Effect of Phlorotannins from Brown Algae Costaria costata on α-N-Acetylgalactosaminidase Produced by Duodenal Adenocarcinoma and Melanoma Cells
Abstract
:1. Introduction
2. Results
2.1. Biochemical and Catalytic Properties of α-NaGalases
Isolation and Purification of α-NaGalase from Cell Lysates
2.2. Phlorotannins of Brown Algae C. costata
2.2.1. Brown Alga Collection and Phlorotannins’ Isolation
2.2.2. Nuclear Magnetic Resonance Analysis
2.2.3. Mass Spectra Analysis
2.3. The Effect of the Phlorethol CcPh on α-NaGalases in Cancer Cells
2.3.1. Cytotoxic Effect of CcPh fraction on Human Duodenal Carcinoma HuTu 80 and Melanoma SK-MEL-28 Cells
2.3.2. The Inhibitory Potency of the CcPh for α-NaGalases in Cancer Cells
2.4. The Phlorethol CcPh as Direct Inhibitors of α-NaGalases
2.5. Theoretical Models of Human α-NaGalase Complexes with Oligophlorethols
2.5.1. Theoretical Models of Putative Heptaphlorethol
2.5.2. Theoretical Model of the Putative Oligophlorethol Complexes with Human α-NaGalase
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Experimental Equipment
4.3. Brown Alga Phlorotannin Inverstigation
4.3.1. Brown Alga Collection and Phlorotannins’ Isolation
4.3.2. Nuclear Magnetic Resonance Analysis
4.3.3. Mass Spectra Analysis
4.4. Cell Culturing
4.4.1. Cytotoxic Activity Assays
4.4.2. Preparation of Cell Lysate
4.4.3. Treatment of Cells by Phlorethol CcPh
4.5. Biochemical and Catalytic Properties of α-NaGalases
4.5.1. Isolation and Purification of α-NaGalase from Cell Lysates
4.5.2. Enzyme Assay
4.5.3. pH Optimum of α-NaGalases Action
4.5.4. Catalytic Properties of α-NaGalases
4.6. The Inhibitory Potency of the Phlorethol CcPh
The Irreversibility of α-NaGalase Inhibition by Phlorethol CcPh
4.7. Relative Protein α-NaGalase Quantification in Lysates and Extracts of Cancer Cells by Western Blot Analysis
4.8. Data Analysis
4.9. Molecular Docking of Phlorethol CcPh with Human α-NaGalase
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Clausen, H.; Hakomori, S.-I. ABH and related histo-blood group antigens; immunochemical differences in carrier isotypes and their distribution. Vox Sang. 1989, 56, 1–20. [Google Scholar] [CrossRef]
- Wu, A.M.; Wu, J.H.; Chen, Y.Y.; Tsai, M.S.; Herp, A. Forssman pentasaccharide and polyvalent Galβ1→4GlcNAc as major ligands with affinity for Caragana arborescens agglutinin. FEBS Lett. 1999, 463, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, H.; Kurosaka, A.; Fujisawa, A.; Kawasaki, T.; Matsuyana, M.; Nagayo, T.; Yamashina, I. Isolation and characterization of a glycoprotein from a human rectal adenocarcinoma. J. Biochem. 1983, 93, 651–659. [Google Scholar] [CrossRef]
- Wu, A.M. Carbohydrate structural units in glycosphingolipids as receptors for Gal and GalNAc reactive lectins. Neurochem. Res. 2002, 27, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Kenne, L.; Lindberg, B. Bacterial Polysaccharides. In The Polysaccharides; Aspinoll, G.O., Ed.; Academic Press: New York, NY, USA, 1983; Volume 2, pp. 287–363. [Google Scholar]
- Tomshich, S.V.; Isakov, V.V.; Komandrova, N.A.; Shevchenko, L.S. Structure of the O-specific polysaccharide of the marine bacterium Arenibacter palladensis KMM 3961T containing 2-acetamido-2-deoxy-L-galacturonic acid. Biochemistry 2012, 77, 87–91. [Google Scholar] [CrossRef]
