In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds
Abstract
:1. Introduction
2. Extraction Methods
2.1. Methanol Extract
2.2. Ethanol Extract
2.3. Hexane Extract
3. Bioactive Compounds
3.1. Fucosterol
3.2. Eckol
3.3. Dieckol
3.4. Phlorofucofuroeckol A
3.5. Other Components
4. Bioactivities
4.1. Antibacterial Activity
4.2. Tyrosinase Inhibition
4.3. Antioxidant Activity
4.4. Anti-Obesity Activity
4.5. Anti-Diabetic Activity
4.6. Anti-Inflammatory Activity
4.7. Treat Neurological Disorders
4.8. Other Functionalities
5. Literature Search
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, H.S.; Chung, H.Y.; Jung, J.H.; Son, B.W.; Choi, J.S. A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull. 2003, 51, 1012–1014. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Jung, H.J.; Jeong, H.Y.; Kwon, H.J.; Kim, M.S.; Choi, J.S. Anti-adipogenic activity of the edible brown alga Ecklonia stolonifera and its constituent fucosterol in 3T3-L1 adipocytes. Arch. Pharm. Res. 2014, 37, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Notoya, M.; Aruga, Y. Relation between size and age of holdfasts of Ecklonia stolonifera Okamura (Laminariales, Phaeophyta) in northern Honshu, Japan. In Thirteenth International Seaweed Symposium; Springer: Dordrecht, The Netherlands, 1990; pp. 241–246. [Google Scholar]
- Hwang, E.K.; Baek, J.M.; Park, C.S. The mass cultivation of Ecklonia stolonifera Okamura as a summer feed for the abalone industry in Korea. J. Appl. Phycol. 2009, 21, 585–590. [Google Scholar] [CrossRef]
- Kim, N.G.; Yoo, J.S. Structure and function of submarine forest 2. Population dynamics of Ecklonia stolonifera as a submarine forest-forming component. Algae 2003, 18, 295–299. [Google Scholar] [CrossRef]
- Hwang, E.K.; Gong, Y.G.; Hwang, I.K.; Park, E.J.; Park, C.S. Cultivation of the two perennial brown algae Ecklonia cava and E. stolonifera for abalone feeds in Korea. J. Appl. Phycol. 2013, 25, 825–829. [Google Scholar] [CrossRef]
- Kuda, T.; Ikemori, T. Minerals, polysaccharides and antioxidant properties of aqueous solutions obtained from macroalgal beach-casts in the Noto Peninsula, Ishikawa, Japan. Food Chem. 2009, 112, 575–581. [Google Scholar] [CrossRef]
- Koirala, P.; Jung, H.A.; Choi, J.S. Recent advances in pharmacological research on Ecklonia species: A review. Arch. Pharm. Res. 2017, 40, 981–1005. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, T.; Sunagawa, Y.; Maekawa, T.; Funamoto, M.; Shimizu, S.; Shimizu, K.; Katanasaka, Y.; Komiyama, M.; Hawke, P.; Hara, H.; et al. Ecklonia stolonifera Okamura Extract Suppresses Myocardial Infarction-Induced Left Ventricular Systolic Dysfunction by Inhibiting p300-HAT Activity. Nutrients 2022, 14, 580. [Google Scholar] [CrossRef] [PubMed]
- Kato, Y.; Odagiri, S.; Teraoka, K.; Ito, Y. Polysaccharide composition of Ecklonia stolonifera Okamura and their enzymatic hydrolysis. Trans. Mater. Res. Soc. 2007, 32, 1159–1162. [Google Scholar] [CrossRef]
- Singh, I.P.; Bharate, S.B. Phloroglucinol compounds of natural origin. Nat. Prod. Rep. 2006, 23, 558–591. [Google Scholar] [CrossRef]
- Wang, T.; Jonsdottir, R.; Ólafsdóttir, G. Total phenolic compounds, radical scavenging and metal chelation of extracts from Icelandic seaweeds. Food Chem. 2009, 116, 240–248. [Google Scholar] [CrossRef]
