The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus
Abstract
:1. Introduction
2. Results and Discussion
2.1. NADES Composition Effect
2.2. Human Health Risk Assessments of NADES Extracts
3. Materials and Methods
3.1. Materials and Reagents
3.2. Solvents Used
3.3. Extraction Procedures
3.4. Elements Analysis
3.5. Human Health Risk Assessments
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a new extraction media for phenolic metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef]
- Wei, Z.; Qi, X.; Li, T.; Luo, M.; Wang, W.; Zu, Y.; Fu, Y. Application of natural deep eutectic solvents for extraction and determination of phenolics in Cajanus cajan leaves by ultra performance liquid chromatography. Sep. Purif. Technol. 2015, 149, 237–244. [Google Scholar] [CrossRef]
- Dai, Y.; Rozema, E.; Verpoorte, R.; Choi, Y.H. Application of natural deep eutectic solvents to the extraction of anthocyanins from Catharanthus roseus with high extractability and stability replacing conventional organic solvents. J. Chromatogr. A 2016, 1434, 50–56. [Google Scholar] [CrossRef]
- Velásquez, P.; Bustos, D.; Montenegro, G.; Giordano, A. Ultrasound-Assisted Extraction of Anthocyanins Using Natural Deep Eutectic Solvents and Their Incorporation in Edible Films. Molecules 2021, 26, 984. [Google Scholar] [CrossRef]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef]
- Boyko, N.; Zhilyakova, E.; Malyutina, A.; Novikov, O.; Pisarev, D.; Abramovich, R.; Potanina, O.; Lazar, S.; Mizina, P.; Sahaidak-Nikitiuk, R. Studying and modeling of the extraction properties of the natural deep eutectic solvent and sorbitol-based solvents in regard to biologically active substances from Glycyrrhizae roots. Molecules 2020, 25, 1482. [Google Scholar] [CrossRef] [Green Version]
- Shikov, A.N.; Kosman, V.M.; Flissyuk, E.V.; Smekhova, I.E.; Elameen, A.; Pozharitskaya, O.N. Natural deep eutectic solvents for the extraction of phenyletanes and phenylpropanoids of Rhodiola rosea L. Molecules 2020, 25, 1826. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, L.A.; Pereira, C.V.; Leonardo, I.C.; Fernández, N.; Gaspar, F.B.; Silva, J.M.; Reis, R.L.; Duarte, A.R.C.; Paiva, A.; Matias, A.A. Terpene-Based natural deep eutectic systems as efficient solvents to recover astaxanthin from brown crab shell residues. ACS Sustain. Chem. Eng. 2020, 8, 2246–2259. [Google Scholar] [CrossRef]
- Obluchinskaya, E.; Pozharitskaya, O.; Zakharova, L.; Daurtseva, A.; Flisyuk, E.; Shikov, A. Efficacy of natural deep eutectic solvents for extraction of hydrophilic and lipophilic compounds from Fucus vesiculosus. Molecules 2021, 26, 4198. [Google Scholar] [CrossRef]
- Yang, G.-Y.; Song, J.-N.; Chang, Y.-Q.; Wang, L.; Zheng, Y.-G.; Zhang, D.; Guo, L. Natural deep eutectic solvents for the extraction of bioactive steroidal saponins from Dioscoreae nipponicae rhizoma. Molecules 2021, 26, 2079. [Google Scholar] [CrossRef]
- Wei, Z.F.; Wang, X.Q.; Peng, X.; Wang, W.; Zhao, C.J.; Zu, Y.G.; Fu, Y.J. Fast and green extraction and separation of main bioactive flavonoids from Radix Scutellariae. Ind. Crops Prod. 2015, 63, 175–181. [Google Scholar] [CrossRef]
- Ivanovic, M.; Alanon, M.E.; Arraez-Roman, D.; Segura-Carretero, A. Enhanced and green extraction of bioactive compounds from Lippia citriodora by tailor-made natural deep eutectic solvents. Food Res. Int. 2018, 111, 67–76. [Google Scholar] [CrossRef]
- Wu, Y.C.; Wu, P.; Li, Y.B.; Liu, T.C.; Zhang, L.; Zhou, Y.H. Natural deep eutectic solvents as new green solvents to extract anthraquinones from Rheum palmatum L. RSC Adv. 2018, 8, 15069–15077. [Google Scholar] [CrossRef] [Green Version]
