In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds
Abstract
1. Introduction
2. Extraction Methods
2.1. Methanol Extract
2.2. Ethanol Extract
2.3. Hexane Extract
3. Bioactive Compounds
3.1. Fucosterol
3.2. Eckol
3.3. Dieckol
3.4. Phlorofucofuroeckol A
3.5. Other Components
4. Bioactivities
4.1. Antibacterial Activity
4.2. Tyrosinase Inhibition
4.3. Antioxidant Activity
4.4. Anti-Obesity Activity
4.5. Anti-Diabetic Activity
4.6. Anti-Inflammatory Activity
4.7. Treat Neurological Disorders
4.8. Other Functionalities
5. Literature Search
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.S.; Chung, H.Y.; Jung, J.H.; Son, B.W.; Choi, J.S. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull. 2003, 51, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Jung, H.J.; Jeong, H.Y.; Kwon, H.J.; Kim, M.S.; Choi, J.S. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes. Arch. Pharm. Res. 2014, 37, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Notoya, M.; Aruga, Y. Relation between size and age of holdfasts of Ecklonia stolonifera Okamura (Laminariales, Phaeophyta) in northern Honshu, Japan. In Thirteenth International Seaweed Symposium; Springer: Dordrecht, The Netherlands, 1990; pp. 241–246. [Google Scholar]
- Hwang, E.K.; Baek, J.M.; Park, C.S. The mass cultivation of Ecklonia stolonifera Okamura as a summer feed for the abalone industry in Korea. J. Appl. Phycol. 2009, 21, 585–590. [Google Scholar] [CrossRef]
- Kim, N.G.; Yoo, J.S. Structure and function of submarine forest 2. Population dynamics of Ecklonia stolonifera as a submarine forest-forming component. Algae 2003, 18, 295–299. [Google Scholar] [CrossRef]
- Hwang, E.K.; Gong, Y.G.; Hwang, I.K.; Park, E.J.; Park, C.S. Cultivation of the two perennial brown algae Ecklonia cava and E. stolonifera for abalone feeds in Korea. J. Appl. Phycol. 2013, 25, 825–829. [Google Scholar] [CrossRef]
- Kuda, T.; Ikemori, T. Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem. 2009, 112, 575–581. [Google Scholar] [CrossRef]
- Koirala, P.; Jung, H.A.; Choi, J.S. Recent advances in pharmacological research on Ecklonia species: A review. Arch. Pharm. Res. 2017, 40, 981–1005. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T.; Sunagawa, Y.; Maekawa, T.; Funamoto, M.; Shimizu, S.; Shimizu, K.; Katanasaka, Y.; Komiyama, M.; Hawke, P.; Hara, H.; et al. Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity. Nutrients 2022, 14, 580. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Odagiri, S.; Teraoka, K.; Ito, Y. Polysaccharide composition of Ecklonia stolonifera Okamura and their enzymatic hydrolysis. Trans. Mater. Res. Soc. 2007, 32, 1159–1162. [Google Scholar] [CrossRef]
- Singh, I.P.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef]
- Wang, T.; Jonsdottir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Jormalainen, V.; Honkanen, T. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J. Evol. Biol. 2004, 17, 807–820. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Pihlaja, K.; Jormalainen, V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem. Anal. 2007, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.H.; Paudel, P.; Choi, J.W.; Ahn, D.H.; Nam, T.J.; Jung, H.A.; Choi, J.S. Probing multi-target action of phlorotannins as new monoamine oxidase inhibitors and dopaminergic receptor modulators with the potential for treatment of neuronal disorders. Mar. Drugs 2019, 17, 377. [Google Scholar] [CrossRef]
- Wei, R.; Lee, M.S.; Lee, B.; Oh, C.W.; Choi, C.G.; Kim, H.R. Isolation and identification of anti-inflammatory compounds from ethyl acetate fraction of Ecklonia stolonifera and their anti-inflammatory action. J. Appl. Phycol. 2016, 28, 3535–3545. [Google Scholar] [CrossRef]