- Jormalainen, V.; Honkanen, T. Variation in natural selection for growth and phlorotannins in the brown alga Fucus vesiculosus. J. Evol. Biol. 2004, 17, 807–820. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Pihlaja, K.; Jormalainen, V. High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem. Anal. 2007, 18, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.H.; Paudel, P.; Choi, J.W.; Ahn, D.H.; Nam, T.J.; Jung, H.A.; Choi, J.S. Probing multi-target action of phlorotannins as new monoamine oxidase inhibitors and dopaminergic receptor modulators with the potential for treatment of neuronal disorders. Mar. Drugs 2019, 17, 377. [Google Scholar] [CrossRef]
- Wei, R.; Lee, M.S.; Lee, B.; Oh, C.W.; Choi, C.G.; Kim, H.R. Isolation and identification of anti-inflammatory compounds from ethyl acetate fraction of Ecklonia stolonifera and their anti-inflammatory action. J. Appl. Phycol. 2016, 28, 3535–3545. [Google Scholar] [CrossRef]
- Jung, H.A.; Jung, H.J.; Jeong, H.Y.; Kwon, H.J.; Ali, M.Y.; Choi, J.S. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBPα and PPARγ. Fitoterapia 2014, 92, 260–269. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Chung, H.Y.; Kim, H.R.; Choi, J.E. Acetyl-and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish Sci. 2008, 74, 200–207. [Google Scholar] [CrossRef]
- Vo, T.S.; Kim, S.K.; Ryu, B.; Ngo, D.H.; Yoon, N.Y.; Bach, L.G.; Hang, N.T.N.; Ngo, D.N. The suppressive activity of fucofuroeckol-A derived from brown algal Ecklonia stolonifera Okamura on UVB-induced mast cell degranulation. Mar. Drugs 2018, 16, 1. [Google Scholar] [CrossRef]
- Kim, A.R.; Lee, M.S.; Shin, T.S.; Hua, H.; Jang, B.C.; Choi, J.S.; Byuna, D.S.; Utsuki, T.; Ingram, D.; Kim, H.R. Phlorofucofuroeckol A inhibits the LPS-stimulated iNOS and COX-2 expressions in macrophages via inhibition of NF-κB, Akt, and p38 MAPK. Toxicol. In Vitro 2011, 25, 1789–1795. [Google Scholar] [CrossRef]
- Manandhar, B.; Wagle, A.; Seong, S.H.; Paudel, P.; Kim, H.R.; Jung, H.A.; Choi, J.S. Phlorotannins with potential anti-tyrosinase and antioxidant activity isolated from the marine seaweed Ecklonia stolonifera. Antioxidants 2019, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Kim, A.R.; Shin, T.S.; Lee, M.S.; Park, J.Y.; Park, K.E.; Yoon, N.Y.; Kim, J.S.; Choi, J.S.; Jang, B.C.; Byun, D.S.; et al. Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J. Agric. Food Chem. 2009, 57, 3483–3489. [Google Scholar] [CrossRef] [PubMed]
- Kuda, T.; Kunii, T.; Goto, H.; Suzuki, T.; Yano, T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem. 2007, 103, 900–905. [Google Scholar] [CrossRef]
- Kang, H.S.; Kim, H.R.; Byun, D.S.; Son, B.W.; Nam, T.J.; Choi, J.S. Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 2004, 27, 1226–1232. [Google Scholar] [CrossRef]
- Joe, M.J.; Kim, S.N.; Choi, H.Y.; Shin, W.S.; Park, G.M.; Kang, D.W.; Kim, Y.K. The inhibitory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol. Pharm. Bull. 2006, 29, 1735–1739. [Google Scholar] [CrossRef]
- Yoon, N.Y.; Kim, H.R.; Chung, H.Y.; Choi, J.S. Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats. Arch. Pharm. Res. 2008, 31, 1564–1571. [Google Scholar] [CrossRef]
- Ryu, B.; Li, Y.; Qian, Z.J.; Kim, M.M.; Kim, S.K. Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: Implication for chronic articular disease. Chem.-Biol. Interact. 2009, 179, 192–201. [Google Scholar] [CrossRef]
- Moon, H.E.; Islam, M.N.; Ahn, B.R.; Chowdhury, S.S.; Sohn, H.S.; Jung, H.A.; Choi, J.S. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis. Biosci. Biotechnol. Biochem. 2011, 75, 1472–1480. [Google Scholar] [CrossRef]
- Jung, H.A.; Yoon, N.Y.; Woo, M.H.; Choi, J.S. Inhibitory activities of extracts from several kinds of seaweeds and phlorotannins from the brown alga Ecklonia stolonifera on glucose-mediated protein damage and rat lens aldose reductase. Fish Sci. 2008, 74, 1363–1365. [Google Scholar] [CrossRef]