- Wang, A.M.; Desnick, R.J. Structural organization and complete sequence of the human α-N-acetylgalactosaminidase gene: Homology with the α-galactosidase A gene provides evidence for evolution from a common ancestral gene. Genomics 1991, 10, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Garman, S.C.; Hannick, L.; Zhu, A.; Garboczi, D.N. The 1.9 A˚ Structure of α-N-Acetylgalactosaminidase: Molecular Basis of Glycosidase Deficiency Diseases. Structure 2002, 10, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Clark, N.E.; Garman, S.C. The 1.9 Å structure of human α-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases. J. Mol. Biol. 2009, 393, 435–447. [Google Scholar] [CrossRef] [Green Version]
- Lombard, V.; Ramulu, H.G.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albracht, S.P.J. Immunotherapy with GcMAF revisited-A critical overview of the research of Nobuto Yamamoto. Cancer Treat. Res. Commun. 2022, 31, 100537. [Google Scholar] [CrossRef]
- Mohamad, S.B.; Nagasawa, H.; Uto, Y.; Hori, H. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2002, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Naraparaju, V.R.; Asbell, S.O. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Cancer Res. 1996, 56, 2827–2831. [Google Scholar] [PubMed]
- Greco, M.; De Mitri, M.; Chiriacò, F.; Leo, G.; Brienza, E.; Maffia, M. Serum proteomic profile of cutaneous malignant melanoma and relation to cancer progression: Association to tumor derived alpha-N-acetylgalactosaminidase activity. Cancer Lett. 2009, 283, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Albracht, S.P.J.; van Pelt, J. Multiple exo-glycosidases in human serum as detected with the substrate DNP-α-GalNAc. II. Three α-N-acetylgalactosaminidase-like activities in the pH 5 to 8 region. BBA Clin. 2017, 8, 90–96. [Google Scholar] [CrossRef]
- Saburi, E.; Tavakol-Afshari, J.; Biglari, S.; Mortazavi, Y. Is α-N-acetylgalactosaminidase the key to curing cancer? A mini-review and hypothesis. JBUON 2017, 22, 1372–1377. [Google Scholar]
- Jafari, M.; Rahimi, N.; Jami, M.-S.; Chaleshtori, M.H.; Elahian, F.; Mirzaei, S.A. Silencing of α-N-acetylgalactosaminidase in the gastric cancer cells amplified cell death and attenuated migration, while the multidrug resistance remained unchanged. Cell Biol. Int. 2022, 46, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Saburi, E.; Tavakolafshari, J.; Mortazavi, Y.; Biglari, A.; Mirzaei, S.A.; Nadri, S. shRNA-mediated downregulation of α-N-Acetylgalactosaminidase inhibits migration and invasion of cancer cell lines. Iran J. Basic. Med. Sci. 2017, 20, 1021–1028. [Google Scholar]
- Ha, Y.-N.; Sung, H.Y.; Yang, S.-D.; Chae, Y.J.; Ju, W.; Ahn, J.-H. Epigenetic modification of α-N-acetylgalactosaminidase enhances cisplatin resistance in ovarian cancer. Korean J. Physiol. Pharmacol. 2018, 22, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Bakunina, I.Y.; Chadova, O.A.; Malyarenko, O.S.; Ermakova, S.P. The Effect of fucoidan from the brown alga Fucus evanescence on the activity of α-N-acetylgalactosaminidase of human colon carcinoma cells. Mar. Drugs 2018, 16, 155. [Google Scholar] [CrossRef] [Green Version]
- Utkina, N.K.; Likhatskaya, G.N.; Malyarenko, O.S.; Ermakova, S.P.; Balabanova, L.A.; Slepchenko, L.M.; Bakunina, I.Y. Effects of sponge-derived alkaloids on activities of the bacterial α-D-galactosidase and human cancer cell α-N-Acetylgalactosaminidase. Biomedicines 2021, 9, 510. [Google Scholar] [CrossRef]
