Xishaeleganins A–D, Sesquiterpenoid Hydroquinones from Xisha Marine Sponge Dactylospongia elegans
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Biological Material
3.3. Extraction and Isolation
3.4. Spectroscopic Data of Compounds
3.5. Minimum Inhibitory Concentration (MIC) Determination
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carte, B.; Rose, C.B.; Faulkner, D.J. 5-epi-ilimaquinone, a metabolite of the sponge Fenestraspongia sp. J. Org. Chem. 1985, 50, 2785–2787. [Google Scholar] [CrossRef]
- Diaz-Marrero, A.R.; Austin, P.; Van Soest, R.; Matainaho, T.; Roskelley, C.D.; Roberge, A.M.; Andersen, R.J. Avinosol, a meroterpenoid-nucleoside conjugate with antiinvasion activity isolated from the marine sponge Dysidea sp. Org. Lett. 2006, 8, 3749–3752. [Google Scholar] [CrossRef] [PubMed]
- Utkina, N.K.; Denisenko, V.A.; Scholokova, O.V.; Virovaya, M.V.; Prokof’Eva, N.G. Cyclosmenospongine, a new sesquiterpenoid aminoquinone from an Australian marine sponge Spongia sp. Tetrahedron Lett. 2003, 44, 101–102. [Google Scholar] [CrossRef]
- Piña, I.C.; Sanders, M.L.; Crews, P. Puupehenone Congeners from an Indo-Pacific Hyrtios sponge. J. Nat. Prod. 2003, 66, 2–6. [Google Scholar] [CrossRef]
- Yu, H.-B.; Yin, Z.-F.; Gu, B.-B.; Zhang, J.-P.; Wang, S.-P.; Yang, F.; Lin, H.-W. Cytotoxic meroterpenoids from the marine sponge Dactylospongia elegans. Nat. Prod. Res. 2021, 35, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Musman, M.; Ohtani, I.I.; Nagaoka, D.; Tanaka, A.J.; Higa, T. Hipposulfates A and B, new sesterterpene sulfates from an Okinawan sponge, Hippospongia cf. metachromia. J. Nat. Prod. 2001, 64, 350–352. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Wang, X.M. A new sesquiterpenoid hydroquinone from the marine sponge Dysidea arenaria. Molecules 2008, 13, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Kong, D.; Yamori, T.; Kobayashi, M.; Duan, H. Antiproliferative and antiangiogenic activities of smenospongine, a marine sponge sesquiterpene aminoquinone. Mar. Drugs 2011, 9, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Xu, H.-Y.; Huang, A.-M.; Wang, L.; Wang, Q.; Cao, P.-Y.; Yang, P.-M. Antibacterial meroterpenoids from the South China Sea sponge Dysidea sp. Chem. Pharm. Bull. 2016, 64, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Arai, M.; Kawachi, T.; Sato, H.; Setiawan, A.; Kobayashi, M. Marine spongian sesquiterpene phenols, dictyoceratin-C and smenospondiol, display hypoxia-selective growth inhibition against cancer cells. Bioorg. Med. Chem. Lett. 2014, 24, 3155–3157. [Google Scholar] [CrossRef]
- McNamara, C.E.; Larsen, L.; Perry, N.B.; Harper, J.L.; Berridge, M.V.; Chia, E.W.; Kelly, M.; Webb, V.L. Anti-inflammatory Sesquiterpene-quinones from the New Zealand sponge Dysidea cf. cristagalli. J. Nat. Prod. 2005, 68, 1431–1433. [Google Scholar] [CrossRef] [PubMed]
- Aoki, S.; Kong, D.; Matsui, K.; Kobayashi, M. Smenospongine, a spongean sesquiterpene aminoquinone, induces erythroid differentiation in K562 cells. Anti-Cancer Drugs 2004, 15, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Minale, L.; Riccio, R.; Sodano, G. Avarol a novel sesquiterpenoid hydroquinone with a rearranged drimane skeleton from the sponge Disidea avara. Tetrahedron Lett. 1974, 15, 3401–3404. [Google Scholar] [CrossRef]