- Iwai, K. Antidiabetic and antioxidant effects of polyphenols in brown alga Ecklonia stolonifera in genetically diabetic KK-Ay mice. Plant Foods Hum. Nutr. 2008, 63, 163–169. [Google Scholar] [CrossRef]
- Kang, H.S.; Chung, H.Y.; Kim, J.Y.; Son, B.W.; Jung, H.A.; Choi, J.S. Inhibitory phlorotannins from the edible brown algaecklonia stolonifera on total reactive oxygen species (ROS) generation. Arch. Pharm. Res. 2004, 27, 194–198. [Google Scholar] [CrossRef]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Oh, J.H.; Choi, J.S.; Nam, T.J. Fucosterol from an edible brown alga Ecklonia stolonifera prevents soluble amyloid beta-induced cognitive dysfunction in aging rats. Mar. Drugs 2018, 16, 368. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.A.; Kim, J.I.; Choung, S.Y.; Choi, J.S. Protective effect of the edible brown alga Ecklonia stolonifera on doxorubicin-induced hepatotoxicity in primary rat hepatocytes. J. Pharm. Pharmacol. 2014, 66, 1180–1188. [Google Scholar] [CrossRef]
- Moon, H.E.; Ahn, B.R.; Jung, H.A.; Choi, J.S. Inhibitory activity of Ecklonia stolonifera and its isolated phlorotannins against Cu2+-induced low-density lipoprotein oxidation. Fish Sci. 2012, 78, 927–934. [Google Scholar] [CrossRef]
- Bang, C.Y.; Byun, J.H.; Choi, H.K.; Choi, J.S.; Choung, S.Y. Protective effects of Ecklonia stolonifera extract on ethanol-induced fatty liver in rats. Biomol. Ther. 2016, 24, 650. [Google Scholar] [CrossRef]
- Goo, H.R.; Choi, J.S.; Na, D.H. Quantitative determination of major phlorotannins in Ecklonia stolonifera. Arch. Pharm. Res. 2010, 33, 539–544. [Google Scholar] [CrossRef]
- Han, X.; Choi, S.I.; Men, X.; Lee, S.J.; Jin, H.; Oh, H.J.; Kim, E.; Kim, J.; Lee, B.Y.; Lee, O.H. Anti-Obesity Activities of Standardized Ecklonia stolonifera Extract in 3T3-L1 Preadipocytes and High-Fat-Diet-Fed ICR Mice. Appl. Sci. 2022, 12, 5115. [Google Scholar] [CrossRef]
- Lee, D.G.; Park, J.H.; Yoo, K.H.; Chung, I.S.; Lee, Y.H.; Lee, J.K.; Han, D.D.; Cho, S.M.; Baek, N.I. 24-Ethylcholesta-4, 24 (28)-dien-3, 6-dione from Osmanthus fragrans var. aurantiacus flowers inhibits the growth of human colon cancer cell line, HCT-116. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 206–210. [Google Scholar] [CrossRef]
- Lee, M.S.; Kwon, M.S.; Choi, J.W.; Shin, T.; No, H.K.; Choi, J.S.; Byun, D.S.; Kim, J.I.; Kim, H.R. Anti-inflammatory activities of an ethanol extract of Ecklonia stolonifera in lipopolysaccharide-stimulated RAW 264.7 murine macrophage cells. J. Agric. Food Chem. 2012, 60, 9120–9129. [Google Scholar] [CrossRef]
- Rogowska, A.; Szakiel, A. The role of sterols in plant response to abiotic stress. Phytochem. Rev. 2020, 19, 1525–1538. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Hernández, J.; Paseiro-Losada, P.; López-Cervantes, J. An HPLC method for the quantification of sterols in edible seaweeds. Biomed. Chromatogr. 2004, 18, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Jung, H.A.; Kang, M.J.; Choi, J.S.; Kim, G.D. Fucosterol, isolated from Ecklonia stolonifera, inhibits adipogenesis through modulation of FoxO1 pathway in 3T3-L1 adipocytes. J. Pharm. Pharmacol. 2017, 69, 325–333. [Google Scholar] [CrossRef]
- Jung, H.A.; Islam, M.N.; Lee, C.M.; Oh, S.H.; Lee, S.; Jung, J.H.; Choi, J.S. Kinetics and molecular docking studies of an anti-diabetic complication inhibitor fucosterol from edible brown algae Eisenia bicyclis and Ecklonia stolonifera. Chem.-Biol. Interact. 2013, 206, 55–62. [Google Scholar] [CrossRef]