- Erpela, F.; Mateosb, R.; Pérez-Jiménezb, J.; Pérez-Correaa, J.R. Phlorotannins: From isolation and structural characterization, to the evaluation of their antidiabetic and anticancer potential. Food Res. Int. 2020, 137, 109589. [Google Scholar] [CrossRef] [PubMed]
- Mekini, I.G.; Skroza, D.; Šimat, V.; Hamed, I.; Cagalj, M.; Perkovi, Z.P. Phenolic Content of Brown Algae (Pheophyceae) Species: Extraction, Identification, and Quantification. Biomolecules 2019, 9, 244. [Google Scholar]
- Khan, F.; Jeong, G.-J.; Sajjad, M.; Khan, A.; Tabassum, N.; Kim, Y.-M. Seaweed-derived phlorotannins: A review of multiple biological roles and action mechanisms. Mar. Drugs 2022, 20, 384. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Zhang, W.; Smid, S.D. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Biosci. 2021, 39, 100832. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Guo, J.; Hu, X.M.; Zhao, S.Q.; Li, S.L.; Wang, J. An in vivo antitumor effect of eckol from marine brown algae by improving the immune response. Food Funct. 2019, 10, 4361–4371. [Google Scholar] [CrossRef]
- Imbs, T.I.; Skriptsova, A.V.; Zvyagintseva, T.N. Antioxidant activity of fucose-containing sulfated polysaccharides obtained from Fucus evanescens by different extraction methods. J. Appl. Phycol. 2015, 27, 545–553. [Google Scholar] [CrossRef]
- Kiseleva, M.I.; Imbs, T.I.; Avilov, S.A.; Bakunina, I.Y. The effects of polyphenolic impurities in fucoidan samples from the brown alga Fucus distichus subsp. evanescens (C. Agardh) H.T. Powell, 1957 on the embryogenesis in the sea urchin Strongylocentrotus intermedius (A. Agassiz, 1864) and on the embryotoxic action of cucumarioside. Rus. J. Mar. Biol. 2021, 47, 290–299. [Google Scholar]
- Shibata, T.; Fujimoto, K.; Nagayama, K.; Yamaguchi, K.; Nakamura, T. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int. J. Food Sci. Technol. 2002, 37, 703–709. [Google Scholar] [CrossRef]
- Shibata, T.; Nagayama, K.; Tanaka, R.; Yamaguchi, K.; Nakamura, T. Inhibitory effects of brown algal phlorotannins on secretory phospholipase A2s, lipoxygenases and cyclooxygenases. J. Appl. Phycol. 2003, 15, 61–66. [Google Scholar] [CrossRef]
- Shibata, T.; Yamaguchi, K.; Nagayama, K.; Kawaguchi, S.; Nakamura, T. Inhibitory activity of brown algal phlorotannins against glycosidases from the viscera of the turban shell Turbo cornutus. Eur. J. Phycol. 2002, 37, 493–500. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-H.; Li, Y.; Karadeniz, F.; Kim, M.-M.; Kim, S.-K. α-Glucosidase and α-amylase inhibitory activities of phloroglucinal derivatives from edible marine brown alga, Ecklonia cava. J. Sci. Food Agric. 2009, 89, 1552–1558. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Yoon, K.-D.; Min, S.-Y.; Lee, J.S.; Kim, J.H.; Kim, T.G.; Kim, S.H.; Kim, N.-G.; Huh, H.; Kim, J. Inhibition of HIV-1 reverse transcriptase and protease by phlorotannins from the brown alga. Ecklonia cava. Biol. Pharm. Bull. 2004, 27, 544–547. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, M.; Valentão, P.; Andrade, P.B. Polyphenols from brown seaweeds (Ochrophyta, Phaeophyceae): Phlorotannins in the pursuit of natural alternatives to tackle neurodegeneration. Mar. Drugs 2020, 18, 654. [Google Scholar] [CrossRef] [PubMed]