- Jung, H.A.; Jung, H.J.; Jeong, H.Y.; Kwon, H.J.; Ali, M.Y.; Choi, J.S. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ. Fitoterapia 2014, 92, 260–269. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.E. Acetyl-and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish Sci. 2008, 74, 200–207. [Google Scholar] [CrossRef]
- Vo, T.S.; Kim, S.K.; Ryu, B.; Ngo, D.H.; Yoon, N.Y.; Bach, L.G.; Hang, N.T.N.; Ngo, D.N. The suppressive activity of fucofuroeckol-A derived from brown algal Ecklonia stolonifera Okamura on UVB-induced mast cell degranulation. Mar. Drugs 2018, 16, 1. [Google Scholar] [CrossRef]
- Kim, A.R.; Lee, M.S.; Shin, T.S.; Hua, H.; Jang, B.C.; Choi, J.S.; Byuna, D.S.; Utsuki, T.; Ingram, D.; Kim, H.R. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, and p38 MAPK. Toxicol. In Vitro 2011, 25, 1789–1795. [Google Scholar] [CrossRef]
- Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants 2019, 8, 240. [Google Scholar] [CrossRef]
- Kim, A.R.; Shin, T.S.; Lee, M.S.; Park, J.Y.; Park, K.E.; Yoon, N.Y.; Kim, J.S.; Choi, J.S.; Jang, B.C.; Byun, D.S.; et al. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J. Agric. Food Chem. 2009, 57, 3483–3489. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Kunii, T.; Goto, H.; Suzuki, T.; Yano, T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem. 2007, 103, 900–905. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004, 27, 1226–1232. [Google Scholar] [CrossRef]
- Joe, M.J.; Kim, S.N.; Choi, H.Y.; Shin, W.S.; Park, G.M.; Kang, D.W.; Kim, Y.K. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol. Pharm. Bull. 2006, 29, 1735–1739. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Kim, H.R.; Chung, H.Y.; Choi, J.S. Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Arch. Pharm. Res. 2008, 31, 1564–1571. [Google Scholar] [CrossRef]
- Ryu, B.; Li, Y.; Qian, Z.J.; Kim, M.M.; Kim, S.K. Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: Implication for chronic articular disease. Chem.-Biol. Interact. 2009, 179, 192–201. [Google Scholar] [CrossRef]
- Moon, H.E.; Islam, M.N.; Ahn, B.R.; Chowdhury, S.S.; Sohn, H.S.; Jung, H.A.; Choi, J.S. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci. Biotechnol. Biochem. 2011, 75, 1472–1480. [Google Scholar] [CrossRef]
- Jung, H.A.; Yoon, N.Y.; Woo, M.H.; Choi, J.S. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci. 2008, 74, 1363–1365. [Google Scholar] [CrossRef]
- Iwai, K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice. Plant Foods Hum. Nutr. 2008, 63, 163–169. [Google Scholar] [CrossRef]
- Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown algaecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res. 2004, 27, 194–198. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Oh, J.H.; Choi, J.S.; Nam, T.J. Fucosterol from an edible brown alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar. Drugs 2018, 16, 368. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Kim, J.I.; Choung, S.Y.; Choi, J.S. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes. J. Pharm. Pharmacol. 2014, 66, 1180–1188. [Google Scholar] [CrossRef]
- Moon, H.E.; Ahn, B.R.; Jung, H.A.; Choi, J.S. Inhibitory activity of Ecklonia stolonifera and its isolated phlorotannins against Cu2+-induced low-density lipoprotein oxidation. Fish Sci. 2012, 78, 927–934. [Google Scholar] [CrossRef]
- Bang, C.Y.; Byun, J.H.; Choi, H.K.; Choi, J.S.; Choung, S.Y. Protective effects of Ecklonia stolonifera extract on ethanol-induced fatty liver in rats. Biomol. Ther. 2016, 24, 650. [Google Scholar] [CrossRef]
- Goo, H.R.; Choi, J.S.; Na, D.H. Quantitative determination of major phlorotannins in Ecklonia stolonifera. Arch. Pharm. Res. 2010, 33, 539–544. [Google Scholar] [CrossRef]