- Yoon, J.S.; Kasin, Y.A.; Kim, S.J.; Woo, H.C.; Kim, H.R.; Kim, G.D. Dieckol, isolated from Ecklonia stolonifera, induces apoptosis in human hepatocellular carcinoma Hep3B cells. J. Nat. Med. 2013, 67, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.T.H.; Bangoura, I.; Kang, J.Y.; Cho, J.Y.; Joo, J.; Choi, Y.S.; Hwang, D.S.; Hong, Y.K. Comparison of Ecklonia cava, Ecklonia stolonifera and Eisenia bicyclis for phlorotannin extraction. J. Environ. Biol. 2014, 35, 713. [Google Scholar]
- Rajan, D.K.; Mohan, K.; Zhang, S.; Ganesan, A.R. Dieckol: A brown algal phlorotannin with biological potential. Biomed. Pharmacother. 2021, 142, 111988. [Google Scholar] [CrossRef]
- Kim, Y.; Shin, J.; Shin, H.C.; Park, K. Regioselective syntheses and analyses of phlorofucofuroeckol-A derivatives. Bull. Korean Chem. Soc. 2021, 42, 1624–1632. [Google Scholar] [CrossRef]
- Yang, E.J.; Ham, Y.M.; Kim, D.; Kim, J.Y.; Hong, J.; Kim, M.J.; Moon, J.Y.; Lee, W.; Lee, N.; Hyun, C.G. Ecklonia stolonifera inhibits lipopolysaccharide-induced production of nitric oxide, prostaglandin E2, and proinflammatory cytokines in RAW264. 7 macrophages. Biologia 2010, 65, 362–371. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Sun, X.; Liu, Y.; Zhou, Y.; Shin, H.C.; Wang, Y.; Shen, L.; Wang, C.; Wang, S.; et al. Voltammetric, spectroscopic, and cellular characterization of redox functionality of eckol and phlorofucofuroeckol-A: A comparative study. J. Food Biochem. 2019, 43, e12845. [Google Scholar] [CrossRef]
- Kim, H.J.; Dasagrandhi, C.; Kim, S.H.; Kim, B.G.; Eom, S.H.; Kim, Y.M. In vitro antibacterial activity of phlorotannins from edible brown algae, Eisenia bicyclis against streptomycin-resistant Listeria monocytogenes. Indian J. Microbiol. 2018, 58, 105–108. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.C.; An, R.B.; Yoon, N.Y.; Nam, T.J.; Choi, J.S. Hepatoprotective constituents of the edible brown alga Ecklonia stolonifera on tacrine-induced cytotoxicity in hep G2 cells. Arch. Pharm. Res. 2005, 28, 1376–1380. [Google Scholar] [CrossRef]
- Thomas, N.V.; Kim, S.K. Potential pharmacological applications of polyphenolic derivatives from marine brown algae. Environ. Toxicol. Pharmacol. 2011, 32, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Tarawneh, R.; Holtzman, D.M. The clinical problem of symptomatic Alzheimer disease and mild cognitive impairment. Cold Spring Harb. Perspect. Med. 2012, 2, a006148. [Google Scholar] [CrossRef] [PubMed]
- Jun, Y.J.; Lee, M.; Shin, T.; Yoon, N.; Kim, J.H.; Kim, H.R. Eckol enhances heme oxygenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells. Molecules 2014, 19, 15638–15652. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, Y.; Torii, T.; Tanaka, R.; Matsushita, T. Inhibitory effect of extracts from the brown alga, Ecklonia stolonifera, on enzymes responsible for allergic reactions and degranulation in RBL-2H3 cells. Food Sci. Technol. Res. 2012, 18, 467–471. [Google Scholar] [CrossRef]
- Lee, D.S.; Kang, M.S.; Hwang, H.J.; Eom, S.H.; Yang, J.Y.; Lee, M.S.; Lee, W.J.; Jeon, Y.J.; Choi, J.S.; Kim, Y.M. Synergistic effect between dieckol from Ecklonia stolonifera and β-lactams against methicillin-resistant Staphylococcus aureus. Biotechnol. Bioprocess Eng. 2008, 13, 758–764. [Google Scholar] [CrossRef]
- Seong, S.H.; Paudel, P.; Jung, H.A.; Choi, J.S. Identifying phlorofucofuroeckol-A as a dual inhibitor of amyloid-β25-35 self-aggregation and insulin glycation: Elucidation of the molecular mechanism of action. Mar. Drugs 2019, 17, 600. [Google Scholar] [CrossRef] [PubMed]
- Nagayama, K.; Iwamura, Y.; Shibata, T.; Hirayama, I.; Nakamura, T. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicrob. Chemother. 2002, 50, 889–893. [Google Scholar] [CrossRef]
