L.; Chandra, A.; Sloan, J.C.; Tait, M.; Orleans, T. Cross-Sector Collaborations and Partnerships: Essential Ingredients to Help Shape Health and Well-Being. Health Aff. 2016, 35, 1964–1969. [Google Scholar] [CrossRef] [PubMed]
Term | Description |
---|---|
Value chain | A value chain consists of a range of activities required to bring a product from its inception to its end consumer, through a series of steps involving physical transformation, input of various producer services and disposal after use [16]. Marine biotechnology value chains are tailored to various application sectors, all stemming from a generalized pipeline. It is composed of four steps: (i) basic research—bioprospecting, harvesting and collection of available biomass, either the whole organism, its parts or its associated microbiome. This is followed by (ii) applied research—collection/harvesting of biomass, preservation in culture collections or biobanks, cultivation and biomass processing, extraction, purification, structure elucidation and characterization of natural products, including laboratory scale applications to optimize the production conditions; (iii) industrial scale-up phase to sustain the production quantities; and (iv) commercial applications [14]. Different stakeholders from different organizations are typically involved in various stages of value chains and are faced with several challenges, especially the supply, technology development and definition of market needs [17]. |
Good practice | Existing knowledge that may refer to standards, regulations, methods, procedures, pilot actions and research results of innovative solutions that are applied and can be followed/transferred to build a resource-efficient society and promote the Sustainable Development Goals (SDGs). In addition, a good practice can be considered an implemented, ready-to-market project or/and a pilot action/research project with actual results. The full list of good practices in this study, covering the eight Northern Mediterranean countries, is included as Supplementary Table S1 and the process of their identification is described in the Materials and Methods section. |
Smart specialization | According to the EU and the Organization for Economic Co-operation and Development (OECD), it identifies a limited number of strategic areas for countries or regions therein that represent unique opportunities for boosting societal and economic development and growth. The strategic areas are identified by industrial/innovation, civil society and policy making stakeholders, using a combination of industrial, educational and innovation policies. |
Country | Average Capture Production 2010–2019 [tons] | Estimated Discard Rate (13.3–26.8%) [tons] |
---|---|---|
Croatia | Fish: 70,709 | |
Mollusks: 1864 | ||
Crustaceans: 967 | ||
Total: 73,540 | Total: 9781–19,709 | |
France | Fish: 426,078 | |
Mollusks: 74,750 | ||
Crustaceans: 15,885 | ||
Total: 516,714 | Total: 68,723–138,479 | |
Greece | Fish: 58,386 | |
Mollusks: 6947 | ||
Crustaceans: 6182 | ||
Total: 71,515 | Total: 9511–19,166 | |
Italy | Fish: 134,790 | |
Mollusks: 39,621 | ||
Crustaceans: 21,325 | ||
Total: 195,735 | Total: 26,033–52,457 | |
Montenegro | Fish: 1209 | |
Mollusks: 158 | ||
Crustaceans: 34 | ||
Total: 1401 | Total: 186–375 | |
Portugal | Fish: 163,173 | |
Mollusks: 17,597 | ||
Crustaceans: 1528 | ||
Total: 182,298 | Total: 24,246–48,856 | |
Slovenia | Fish: 288 | |
Mollusks: 31 | ||
Crustaceans: 3 | ||
Total: 322 | Total: 43–86 | |
Spain | Fish: 897,491 | |
Mollusks: 51,996 | ||
Crustaceans: 15,255 | ||
Total: 964,743 | Total: 128,311–258,551 | |
TOTAL for 8 Mediterranean countries | Fish: 1,752,125 | |
Mollusks: 192,964 | ||
Crustaceans: 61,178 | ||
Total: 2,006,267 | Total: 266,833–537,680 |
Country | Average Yearly Apparent Seafood Consumption 2014–2018 [tons] | Estimated By-Products (15–30%) [tons] |
---|---|---|
Croatia | 85,163 | 12,774–25,549 |
France | 1,476,484 | 221,473–442,945 |
Greece | 270,308 | 40,546–81,092 |
Italy | 1,272,150 | 190,823–381,645 |
Montenegro | 6075 | 911–1822 |
Portugal | 429,799 | 64,670–128,940 |
Slovenia | 14,852 | 2228–4455 |
Spain | 1,795,766 | 269,365–538,730 |
TOTAL for 8 Mediterranean countries | 5,350,596 | 802,589–1,605,179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotter, A.; Giannakourou, A.; Argente García, J.E.; Quero, G.M.; Auregan, C.; Triantaphyllidis, G.; Venetsanopoulou, A.; De Carolis, R.; Efstratiou, C.; Aboal, M.; et al. Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region. Mar. Drugs 2023, 21, 416. https://doi.org/10.3390/md21070416
Rotter A, Giannakourou A, Argente García JE, Quero GM, Auregan C, Triantaphyllidis G, Venetsanopoulou A, De Carolis R, Efstratiou C, Aboal M, et al. Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region. Marine Drugs. 2023; 21(7):416. https://doi.org/10.3390/md21070416
Chicago/Turabian StyleRotter, Ana, Antonia Giannakourou, Jesús E. Argente García, Grazia Marina Quero, Charlène Auregan, George Triantaphyllidis, Amalia Venetsanopoulou, Roberta De Carolis, Chrysa Efstratiou, Marina Aboal, and et al. 2023. "Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region" Marine Drugs 21, no. 7: 416. https://doi.org/10.3390/md21070416
APA StyleRotter, A., Giannakourou, A., Argente García, J. E., Quero, G. M., Auregan, C., Triantaphyllidis, G., Venetsanopoulou, A., De Carolis, R., Efstratiou, C., Aboal, M., Abad, M. Á. E., Grigalionyte-Bembič, E., Kotzamanis, Y., Kovač, M., Ljubić Čmelar, M., Luna, G. M., Aguilera, C., Acién Fernández, F. G., Gómez Pinchetti, J. L., ... Chiavetta, C. (2023). Identification of Marine Biotechnology Value Chains with High Potential in the Northern Mediterranean Region. Marine Drugs, 21(7), 416. https://doi.org/10.3390/md21070416