- Schröder, H.C.; Sarin, P.S.; Rottmann, M.; Wenger, R.; Maidhof, A.; Renneisen, K.; Müller, W.E.G. Differential modulation of host cell and HIV gene expression by combinations of avarol and AZT in vitro. Biochem. Pharmacol. 1988, 37, 3947–3952. [Google Scholar] [CrossRef]
- Sarin, P.S.; Sun, D.; Thornton, A.; Müller, W.E.G. Inhibition of replication of the etiologic agent of acquired immune deficiency syndrome (human T-lymphotropic retrovirus/lymphadenopathy-associated virus) by avarol and avarone2. J. Natl. Cancer Inst. 1987, 78, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Loya, S.; Hizi, A. The inhibition of human immunodeficiency virus type 1 reverse transcriptase by avarol and avarone derivatives. FEBS Lett. 1990, 269, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Loya, S.S.; Hizi, A. The interaction of illimaquinone, a selective inhibitor of the RNase H activity, with the reverse transcriptases of human immunodeficiency and murine leukemia retroviruses. J. Biol. Chem. 1993, 268, 9323–9328. [Google Scholar] [CrossRef]
- Chen, B.; Huan, X.-J.; Miao, Z.-H.; de Voogd, N.J.; Gu, Y.-C.; Wang, C.-Y.; Guo, Y.-W.; Li, X. Uncommon bis-quinolizidine alkaloids from the Hainan sponge Neopetrosia chaliniformis. Chin. J. Chem. 2021, 39, 1838–1842. [Google Scholar] [CrossRef]
- Wu, Q.; Li, S.-W.; Xu, H.; Wang, H.; Hu, P.; Zhang, H.; Luo, C.; Chen, K.-X.; Nay, B.; Guo, Y.-W.; et al. Complex polypropionates from a South China Sea photosynthetic mollusk: Isolation and biomimetic synthesis highlighting novel rearrangements. Angew. Chem. 2020, 59, 12203–12210. [Google Scholar] [CrossRef]
- Chen, B.; Li, W.-S.; Gu, Y.-C.; Zhang, H.-Y.; Luo, H.; Wang, C.-Y.; Guo, Y.-W.; Li, X.-W. New formamidobisabolene-type sesquiterpenoids from a Hainan sponge Halichondria sp. Tetrahedron 2021, 96, 132396. [Google Scholar] [CrossRef]
- Li, J.; Wu, W.; Yang, F.; Liu, L.; Wang, S.-P.; Jiao, W.-H.; Xu, S.-H.; Lin, H.-W. Popolohuanones G–I, dimeric sesquiterpene quinones with IL-6 inhibitory activity from the marine sponge Dactylospongia elegans. Chem. Biodivers. 2018, 15, e1800078. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-B.; Gu, B.-B.; Iwasaki, A.; Jiang, W.-L.; Ecker, A.; Wang, S.-P.; Yang, F.; Lin, H.-W. Dactylospenes A–E, sesterterpenes from the marine sponge Dactylospongia elegans. Mar. Drugs 2020, 18, 491. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.; Yang, F.; Jiao, W.-H.; Lin, H.-W.; Xu, S.-H. Two new steroids with cytotoxicity from the marine sponge Dactylospongia elegans collected from the South China Sea. Nat. Prod. Res. 2019, 33, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-B.; Gu, B.-B.; Wang, S.-P.; Cheng, C.-W.; Yang, F.; Lin, H.-W. New diterpenoids from the marine sponge Dactylospongia elegans. Tetrahedron 2017, 73, 6657–6661. [Google Scholar] [CrossRef]
- Mitome, H.; Nagasawa, T.; Miyaoka, H.; Yamada, Y.; Soest, R.W.M.V. Dactyloquinones C, D and E novel sesquiterpenoid quinones, from the Okinawan marine sponge, Dactylospongia elegans. Tetrahedron 2002, 58, 1693–1696. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Hsieh, P.-W. New sesquiterpene hydroquinones from a Taiwanese marine sponge Polyfibrospongia australis. J. Nat. Prod. 1997, 60, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, H.; Deng, S.; Kobayashi, J.I.; Ohizumi, Y.; Hirata, Y. Dictyoceratin-A and -B, novel antimicrobial terpenoids from the Okinawan marine sponge Hipposponqia sp. Tetrahedron 1986, 42, 4197–4201. [Google Scholar] [CrossRef]