- Han, X.; Choi, S.I.; Men, X.; Lee, S.J.; Jin, H.; Oh, H.J.; Kim, E.; Kim, J.; Lee, B.Y.; Lee, O.H. Anti-Obesity Activities of Standardized Ecklonia stolonifera Extract in 3T3-L1 Preadipocytes and High-Fat-Diet-Fed ICR Mice. Appl. Sci. 2022, 12, 5115. [Google Scholar] [CrossRef]
- Lee, D.G.; Park, J.H.; Yoo, K.H.; Chung, I.S.; Lee, Y.H.; Lee, J.K.; Han, D.D.; Cho, S.M.; Baek, N.I. 24-Ethylcholesta-4, 24 (28)-dien-3, 6-dione from Osmanthus fragrans var. aurantiacus flowers inhibits the growth of human colon cancer cell line, HCT-116. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 206–210. [Google Scholar] [CrossRef]
- Lee, M.S.; Kwon, M.S.; Choi, J.W.; Shin, T.; No, H.K.; Choi, J.S.; Byun, D.S.; Kim, J.I.; Kim, H.R. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J. Agric. Food Chem. 2012, 60, 9120–9129. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Hernández, J.; Paseiro-Losada, P.; López-Cervantes, J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed. Chromatogr. 2004, 18, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jung, H.A.; Kang, M.J.; Choi, J.S.; Kim, G.D. Fucosterol, isolated from Ecklonia stolonifera, inhibits adipogenesis through modulation of FoxO1 pathway in 3T3-L1 adipocytes. J. Pharm. Pharmacol. 2017, 69, 325–333. [Google Scholar] [CrossRef]
- Jung, H.A.; Islam, M.N.; Lee, C.M.; Oh, S.H.; Lee, S.; Jung, J.H.; Choi, J.S. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chem.-Biol. Interact. 2013, 206, 55–62. [Google Scholar] [CrossRef]
- Yoon, J.S.; Kasin, Y.A.; Kim, S.J.; Woo, H.C.; Kim, H.R.; Kim, G.D. Dieckol, isolated from Ecklonia stolonifera, induces apoptosis in human hepatocellular carcinoma Hep3B cells. J. Nat. Med. 2013, 67, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.T.H.; Bangoura, I.; Kang, J.Y.; Cho, J.Y.; Joo, J.; Choi, Y.S.; Hwang, D.S.; Hong, Y.K. Comparison of Ecklonia cava, Ecklonia stolonifera and Eisenia bicyclis for phlorotannin extraction. J. Environ. Biol. 2014, 35, 713. [Google Scholar]
- Rajan, D.K.; Mohan, K.; Zhang, S.; Ganesan, A.R. Dieckol: A brown algal phlorotannin with biological potential. Biomed. Pharmacother. 2021, 142, 111988. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, J.; Shin, H.C.; Park, K. Regioselective syntheses and analyses of phlorofucofuroeckol-A derivatives. Bull. Korean Chem. Soc. 2021, 42, 1624–1632. [Google Scholar] [CrossRef]
- Yang, E.J.; Ham, Y.M.; Kim, D.; Kim, J.Y.; Hong, J.; Kim, M.J.; Moon, J.Y.; Lee, W.; Lee, N.; Hyun, C.G. Ecklonia stolonifera inhibits lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264. 7 macrophages. Biologia 2010, 65, 362–371. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Sun, X.; Liu, Y.; Zhou, Y.; Shin, H.C.; Wang, Y.; Shen, L.; Wang, C.; Wang, S.; et al. Voltammetric, spectroscopic, and cellular characterization of redox functionality of eckol and phlorofucofuroeckol-A: A comparative study. J. Food Biochem. 2019, 43, e12845. [Google Scholar] [CrossRef]
- Kim, H.J.; Dasagrandhi, C.; Kim, S.H.; Kim, B.G.; Eom, S.H.; Kim, Y.M. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian J. Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; An, R.B.; Yoon, N.Y.; Nam, T.J.; Choi, J.S. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in hep G2 cells. Arch. Pharm. Res. 2005, 28, 1376–1380. [Google Scholar] [CrossRef]
- Thomas, N.V.; Kim, S.K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 2011, 32, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med. 2012, 2, a006148. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.J.; Lee, M.; Shin, T.; Yoon, N.; Kim, J.H.; Kim, H.R. Eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells. Molecules 2014, 19, 15638–15652. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Torii, T.; Tanaka, R.; Matsushita, T. Inhibitory effect of extracts from the brown alga, Ecklonia stolonifera, on enzymes responsible for allergic reactions and degranulation in RBL-2H3 cells. Food Sci. Technol. Res. 2012, 18, 467–471. [Google Scholar] [CrossRef][Green Version]