- Choi, J.S.; Bae, H.J.; Kim, S.J.; Choi, I.S. In vitro antibacterial and anti-inflammatory properties of seaweed extracts against acne inducing bacteria, Propionibacterium acnes. J. Environ. Biol. 2011, 32, 313. [Google Scholar] [PubMed]
- Eom, S.H.; Kang, M.S.; Kim, Y.M. Antibacterial activity of the Phaeophyta Ecklonia stolonifera on methicillin-resistant Staphylococcus aureus. Fish. Aquat. Sci. 2008, 11, 1–6. [Google Scholar] [CrossRef]
- Kim, Y.J.; Uyama, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Feng, L.; Liu, L.; Wang, F.; Ouyang, L.; Zhang, L.; Hu, X.; Wang, G. Recent advances in the design and discovery of synthetic tyrosinase inhibitors. Eur. J. Med. Chem. 2021, 224, 113744. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Lee, K.; Chei, S.; Oh, H.J.; Lee, K.P.; Lee, B.Y. Ecklonia stolonifera extract suppresses lipid accumulation by promoting lipolysis and adipose browning in high-fat diet-induced obese male mice. Cells 2020, 9, 871. [Google Scholar] [CrossRef] [PubMed]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 2008, 4, 89. [Google Scholar] [PubMed]
- Kharkwal, H.; Joshi, D.D.; Panthari, P.R.E.E.T.I.; Pant, M.K.; Kharkwal, A.C. Algae as future drugs. Asian J. Pharm. Clin. Res. 2012, 5, 1–4. [Google Scholar]
- Shebis, Y.; Iluz, D.; Kinel-Tahan, Y.; Dubinsky, Z.; Yehoshua, Y. Natural antioxidants: Function and sources. Food Sci. Nutr. 2013, 4, 32918. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Li, J.W.; Ding, S.D.; Ding, X.L. Comparison of antioxidant capacities of extracts from five cultivars of Chinese jujube. Process Biochem. 2005, 40, 3607–3613. [Google Scholar] [CrossRef]
- Jin, H.; Oh, H.J.; Kim, J.; Lee, K.P.; Han, X.; Lee, O.H.; Lee, B.Y. Effects of Ecklonia stolonifera extract on the obesity and skeletal muscle regeneration in high-fat diet-fed mice. J. Funct. Foods 2021, 82, 104511. [Google Scholar] [CrossRef]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef]
- Jia, S.; Shen, M.; Zhang, F.; Xie, J. Recent advances in Momordica charantia: Functional components and biological activities. Int. J. Mol. Sci. 2017, 18, 2555. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2010, 33, S62–S69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Jeon, Y.J. Anti-diabetic effects of brown algae derived phlorotannins, marine polyphenols through diverse mechanisms. Fitoterapia 2013, 86, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Jun, E.S.; Kim, Y.J.; Kim, H.H.; Park, S.Y. Gold nanoparticles using Ecklonia stolonifera protect human dermal fibroblasts from UVA-induced senescence through inhibiting MMP-1 and MMP-3. Mar. Drugs 2020, 18, 433. [Google Scholar] [CrossRef]
- Byun, J.H.; Kim, J.; Choung, S.Y. Hepaprotective effect of standardized ecklonia stolonifera formulation on CCl4-Induced liver injury in sprague-dawley rats. Biomol. Ther. 2018, 26, 218. [Google Scholar] [CrossRef]
- Jung, H.A.; Hyun, S.K.; Kim, H.R.; Choi, J.S. Angiotensin-converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera. Fish Sci. 2006, 72, 1292–1299. [Google Scholar] [CrossRef]
Active Compound | Extract Type | Source | Content (μg/g) | References |
---|---|---|---|---|
Fucosterol | Methanol extract | Lyophilized powder | 11,920.0 | [2,33] |
Ethanol extract | Lyophilized powder | 10,752.7 | [18] | |
24-hydroperoxy 24-vinylcholesterol | Ethanol extract | Lyophilized powder | 1792.1 | [18] |
Phloroglucinol | Methanol extract | Lyophilized powder | 240.0 | [34] |
- | [24] | |||
Ethanol extract | Air-dried powder | - | [21] | |
Lyophilized powder | 3920.0 | [18] | ||
Dioxinodehydroeckol | Methanol extract | Air-dried powder | - | [22] |
Lyophilized powder | 60.0 | [35] | ||