- Osowska, N.; Ruzik, L. New potentials in the extraction of trace metal using natural deep eutectic solvents (NADES). Food Anal. Methods 2019, 12, 926–935. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zang, Y.Y.; Yang, S.; Chen, Z.G. Green and efficient removal of heavy metals from Porphyra haitanensis using natural deep eutectic solvents. J. Sci. Food Agric. 2020, 101, 2930–2939. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Ravindran, R.; Walsh, O.; O’Doherty, J.; Jaiswal, A.K.; Tiwari, B.K.; Rajauria, G. Evaluation of ultrasound, microwave, ultrasound–microwave, hydrothermal and high pressure assisted extraction technologies for the recovery of phytochemicals and antioxidants from brown macroalgae. Mar. Drugs 2021, 19, 309. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Neupane, S.; Ptak, S.H.; Römer, R.; Xiong, J.; Ohmes, J.; Seekamp, A.; Fretté, X.; Alban, S.; et al. Influence of fucoidan extracts from different Fucus species on adult stem cells and molecular mediators in in vitro models for bone formation and vascularization. Mar. Drugs 2021, 19, 194. [Google Scholar] [CrossRef]
- Dutot, M.; Olivier, E.; Fouyet, S.; Magny, R.; Hammad, K.; Roulland, E.; Rat, P.; Fagon, R. In Vitro chemopreventive potential of phlorotannins-rich extract from brown algae by inhibition of benzo[a]pyrene-induced P2x7 activation and toxic effects. Mar. Drugs 2021, 19, 34. [Google Scholar] [CrossRef]
- Park, A.Y.; Nafia, I.; Stringer, D.N.; Karpiniec, S.S.; Fitton, J.H. Fucoidan independently enhances activity in human immune cells and has a cytostatic effect on prostate cancer cells in the presence of nivolumab. Mar. Drugs 2022, 20, 12. [Google Scholar] [CrossRef]
- Gupta, D.; Silva, M.; Radziun, K.; Martinez, D.C.; Hill, C.J.; Marshall, J.; Hearnden, V.; Puertas-Mejia, M.A.; Reilly, G.C. Fucoidan inhibition of osteosarcoma cells is species and molecular weight dependent. Mar. Drugs 2020, 18, 104. [Google Scholar] [CrossRef] [Green Version]
- Amarante, S.J.; Catarino, M.D.; Marçal, C.; Silva, A.M.S.; Ferreira, R.; Cardoso, S.M. Microwave-Assisted extraction of phlorotannins from Fucus vesiculosus. Mar. Drugs 2020, 18, 559. [Google Scholar] [CrossRef] [PubMed]
- Pozharitskaya, O.N.; Obluchinskaya, E.D.; Shikov, A.N. Mechanisms of bioactivities of fucoidan from the brown seaweed Fucus vesiculosus L. of the Barents Sea. Mar. Drugs 2020, 18, 275. [Google Scholar] [CrossRef] [PubMed]
- Buedenbender, L.; Astone, F.A.; Tasdemir, D. Bioactive molecular networking for mapping the antimicrobial constituents of the Baltic brown alga Fucus vesiculosus. Mar. Drugs 2020, 18, 311. [Google Scholar] [CrossRef]
- Myers, S.P.; Mulder, A.M.; Baker, D.G.; Robinson, S.R.; Rolfe, M.I.; Brooks, L.; Fitton, J.H. Effects of fucoidan from Fucus vesiculosus in reducing symptoms of osteoarthritis: A randomized placebo-controlled trial. Biol. Targets Ther. 2016, 10, 81–88. [Google Scholar]
- Fitton, J.H.; Dell’Acqua, G.; Gardiner, V.-A.; Karpiniec, S.S.; Stringer, D.N.; Davis, E. Topical benefits of two fucoidan-rich extracts from marine macroalgae. Cosmetics 2015, 2, 66–81. [Google Scholar] [CrossRef] [Green Version]
- Obluchinskaya, E.D.; Daurtseva, A.V.; Pozharitskaya, O.N.; Flisyuk, E.V.; Shikov, A.N. Natural Deep Eutectic Solvents as alternatives for extracting phlorotannins from brown algae. Pharm. Chem. J. 2019, 53, 243–247. [Google Scholar] [CrossRef]