- Lee, D.S.; Kang, M.S.; Hwang, H.J.; Eom, S.H.; Yang, J.Y.; Lee, M.S.; Lee, W.J.; Jeon, Y.J.; Choi, J.S.; Kim, Y.M. Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess Eng. 2008, 13, 758–764. [Google Scholar] [CrossRef]
- Seong, S.H.; Paudel, P.; Jung, H.A.; Choi, J.S. Identifying phlorofucofuroeckol-A as a dual inhibitor of amyloid-β25-35 self-aggregation and insulin glycation: Elucidation of the molecular mechanism of action. Mar. Drugs 2019, 17, 600. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef]
- Choi, J.S.; Bae, H.J.; Kim, S.J.; Choi, I.S. In vitro antibacterial and anti-inflammatory properties of seaweed extracts against acne inducing bacteria, Propionibacterium acnes. J. Environ. Biol. 2011, 32, 313. [Google Scholar] [PubMed]
- Eom, S.H.; Kang, M.S.; Kim, Y.M. Antibacterial activity of the Phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus. Fish. Aquat. Sci. 2008, 11, 1–6. [Google Scholar] [CrossRef][Green Version]
- Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem. 2021, 224, 113744. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Lee, K.; Chei, S.; Oh, H.J.; Lee, K.P.; Lee, B.Y. Ecklonia stolonifera extract suppresses lipid accumulation by promoting lipolysis and adipose browning in high-fat diet-induced obese male mice. Cells 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89. [Google Scholar] [PubMed]
- Kharkwal, H.; Joshi, D.D.; Panthari, P.R.E.E.T.I.; Pant, M.K.; Kharkwal, A.C. Algae as future drugs. Asian J. Pharm. Clin. Res. 2012, 5, 1–4. [Google Scholar]
- Shebis, Y.; Iluz, D.; Kinel-Tahan, Y.; Dubinsky, Z.; Yehoshua, Y. Natural antioxidants: Function and sources. Food Sci. Nutr. 2013, 4, 32918. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Li, J.W.; Ding, S.D.; Ding, X.L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005, 40, 3607–3613. [Google Scholar] [CrossRef]
- Jin, H.; Oh, H.J.; Kim, J.; Lee, K.P.; Han, X.; Lee, O.H.; Lee, B.Y. Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice. J. Funct. Foods 2021, 82, 104511. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent advances in Momordica charantia: Functional components and biological activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Jun, E.S.; Kim, Y.J.; Kim, H.H.; Park, S.Y. Gold nanoparticles using Ecklonia stolonifera protect human dermal fibroblasts from UVA-induced senescence through inhibiting MMP-1 and MMP-3. Mar. Drugs 2020, 18, 433. [Google Scholar] [CrossRef]
- Byun, J.H.; Kim, J.; Choung, S.Y. Hepaprotective effect of standardized ecklonia stolonifera formulation on CCl4-Induced liver injury in sprague-dawley rats. Biomol. Ther. 2018, 26, 218. [Google Scholar] [CrossRef]
- Jung, H.A.; Hyun, S.K.; Kim, H.R.; Choi, J.S. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish Sci. 2006, 72, 1292–1299. [Google Scholar] [CrossRef]
Active Compound | Extract Type | Source | Content (μg/g) | References |
---|---|---|---|---|
Fucosterol | Methanol extract | Lyophilized powder | 11,920.0 | [2,33] |
Ethanol extract | Lyophilized powder | 10,752.7 | [18] | |
24-hydroperoxy 24-vinylcholesterol | Ethanol extract | Lyophilized powder | 1792.1 | [18] |
Phloroglucinol | Methanol extract | Lyophilized powder | 240.0 | [34] |
- | [24] | |||
Ethanol extract | Air-dried powder | - | [21] | |
Lyophilized powder | 3920.0 | [18] | ||
Dioxinodehydroeckol | Methanol extract | Air-dried powder | - | [22] |
Lyophilized powder | 60.0 | [35] | ||
Ethanol extract | Dry powder in direct sunlight | - | [16] | |