- Imbs, T.I.; Silchenko, A.S.; Fedoreev, S.A.; Isakov, V.V.; Ermakova, S.P.; Zvyagintseva, T.N. Fucoidanase inhibitory activity of phlorotannins from brown algae. Algal Res. 2018, 32, 54–59. [Google Scholar] [CrossRef]
- Martinez, J.H.I.; Castaneda, H.G.T. Preparation and chromatographic analysis of plorotannins. J. Chrom. Sci. 2013, 51, 825–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melanson, J.E.; MacKinnon, S.L. Characterization of phlorotannins from brown algae by LC-HRMS. In Natural Products from Marine Algae: Methods and Protocol, Methods in Molecular Biology; Stengel, D.B., Connan, S., Eds.; Springer Science + Business Media: New York, NY, USA, 2015; Volume 1308, pp. 253–267. [Google Scholar]
- Malyarenko, O.S.; Imbs, T.I.; Ermakova, S.P. In vitro anticancer and radiosensitizing activities of phlorethols from the brown alga Costaria costata. Molecules 2020, 25, 3208. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, A.S.; Imbs, T.I.; Zvyagintseva, T.N.; Fedoreev, S.A.; Ermakova, S.P. Brown alga metabolites–inhibitors of marine organism fucoidan hydrolases. Chem. Nat. Compd. 2017, 53, 345–350. [Google Scholar] [CrossRef]
- Utkina, N.K.; Likhatskaya, G.N.; Balabanova, L.A.; Bakunina, I.Y. Sponge-derived polybrominated diphenyl ethers and dibenzo-p-dioxins, irreversible inhibitors of the bacterial α-D-galactosidase. Environ. Sci. Process. Impacts 2019, 21, 1754–1763. [Google Scholar] [CrossRef]
- Utkina, N.K.; Denisenko, V.A. New polybrominated diphenyl ether from the marine sponge Dysidea herbacea. Chem. Nat. Compd. 2006, 42, 606–607. [Google Scholar] [CrossRef]
- Utkina, N.K.; Ermakova, S.P.; Bakunina, I.Y. Effects of sponge-derived polybrominated diphenyl ethers on human cancer cell α-N-acetylgalactosaminidase and bacterial α-D-galactosidase and their antioxidant activity. Environ. Sci. Adv. 2022; in press. [Google Scholar] [CrossRef]
- Clark, N.E.; Metcalf, M.C.; Best, D.; Fleet, G.W.J.; Garman, S.C. Pharmacological chaperones for human α-N-acetylgalactosaminidase. Proc. Natl. Acad. Sci. USA 2012, 109, 17400–17405. [Google Scholar] [CrossRef] [Green Version]
- Ayers, B.J.; Hollinshead, J.; Saville, A.W.; Nakagawa, S.; Adachi, I.; Kato, A.; Izumori, K.; Bartholomew, B.; Fleet, G.W.J.; Nash, R.; et al. The first alkaloid isolated from Itea virginica L. inflorescence. Phytochemistry 2014, 100, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, V.K. Cleavage of structural proteins during of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
Cell Lines | Km (mM) | Vmax (nmol/h/mL) |
---|---|---|
HuTu 80 | 4.20 ± 0.14 | 411.2 ± 6.5 |
SK-MEL-28 | 6.90 ± 0.43 | 138.8 ± 4.8 |
Structure | 13C (δ in ppm) | 1H (δ in ppm) | |
---|---|---|---|
Unsubstituted benzene carbons | 94.3 | 5.86–5.83 | |
93.8 | 5.94; 5.61 | ||
94.5 | 6.16 | ||
Diaryl–ether bond (ether linkage) | 123.6 | 6.13–6.17 | |
123.5 | 5.93 | ||
123.6 | 6.01 | ||
123.5 | 5.59–5.62 | ||
122.4 | 5.83–5.86 | ||
Benzene carbon bearing hydroxylated groups | 156.0 | 6.13–6.17 | |
153.9 | 5.59–5.62 | ||
152.9 | 5.59–5.62 | ||
150.9 | 6.13–6.17 | ||
151.1 | 5.83–5.86 | ||
154.0 | 5.83–5.86 | ||
154.6 | 5.83–5.86 |
Degree of Polymerization | [M − 2H]−2 | Signal Strength (%) | Elemental Composition | Monoisotopic Mass (Da) | |