- Kwak, J.H.; Schmitz, F.J.; Kelly, M. Sesquiterpene quinols/quinones from the Micronesian sponge Petrosaspongia metachromia. J. Nat. Prod. 2000, 63, 1153–1156. [Google Scholar] [CrossRef]
- Mitome, H.; Nagasawa, T.; Miyaoka, H.; Yamada, Y.; Soest, R.W.M.V. Dactyloquinones A and B, new sesquiterpenoid quinones from the Okinawan marine sponge Dactylospongia elegans. J. Nat. Prod. 2001, 64, 1506–1508. [Google Scholar] [CrossRef]
- Luibrand, R.T.; Erdman, T.R.; Vollmer, J.J.; Scheuer, P.J.; Finer, J.; Clardy, J. Ilimaquinone, a sesquiterpenoid quinone from a marine sponge. Tetrahedron 1979, 35, 609–612. [Google Scholar] [CrossRef]
- Rodriguez, J.; Quinoa, E.; Riguera, R.; Peters, B.M.; Abrell, L.M.; Crews, P. The structures and stereochemistry of cytotoxic sesquiterpene quinones from Dactylospongia elegans. Tetrahedron 1992, 48, 6667–6680. [Google Scholar] [CrossRef]
- Wang, B.; Bai, Z.Q.; Lin, X.P.; Yang, B.; Zhou, X.F.; Liu, Y.H. Chemical constituents of an endophytic fungus Aspergillus flavipes AIL8 obtained from mangrove Acanthus ilicifolius. Nat. Prod. Res. Dev. 2016, 28, 860–863. [Google Scholar]
- Pérez-García, E.; Zubía, E.; Ortega, M.J.; Carballo, J.L. Merosesquiterpenes from two sponges of the genus Dysidea. J. Nat. Prod. 2005, 68, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-K.; Woo, J.-K.; Kim, S.-H.; Cho, E.; Lee, Y.-J.; Lee, H.-S.; Sim, C.J.; Oh, D.-C.; Oh, K.-B.; Shin, J. Meroterpenoids from a tropical Dysidea sp. sponge. J. Nat. Prod. 2015, 78, 2814–2821. [Google Scholar] [CrossRef]
- Bonny, M.L.; Capon, R.J. A sesquiterpene quinone and hydroquinone from the southern Australian marine sponge, Thorecta choanoides. J. Nat. Prod. 1994, 57, 539–540. [Google Scholar] [CrossRef]
- Göthel, Q.; Köck, M. New sesquiterpene hydroquinones from the Caribbean sponge Aka coralliphagum. Beilstein J. Org. Chem. 2014, 10, 613–621. [Google Scholar] [CrossRef] [Green Version]
- Jiso, A.; Kittiwisut, S.; Chantakul, R.; Yuenyongsawad, S.; Putchakarn, S.; Schäberle, T.F.; Temkitthaworn, P.; Ingkaninan, K.; Chaithirayanon, K.; Plubrukarn, A. Quintaquinone, a merosesquiterpene from the yellow sponge Verongula cf. rigida Esper. J. Nat. Prod. 2020, 83, 532–536. [Google Scholar] [CrossRef]
No. | 6 a | 7 a | 8 a | 9 a |
---|---|---|---|---|
δH mult (J in Hz) | δH mult (J in Hz) | δH mult (J in Hz) | δH mult (J in Hz) | |
1 | 1.58, s | 1.78, m; 0.67, m | 3.89, m | 1.98, m; 1.75, m |
2 | 1.55, m; 1.40, m | 2.47, m; 1.72, m | 2.17, m; 1.70, m | |
3 | 1.67, s | 1.31, m; 1.03, m | 2.40, m; 2.20, m | 2.50, m; 2.25, m |
4 | 5.11, t (5.6) | |||
5 | 2.09, m; 2.09, m | 0.93, m | ||
6 | 2.04, m; 1.95, m | 1.71, m; 1.32, m | 1.58, m; 1.58, m | 2.25, m; 0.92, m |
7 | 1.92, m; 1.61, m | 1.56, m; 1.41, m | 2.06, m; 1.35, m | |
8 | 1.58, s | 1.42, m | 1.89, m | |
9 | 5.07, t (5.6) | 1.62, brd (6.1) | ||
10 | 2.04, m; 2.04, m | 1.45, d (10.4) | ||
11 | 2.04, m; 1.95, m | 0.79, s | 4.57, s; 4.57, s | 4.67, s; 4.54, s |