- Fuad, F.M.; Nadzir, M.M.; Harun, A. Hydrophilic natural deep eutectic solvent: A review on physicochemical properties and extractability of bioactive compounds. J. Mol. Liq. 2021, 339, 116923. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Pozharitskaya, O.N.; Zakharov, D.V.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Smekhova, I.E.; Shikov, A.N. The Biochemical composition and antioxidant properties of Fucus vesiculosus from the Arctic region. Mar. Drugs 2022, 20, 193. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green extraction of value-added compounds form microalgae: A short review on natural deep eutectic solvents (NADES) and related pre-treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Alam, M.A.; Muhammad, G.; Khan, M.N.; Mofijur, M.; Lv, Y.; Xiong, W.; Xu, J. Choline chloride-based deep eutectic solvents as green extractants for the isolation of phenolic compounds from biomass. J. Clean. Prod. 2021, 309, 127445. [Google Scholar] [CrossRef]
- Trajano, H.L.; Wyman, C.E. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 103–128. [Google Scholar]
- Tsvetov, N.S.; Drogobuzhskaya, S.V. Recovery of some elements from Empetrum nigrum L. growing in the Kola Peninsula using acid-based deep eutectic solvents. IOP Conf. Ser. Earth Environ. Sci. 2021, 848, 012107. [Google Scholar] [CrossRef]
- Abbott, A.P.; Boothby, D.; Capper, G.; Davies, D.L.; Rasheed, R.K. Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids. J. Am. Chem. Soc. 2004, 126, 9142–9147. [Google Scholar] [CrossRef] [PubMed]
- Vilková, M.; Płotka-Wasylka, J.; Andruch, V. The role of water in deep eutectic solvent-base extraction. J. Mol. Liq. 2020, 304, 112747. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.J.; Verpoorte, R. Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [Green Version]
- Alcalde, R.; Gutiérrez, A.; Atilhan, M.; Aparicio, S. An experimental and theoretical investigation of the physicochemical properties on choline chloride–Lactic acid based natural deep eutectic solvent (NADES). J. Mol. Liq. 2019, 290, 110916. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, H.; Row, K.H. Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. J. Sep. Sci. 2015, 38, 1053–1064. [Google Scholar] [CrossRef]
- Kalhor, P.; Ghandi, K. Deep eutectic solvents for pretreatment, extraction, and catalysis of biomass and food waste. Molecules 2019, 24, 4012. [Google Scholar] [CrossRef] [Green Version]
- Osowska, N.; Paduszyński, K.; Matczuk, M.; Ruzik, L. New solvents for metal extraction–NADES. Prediction and optimization of efficient extraction of selected metals by ICP-MS/MS. J. Anal. At. Spectrom. 2021, 36, 946–953. [Google Scholar] [CrossRef]
- Yang, Z. Natural Deep Eutectic Solvents and Their Applications in Biotechnology; Springer: Berlin, Germany, 2018; pp. 1–27. [Google Scholar] [CrossRef]
- Tsvetov, N.S.; Drogobuzhskaya, S.V.; Korovkina, A.V. Metals content in deep eutectic solvents-based extracts of Koenigia Weyrichii growing in the Kola Peninsula. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 042116. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the extraction of bioactive compounds from natural sources and agricultural by-products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Atique Ullah, A.K.M.; Akter, M.; Musarrat, M.; Quraishi, S.B. Evaluation of possible human health risk of heavy metals from the consumption of two marine fish species Tenualosa ilisha and Dorosoma cepedianum. Biol. Trace Elem. Res. 2019, 191, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Mišan, A.; Nađpal, J.; Stupar, A.; Pojić, M.; Mandić, A.; Verpoorte, R.; Choi, Y.H. The perspectives of natural deep eutectic solvents in agri-food sector. Crit. Rev. Food Sci. Nutr. 2019, 60, 2564–2592. [Google Scholar] [CrossRef] [PubMed]
- Sablonský, M.; Šima, J. Phytomass valorization by deep eutectic solvents—Achievements, perspectives, and limitations. Crystals 2020, 10, 800. [Google Scholar] [CrossRef]
- USEPA. Risk Assessment Guidance for Superfund: Human Health Evaluation Manual [Part A]: Interim Final; [EPA/540/1–89/002]; Environmental Protection Agency: Washington, DC, USA, 1989.