---|---|---|---|---|---|
m/z Measured | m/z Calculated | ||||
11 | 682.0898 | 682.0888 | 6 | C66H46O33 | 1366.1921 |
12 | 744.0940 | 744.0968 | 12 | C72H50O36 | 1490.2082 |
13 | 806.1019 | 806.1048 | 30 | C78H54O39 | 1614.2242 |
14 | 868.1105 | 868.1129 | 46 | C84H58O42 | 1738.2403 |
15 | 930.1183 | 930.1209 | 66 | C90H62O45 | 1862.2563 |
16 | 992.1262 | 992.1289 | 99 | C96H66O48 | 1986.2724 |
17 | 1054.1332 | 1054.1369 | 99 | C102H70O51 | 2110.2884 |
18 | 1116.1430 | 1116.1449 | 74 | C108H74O54 | 2234.3044 |
19 | 1178.1483 | 1178.1530 | 60 | C114H78O57 | 2358.3205 |
20 | 1240.1588 | 1240.1610 | 50 | C120H82O60 | 2482.3365 |
21 | 1302.1652 | 1302.1690 | 30 | C126H86O63 | 2606.3526 |
22 | 1364.1746 | 1364.1770 | 16 | C132H90O66 | 2730.3686 |
23 | 1426.1839 | 1426.1851 | 6 | C138H94O69 | 2854.3847 |
P15OPh fragment | ||||||||
Ligand | Receptor | Interaction | Distance | E (kcal/mol) | ||||
O | 1 | O | Pro | 197 | (A) | H-donor | 2.66 | −1.1 |
O | 6 | O | Glu | 193 | (A) | H-donor | 2.63 | −2.3 |
O | 19 | O | Gly | 194 | (A) | H-donor | 2.65 | −2.8 |
O | 32 | O | Ala | 191 | (A) | H-donor | 2.79 | −2.8 |
O | 40 | OD1 | Asp | 216 | (A) | H-donor | 2.54 | −1.0 |
O | 45 | OD1 | Asp | 217 | (A) | H-donor | 2.57 | −5.5 |
O | 59 | OD2 | Asp | 156 | (A) | H-donor | 2.52 | −3.0 |
6-ring | CB | Leu | 196 | (A) | pi-H | 4.31 | −0.6 | |
DGJNAc | ||||||||
Ligand | Receptor | Interaction | Distance | E (kcal/mol) | ||||
N2 | 7 | OD1 | Asp | 217 | (A) | H-donor | 2.81 | −6.4 |
O4 | 17 | OD1 | Asp | 78 | (A) | H-donor | 2.62 | −3.4 |
O6 | 24 | OD2 | Asp | 797 | (A) | H-donor | 2.73 | −2.8 |
N5 | 26 | OD2 | Asp | 156 | (A) | H-donor | 2.74 | −17.3 |
C1 | 29 | OD2 | Asp | 217 | (A) | H-donor | 3.55 | −0.8 |
O7 | 1 | OG | Ser | 188 | (A) | H-acceptor | 2.63 | −2.6 |
O3 | 13 | NZ | Lys | 154 | (A) | H-acceptor | 2.75 | −7.0 |
O3 | 13 | NH1 | Arg | 213 | (A) | H-acceptor | 3.07 | −1.3 |
N5 | 26 | OD2 | Asp | 156 | (A) | ionic | 2.74 | -6.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakunina, I.; Imbs, T.; Likhatskaya, G.; Grigorchuk, V.; Zueva, A.; Malyarenko, O.; Ermakova, S. Effect of Phlorotannins from Brown Algae Costaria costata on α-N-Acetylgalactosaminidase Produced by Duodenal Adenocarcinoma and Melanoma Cells. Mar. Drugs 2023, 21, 33. https://doi.org/10.3390/md21010033
Bakunina I, Imbs T, Likhatskaya G, Grigorchuk V, Zueva A, Malyarenko O, Ermakova S. Effect of Phlorotannins from Brown Algae Costaria costata on α-N-Acetylgalactosaminidase Produced by Duodenal Adenocarcinoma and Melanoma Cells. Marine Drugs. 2023; 21(1):33. https://doi.org/10.3390/md21010033
Chicago/Turabian StyleBakunina, Irina, Tatiana Imbs, Galina Likhatskaya, Valeria Grigorchuk, Anastasya Zueva, Olesya Malyarenko, and Svetlana Ermakova. 2023. "Effect of Phlorotannins from Brown Algae Costaria costata on α-N-Acetylgalactosaminidase Produced by Duodenal Adenocarcinoma and Melanoma Cells" Marine Drugs 21, no. 1: 33. https://doi.org/10.3390/md21010033
APA StyleBakunina, I., Imbs, T., Likhatskaya, G., Grigorchuk, V., Zueva, A., Malyarenko, O., & Ermakova, S. (2023). Effect of Phlorotannins from Brown Algae Costaria costata on α-N-Acetylgalactosaminidase Produced by Duodenal Adenocarcinoma and Melanoma Cells. Marine Drugs, 21(1), 33. https://doi.org/10.3390/md21010033