Eckol | Methanol extract | Lyophilized powder | 280.0 | [35] |
- | [24] | |||
Ethanol extract | Air-dried powder | - | [21] | |
12.0–13.0 | [36] | |||
Lyophilized powder | 5400.0 | [18] | ||
Dry powder in direct sunlight | - | [16] | ||
Hexane Extract | Lipid-removed dried powder | 3000.0–3400.0 | [37] | |
Phlorofucofuroeckol A | Methanol extract | Air-dried powder | - | [22] |
Lyophilized powder | 150.0 | [35] | ||
- | [24] | |||
Ethanol extract | Air-dried powder | - | [21] | |
Lyophilized powder | 2280.0 | [18] | ||
Hexane Extract | Lipid-removed dried powder | 11.3–13.5 | [36] | |
7200.0–8200.0 | [37] | |||
Dieckol | Methanol extract | Air-dried powder | - | [22] |
Lyophilized powder | 1260.0 | [35] | ||
- | [24] | |||
Ethanol extract | Air-dried powder | 145.0–149.0 | [36] | |
Fresh ES | 26,760.0–28,080.0 | [38] | ||
Dry powder in direct sunlight | - | [16] | ||
Lyophilized powder | 3480.0 | [18] | ||
Hexane Extract | Lipid-removed dried powder | 29,400–30,800.0 | [37] | |
7-phloroeckol | Methanol extract | Lyophilized powder | 70.0 | [35] |
Ethanol extract | Lyophilized powder | 800.0 | [18] | |
2-phloroeckol | Ethanol extract | Dry powder in direct sunlight | - | [16] |
Lyophilized powder | 360.0 | [18] | ||
Phlorofucofuroeckol B | Ethanol extract | Dry powder in direct sunlight | - | [16] |
6,6′-bieckol | Ethanol extract | Dry powder in direct sunlight | - | [16] |
974-A | Ethanol extract | Air-dried powder | 122.5 | [21] |
974-B | Ethanol extract | Dry powder in direct sunlight | - | [16] |
Eckstolonol | Methanol extract | Lyophilized powder | - | [24] |
Triphlorethol-A | Ethanol extract | Lyophilized powder | 2400.0 | [18] |
Bioactive Compounds | Molecular Formula | Structure | References |
---|---|---|---|
Fucosterol | C29H48O | [34,39] | |
Phloroglucinol | C6H6O3 | [17,18,21,24,34] | |
Eckol | C18H12O9 | [16,18,21,24,35,36,37] | |
Eckstolonol | C18H10O9 | [24,31] | |
Dieckol | C36H22O18 | [16,18,22,24,35,36,37,38] | |
Dioxinodehydroeckol | C18H10O9 | [16,22,34,35] | |
Phlorofucofuroeckol A | C30H18O14 | [18,21,24,36,37] | |
Phlorofucofuroeckol B | C30H18O14 | [16,40] | |
7-phloroeckol | C24H16O12 | [18,35] | |
2′-phloroeckol | C24H16O12 | [16,18] | |
6,6′-bieckol | C36H22O18 | [16] | |
974-A | C48H30O23 | [21] | |
974-B | C48H30O23 | [16] |
Bioactive Compounds | Biological Activity | Major Findings | References |
---|---|---|---|
Fucosterol | Anti-diabetic | Inhibit the activity of aldose reductase. | [44] |
Anti-hepatotoxic | Ameliorate the increase in ROS levels and decrease in glutathione levels | [52] | |
Cognitive impairment improvement | Down-regulates the expression of glucose-regulated protein 78 | [33] | |
Anti-obesity | Inhibits adipocyte differentiation and lipid accumulation | [2,43] | |
Phloroglucinol | Anti-diabetic | Inhibit the activity of protein tyrosine phosphatase 1B | [28] |
Anti-obesity | Inhibit lipid accumulation | [17] | |
Antioxidant | Inhibit ROS generation | [31] | |
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Inhibit the activities of L-tyrosine and L-DOPA | [21] | ||
Eckol | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Anti-photoaging | Inhibit the expression of matrix metalloproteinase 1 | [25] | |
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Inhibit angiotensin converting enzyme activity | [54] | ||
Anti-obesity | Inhibit lipid accumulation | [17] | |
Antioxidant | Enhanced heme oxygenase-1 protein and mRNA expression | [55] | |
Inhibit ROS generation | [31] | ||
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Inhibit the activities of L-tyrosine and L-DOPA | [21] | ||
Eckstolonol | Treat neurological disorders | Inhibit acetylcholinesterase and butyrylcholinesterase activity | [18] |
Antioxidant | Inhibit ROS generation | [31] | |