12 | 0.83, s | 0.93, s | 0.81, s | |
13 | 1.73, s | 1.35, s | 1.03, d (6.6) | 1.15, d (7.3) |
14 | 5.32, t (7.4) | 0.94, s | 0.61, s | 1.03, s |
15 | 3.37, d (7.3); 3.37, d (7.3) | 2.87, dd (15.2, 2.4); 2.52, dd (15.2, 6.1) | 3.18, d (13.2); 2.36, d (13.2) | 3.02, d (16.3); 2.39, d (16.3) |
19 | 7.41, d (1.9) | 7.43, d (2.1) | 6.39, s | 6.31, s |
21 | 7.52, d (1.9) | 7.40, d (2.1) | ||
22 | 3.93, s | 3.81, s | 3.59, s | |
23 | 3.85, s | 3.84, s | 3.85, s | |
24 | 3.87, s | |||
OH | 5.24, s | 5.08, s |
No. | 6 a | 7 a | 8 a | 9 a |
---|---|---|---|---|
δC mult. | δC mult. | δC mult. | δC mult. | |
1 | 17.7, CH3 | 40.2, CH2 | 78.1, CH | 32.1, CH2 |
2 | 131.4, C | 18.3, CH2 | 36.2, CH2 | 24.0, CH2 |
3 | 25.8, CH3 | 41.7, CH2 | 31.4, CH2 | 32.2, CH2 |
4 | 124.3, CH | 33.3, C | 158.5, C | 157.9, C |
5 | 26.8, CH2 | 56.0, CH | 40.4, C | 43.5, C |
6 | 39.8, CH2 | 20.6, CH2 | 37.6, CH2 | 31.4, CH2 |
7 | 135.2, C | 43.9, CH2 | 28.3, CH2 | 26.2, CH2 |
8 | 16.4, CH3 | 77.1, C | 41.9, CH | 34.4, CH |
9 | 124.6, CH | 60.4, CH | 38.7, C | 50.8, C |
10 | 26.9, CH2 | 40.1, C | 61.2, CH | 58.3, C |
11 | 39.9, CH2 | 21.5, CH3 | 103.4, CH2 | 106.0, CH2 |
12 | 137.0, C | 33.4, CH3 | 21.8, CH3 | 24.3, CH3 |
13 | 16.1, CH3 | 24.9, CH3 | 16.7, CH3 | 17.9, CH3 |
14 | 121.6, CH | 15.4, CH3 | 15.4, CH3 | 24.8, CH3 |
15 | 28.1, CH2 | 27.5, CH2 | 35.8, CH2 | 43.4, CH2 |
16 | 127.4, C | 128.7, C | 122.9, C | 130.0, C |
17 | 147.9, C | 147.0, C | 142.0, C | 131.3, C |
18 | 146.1, C | 145.1, C | 144.2, C | 150.2, C |
19 | 109.6, CH | 113.7, CH | 96.9, CH | 95.7, CH |
20 | 121.5, C | 121.2, C | 142.2, C | 144.8, C |
21 | 124.6, CH | 125.2, CH | 137.9, C | 135.3, C |
22 | 56.4, CH3 | 167.4, C | 58.0, CH3 | 55.6, CH3 |
23 | 167.3, C | 51.9, CH3 | 56.5, CH3 | 56.3, CH3 |
24 | 52.0, CH3 |
Compound | S. aureus USA300 LAC | S. pyogenes ATCC 12344 | E. faecium Efm-HS0649 |
---|---|---|---|
7 | 1.5 | 1.5 | 3.0 |
8 | 11.1 | 2.8 | 5.6 |
9 | >186.0 | 11.6 | >186.0 |
12 | 11.1 | 5.6 | 5.6 |
15 | 2.9 | 2.9 | 1.4 |
16 | 12.1 | 1.5 | 3.0 |
18 | >178.0 | 44.5 | 22.2 |
19 | 178.0 | 22.2 | 22.2 |
20 | 5.6 | 2.8 | 11.2 |
21 | 5.6 | 2.8 | 11.2 |
22 | >178.0 | 89.0 | 178.0 |
23 | >178.0 | 22.2 | 178.0 |
Vancomycinn | 1.0 | 0.25 | >64.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Zhao, Q.; Gu, Y.-C.; Lan, L.; Wang, C.-Y.; Guo, Y.-W. Xishaeleganins A–D, Sesquiterpenoid Hydroquinones from Xisha Marine Sponge Dactylospongia elegans. Mar. Drugs 2022, 20, 118. https://doi.org/10.3390/md20020118
Chen B, Zhao Q, Gu Y-C, Lan L, Wang C-Y, Guo Y-W. Xishaeleganins A–D, Sesquiterpenoid Hydroquinones from Xisha Marine Sponge Dactylospongia elegans. Marine Drugs. 2022; 20(2):118. https://doi.org/10.3390/md20020118
Chicago/Turabian StyleChen, Bao, Qingmin Zhao, Yu-Cheng Gu, Lefu Lan, Chang-Yun Wang, and Yue-Wei Guo. 2022. "Xishaeleganins A–D, Sesquiterpenoid Hydroquinones from Xisha Marine Sponge Dactylospongia elegans" Marine Drugs 20, no. 2: 118. https://doi.org/10.3390/md20020118
APA StyleChen, B., Zhao, Q., Gu, Y. -C., Lan, L., Wang, C. -Y., & Guo, Y. -W. (2022). Xishaeleganins A–D, Sesquiterpenoid Hydroquinones from Xisha Marine Sponge Dactylospongia elegans. Marine Drugs, 20(2), 118. https://doi.org/10.3390/md20020118