Ethanol extract | Dry powder in direct sunlight | - | [16] | |
Eckol | Methanol extract | Lyophilized powder | 280.0 | [35] |
- | [24] | |||
Ethanol extract | Air-dried powder | - | [21] | |
12.0–13.0 | [36] | |||
Lyophilized powder | 5400.0 | [18] | ||
Dry powder in direct sunlight | - | [16] | ||
Hexane Extract | Lipid-removed dried powder | 3000.0–3400.0 | [37] | |
Phlorofucofuroeckol A | Methanol extract | Air-dried powder | - | [22] |
Lyophilized powder | 150.0 | [35] | ||
- | [24] | |||
Ethanol extract | Air-dried powder | - | [21] | |
Lyophilized powder | 2280.0 | [18] | ||
Hexane Extract | Lipid-removed dried powder | 11.3–13.5 | [36] | |
7200.0–8200.0 | [37] | |||
Dieckol | Methanol extract | Air-dried powder | - | [22] |
Lyophilized powder | 1260.0 | [35] | ||
- | [24] | |||
Ethanol extract | Air-dried powder | 145.0–149.0 | [36] | |
Fresh ES | 26,760.0–28,080.0 | [38] | ||
Dry powder in direct sunlight | - | [16] | ||
Lyophilized powder | 3480.0 | [18] | ||
Hexane Extract | Lipid-removed dried powder | 29,400–30,800.0 | [37] | |
7-phloroeckol | Methanol extract | Lyophilized powder | 70.0 | [35] |
Ethanol extract | Lyophilized powder | 800.0 | [18] | |
2-phloroeckol | Ethanol extract | Dry powder in direct sunlight | - | [16] |
Lyophilized powder | 360.0 | [18] | ||
Phlorofucofuroeckol B | Ethanol extract | Dry powder in direct sunlight | - | [16] |
6,6′-bieckol | Ethanol extract | Dry powder in direct sunlight | - | [16] |
974-A | Ethanol extract | Air-dried powder | 122.5 | [21] |
974-B | Ethanol extract | Dry powder in direct sunlight | - | [16] |
Eckstolonol | Methanol extract | Lyophilized powder | - | [24] |
Triphlorethol-A | Ethanol extract | Lyophilized powder | 2400.0 | [18] |
Bioactive Compounds | Molecular Formula | Structure | References |
---|---|---|---|
Fucosterol | C29H48O | [34,39] | |
Phloroglucinol | C6H6O3 | [17,18,21,24,34] | |
Eckol | C18H12O9 | [16,18,21,24,35,36,37] | |
Eckstolonol | C18H10O9 | [24,31] | |
Dieckol | C36H22O18 | [16,18,22,24,35,36,37,38] | |
Dioxinodehydroeckol | C18H10O9 | [16,22,34,35] | |
Phlorofucofuroeckol A | C30H18O14 | [18,21,24,36,37] | |
Phlorofucofuroeckol B | C30H18O14 | [16,40] | |
7-phloroeckol | C24H16O12 | [18,35] | |
2′-phloroeckol | C24H16O12 | [16,18] | |
6,6′-bieckol | C36H22O18 | [16] | |
974-A | C48H30O23 | [21] | |
974-B | C48H30O23 | [16] |
Bioactive Compounds | Biological Activity | Major Findings | References |
---|---|---|---|
Fucosterol | Anti-diabetic | Inhibit the activity of aldose reductase. | [44] |
Anti-hepatotoxic | Ameliorate the increase in ROS levels and decrease in glutathione levels | [52] | |
Cognitive impairment improvement | Down-regulates the expression of glucose-regulated protein 78 | [33] | |
Anti-obesity | Inhibits adipocyte differentiation and lipid accumulation | [2,43] | |
Phloroglucinol | Anti-diabetic | Inhibit the activity of protein tyrosine phosphatase 1B | [28] |
Anti-obesity | Inhibit lipid accumulation | [17] | |
Antioxidant | Inhibit ROS generation | [31] | |
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Inhibit the activities of L-tyrosine and L-DOPA | [21] | ||
Eckol | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Anti-photoaging | Inhibit the expression of matrix metalloproteinase 1 | [25] | |
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Inhibit angiotensin converting enzyme activity | [54] | ||
Anti-obesity | Inhibit lipid accumulation | [17] | |
Antioxidant | Enhanced heme oxygenase-1 protein and mRNA expression | [55] | |
Inhibit ROS generation | [31] | ||
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Inhibit the activities of L-tyrosine and L-DOPA | [21] | ||