- Alam, M.F.; Akhter, M.; Mazumder, B.; Ferdous, A.; Hossain, M.D.; Dafader, N.C.; Ahmed, F.T.; Kundu, S.K.; Taheri, T.; Ullah, A.A. Assessment of some heavy metals in selected cosmetics commonly used in Bangladesh and human health risk. J. Anal. Sci. Technol. 2019, 10, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.C.; Liao, C.M. Health risk assessment on human exposed to environmental polycyclic aromatic hydrocarbons pollution sources. Sci. Total Environ. 2006, 366, 112–123. [Google Scholar] [CrossRef]
- Joint FAO/WHO Expert Committee on Food Additives. Proceedings of the Summary and Conclusions of the Sixty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives, Rome, Italy, 20–29 June 2006.
- World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Second Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Technical Report Series No. 959; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- World Health Organization. Evaluation of Certain Food Additives and Contaminants: Seventy-Third Report of the Joint FAO/WHO Expert Committee on Food Additives, Geneva, 2010; WHO Technical Report Series No. 960; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- European Food Safety Authority. Tolerable Upper Intake Levels for Vitamins and Minerals. February 2006. Available online: www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 29 March 2022).
- Rospotrebnadzor. Norms of Physiological Needs Energy and Nutrients for Various Groups of the Population of the Russian Federation; Methodical Recommendations MR 2.3.1.2432−08; Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009. [Google Scholar]
- Dai, Y.; Van Spronsen, J.; Witkamp, G.J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef]
- Charles, B.; Fredeen, K.J. Concepts, instrumentation and techniques in inductively coupled plasma optical emission spectrometry. Perkin Elmer Corp. 1997, 3, 2. [Google Scholar]
- Flores, É.M.D.M.; Barin, J.S.; Paniz, J.N.G.; Medeiros, J.A.; Knapp, G. Microwave-assisted sample combustion: A technique for sample preparation in trace element determination. Anal. Chem. 2004, 76, 3525–3529. [Google Scholar] [CrossRef]
- De Miguel, E.; Iribarren, I.; Chacon, E.; Ordonez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef]
- USEPA (US Environmental Protection Agency). Integrated Risk Information System (IRIS). 2005. Available online: https://www.epa.gov/iris (accessed on 29 March 2022).
- Guerra, K.; Konz, J.; Lisi, K.; Neebrem, C. Exposure Factors Handbook; USEPA: Washington, DC, USA, 2010.
- Usero, J.; Morillo, J.; Gracia, I. Heavy metal concentrations in molluscs from the Atlantic coast of southern Spain. Chemosphere 2005, 59, 1175–1181. [Google Scholar] [CrossRef]
- Obluchinskaya, E.D.; Aleshina, E.G.; Matishov, D.G. Comparative assessment of the metal load in the bays and inlets of Murmansk coast by the metal pollution index. Dokl. Earth Sci. 2013, 448, 236–239. [Google Scholar] [CrossRef]
NADES Code | Components | Molar Ratio | Appearance |
---|---|---|---|
NADES1 | Lactic acid:glucose:H2O | 5:3:1 | Transparent liquid |
NADES2 | Lactic acid:ChCl | 3:1 | Viscous transparent colorless liquid |
NADES3 | Malic acid:ChCl | 1:1 | Viscous transparent colorless liquid |
Elements | LOQ | UAE | CE | |||||||