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Dieckol | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Anti-photoaging | Inhibit the expression of matrix metalloproteinase 1 | [25] | |
Anti-cancer | Promotes the release of the apoptotic factor cytochrome c | [45] | |
Anti-obesity | Inhibits adipocyte differentiation and lipid accumulation | [38] | |
Treat neurological disorders | Inhibit the activity of human monoamine oxidase-A and B | [15] | |
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of the α-glucosidase enzyme | [28,56] | ||
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Inhibit angiotensin-converting enzyme activity | [54] | ||
Antibacterial | Anti-MRSA | [57] | |
Antioxidant | DPPH free radical scavenging activity | [22] | |
Inhibit ROS generation | [31] | ||
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Dioxinodehydroeckol | Antioxidant | DPPH free radical scavenging activity | [22] |
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Phlorofucofuroeckol A | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Treat neurological disorders | Inhibit acetylcholinesterase and butyrylcholinesterase activity | [18] | |
Inhibit the activity of human monoamine oxidase-A and B | [15] | ||
Anti-inflammatory | Inhibit the activity of inflammation-related proteins (iNOS, TNF-α, COX-2, IL-6, IL-1β, and NF-κB, AP-1) | [22,40,49] | |
Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] | ||
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of the α-glucosidase enzyme | [28,56] | ||
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Inhibit angiotensin-converting enzyme activity | [54] | ||
Anti-obesity | Inhibit lipid accumulation | [17] | |
Antioxidant | DPPH free radical scavenging activity | [22] | |
Inhibit ROS generation | [31] | ||
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Inhibit the activities of L-tyrosine and L-DOPA | [21] | ||
Phlorofucofuroeckol B | Anti-inflammatory | Inhibit the activity of inflammation-related proteins (iNOS, TNF-α, COX-2, IL-6, IL-1β, and NF-κB, AP-1) | [40] |
Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] | ||
Fucofuroeckol-A | Anti-allergy | Inhibit the production of TNF-α and IL-1β | [19] |
7-phloroeckol | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Anti-diabetic | Inhibit the activity of the α-glucosidase enzyme | [28,56] | |
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
2′-phloroeckol | Anti-inflammatory | Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] |
6,6′-bieckol | Anti-inflammatory | Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] |
974-A | Tyrosinase inhibition | Inhibit the activities of L-tyrosine and L-DOPA | [21] |
974-B | Anti-inflammatory | Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, X.; Han, X.; Lee, S.-J.; Oh, G.; Jin, H.; Oh, H.-J.; Kim, E.; Kim, J.; Lee, B.-Y.; Choi, S.-I.; et al. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Mar. Drugs 2022, 20, 607. https://doi.org/10.3390/md20100607
Men X, Han X, Lee S-J, Oh G, Jin H, Oh H-J, Kim E, Kim J, Lee B-Y, Choi S-I, et al. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Marine Drugs. 2022; 20(10):607. https://doi.org/10.3390/md20100607
Chicago/Turabian StyleMen, Xiao, Xionggao Han, Se-Jeong Lee, Geon Oh, Heegu Jin, Hyun-Ji Oh, Eunjin Kim, Jongwook Kim, Boo-Yong Lee, Sun-Il Choi, and et al. 2022. "In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds" Marine Drugs 20, no. 10: 607. https://doi.org/10.3390/md20100607
APA StyleMen, X., Han, X., Lee, S.-J., Oh, G., Jin, H., Oh, H.-J., Kim, E., Kim, J., Lee, B.-Y., Choi, S.-I., & Lee, O.-H. (2022). In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Marine Drugs, 20(10), 607. https://doi.org/10.3390/md20100607