---|---|---|---|---|---|---|---|---|---|---|
NADES1 | NADES2 | NADES3 | H20 | 70% Acetone | NADES1 | NADES2 | NADES3 | H20 | ||
Al | 1.6 | 3.15 ± 0.06 | 17.8 ± 2.9 | 2.12 ± 0.19 | 48.5 ± 0.6 | 56.5 ± 1.2 | 6.50 ± 0.10 | 14.08 ± 0.21 | 8.34 ± 0.16 | 33.4 ± 0.6 |
As | 6.3 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Ba | 0.016 | 0.15 ± 0 | 0.13 ± 0.01 | 0.030 ± 0.001 | 0.43 ± 0.01 | 2.25 ± 0.03 | 0.14 ± 0.00 | 0.093 ± 0.002 | 0.17 ± 0.00 | 0.55 ± 0.01 |
Ca | 1.9 | 454 ± 2 | 304 ± 14 | 282 ± 4 | 4173 ± 40 | 918 ± 8 | 471 ± 3 | 224 ± 2 | 429 ± 4 | 4056 ± 38 |
Co | 0.12 | nd | nd | nd | nd | nd | nd | nd | nd | nd |
Cr | 0.13 | 0.76 ± 0.04 | 1.36 ± 0.02 | 2.28 ± 0.06 | 8.19 ± 0.16 | 50.4 ± 1.4 | 0.75 ± 0.05 | 1.15 ± 0.04 | 2.33 ± 0.04 | 7.19 ± 0.07 |
Cu | 0.17 | nd | nd | 0.25 ± 0.02 | 6.24 ± 0.10 | 17.3 ± 0.7 | nd | nd | 0.60 ± 0.02 | 3.81 ± 0.11 |
Fe | 0.098 | 13.6 ± 0.1 | 11.2 ± 0.1 | 6.30 ± 0.11 | 107 ± 1 | 124 ± 1 | 11.9 ± 0.1 | 7.67 ± 0.09 | 17.1 ± 0.1 | 93.9 ± 1.1 |
Mg | 1.7 | 366 ± 3 | 263 ± 3 | 228 ± 4 | 8974 ± 74 | 723 ± 16 | 300 ± 4 | 80 ± 1 | 402 ± 5 | 8856 ± 68 |
Mn | 0.058 | 4.71 ± 0.03 | 3.02 ± 0.02 | 2.64 ± 0.03 | 94.0 ± 0.9 | 20.9 ± 0.3 | 3.86 ± 0.04 | 1.53 ± 0.02 | 5.01 ± 0.04 | 89.2 ± 0.7 |
Sr | 0.026 | 20.8 ± 0.2 | 13.3 ± 0.6 | 8.73 ± 0.11 | 77.1 ± 0.6 | 14.5 ± 0.1 | 15.8 ± 0.2 | 9.17 ± 0.07 | 17.6 ± 0.2 | 76.8 ± 0.7 |
Zn | 0.17 | 4.26 ± 0.05 | 3.40 ± 0.02 | 2.25 ± 0.05 | 52.8 ± 0.5 | 64.8 ± 1.1 | 4.85 ± 0.04 | 3.15 ± 0.04 | 4.77 ± 0.08 | 49.8 ± 0.5 |
Element | NADES | Water Content, % | Maximum Concentration | Daily Dose for 20 g Consumption | Daily Dose from Risk Estimators | Daily Nutritional Requirements |
---|---|---|---|---|---|---|
Al | 2 | 60 | 29.89 | 0.60 | 10 1 | |
Ba | 3 | 60 | 0.37 | 0.19 | 0.75 5 | |
Ca | 3 | 80 | 1140 | 23 | 2500 2 | 1000 3 |
Cr | 3 | 40 | 2.68 | 0.05 | 30 5 | 0.05 5 |
Cu | 3 | 80 | 0.016 | 0.05 | 5 2,5 | 0.9 4/1.0 5 |
Fe | 3 | 60 | 18.82 | 0.38 | 45 5 | 10 3,5 |
Mg | 3 | 80 | 692 | 14 | 800 5 | 400 5 |
Mn | 3 | 80 | 8.04 | 0.16 | 11 5 | 2.7 3/2.0 5 |
Sr | 3 | 60 | 47.89 | 0.96 | 11 5 | 1.9 5 |
Zn | 3 | 60 | 6.41 | 0.13 | 25 2 | 12 3,5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shikov, A.N.; Obluchinskaya, E.D.; Flisyuk, E.V.; Terninko, I.I.; Generalova, Y.E.; Pozharitskaya, O.N. The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus. Mar. Drugs 2022, 20, 324. https://doi.org/10.3390/md20050324
Shikov AN, Obluchinskaya ED, Flisyuk EV, Terninko II, Generalova YE, Pozharitskaya ON. The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus. Marine Drugs. 2022; 20(5):324. https://doi.org/10.3390/md20050324
Chicago/Turabian StyleShikov, Alexander N., Ekaterina D. Obluchinskaya, Elena V. Flisyuk, Inna I. Terninko, Yulia E. Generalova, and Olga N. Pozharitskaya. 2022. "The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus" Marine Drugs 20, no. 5: 324. https://doi.org/10.3390/md20050324
APA StyleShikov, A. N., Obluchinskaya, E. D., Flisyuk, E. V., Terninko, I. I., Generalova, Y. E., & Pozharitskaya, O. N. (2022). The Impact of Natural Deep Eutectic Solvents and Extraction Method on the Co-Extraction of Trace Metals from Fucus vesiculosus. Marine Drugs, 20(5), 324. https://doi.org/10.3390/md20050324