Eckstolonol | Treat neurological disorders | Inhibit acetylcholinesterase and butyrylcholinesterase activity | [18] |
Antioxidant | Inhibit ROS generation | [31] | |
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Dieckol | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Anti-photoaging | Inhibit the expression of matrix metalloproteinase 1 | [25] | |
Anti-cancer | Promotes the release of the apoptotic factor cytochrome c | [45] | |
Anti-obesity | Inhibits adipocyte differentiation and lipid accumulation | [38] | |
Treat neurological disorders | Inhibit the activity of human monoamine oxidase-A and B | [15] | |
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of the α-glucosidase enzyme | [28,56] | ||
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Inhibit angiotensin-converting enzyme activity | [54] | ||
Antibacterial | Anti-MRSA | [57] | |
Antioxidant | DPPH free radical scavenging activity | [22] | |
Inhibit ROS generation | [31] | ||
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Dioxinodehydroeckol | Antioxidant | DPPH free radical scavenging activity | [22] |
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Phlorofucofuroeckol A | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Treat neurological disorders | Inhibit acetylcholinesterase and butyrylcholinesterase activity | [18] | |
Inhibit the activity of human monoamine oxidase-A and B | [15] | ||
Anti-inflammatory | Inhibit the activity of inflammation-related proteins (iNOS, TNF-α, COX-2, IL-6, IL-1β, and NF-κB, AP-1) | [22,40,49] | |
Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] | ||
Anti-diabetic | Inhibits amyloid-β25-35 self-aggregation | [53] | |
Inhibit the activity of the α-glucosidase enzyme | [28,56] | ||
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
Inhibit angiotensin-converting enzyme activity | [54] | ||
Anti-obesity | Inhibit lipid accumulation | [17] | |
Antioxidant | DPPH free radical scavenging activity | [22] | |
Inhibit ROS generation | [31] | ||
Tyrosinase inhibition | Inhibition of L-tyrosine activity | [24] | |
Inhibit the activities of L-tyrosine and L-DOPA | [21] | ||
Phlorofucofuroeckol B | Anti-inflammatory | Inhibit the activity of inflammation-related proteins (iNOS, TNF-α, COX-2, IL-6, IL-1β, and NF-κB, AP-1) | [40] |
Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] | ||
Fucofuroeckol-A | Anti-allergy | Inhibit the production of TNF-α and IL-1β | [19] |
7-phloroeckol | Anti-atherosclerotic | Inhibit low-density lipoprotein oxidation | [35] |
Anti-diabetic | Inhibit the activity of the α-glucosidase enzyme | [28,56] | |
Inhibit the activity of protein tyrosine phosphatase 1B | [28] | ||
2′-phloroeckol | Anti-inflammatory | Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] |
6,6′-bieckol | Anti-inflammatory | Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] |
974-A | Tyrosinase inhibition | Inhibit the activities of L-tyrosine and L-DOPA | [21] |
974-B | Anti-inflammatory | Inhibit the activity of degranulated enzymes (lipoxygenase and hyaluronidase) | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Men, X.; Han, X.; Lee, S.-J.; Oh, G.; Jin, H.; Oh, H.-J.; Kim, E.; Kim, J.; Lee, B.-Y.; Choi, S.-I.; et al. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Mar. Drugs 2022, 20, 607. https://doi.org/10.3390/md20100607
Men X, Han X, Lee S-J, Oh G, Jin H, Oh H-J, Kim E, Kim J, Lee B-Y, Choi S-I, et al. In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Marine Drugs. 2022; 20(10):607. https://doi.org/10.3390/md20100607
Chicago/Turabian StyleMen, Xiao, Xionggao Han, Se-Jeong Lee, Geon Oh, Heegu Jin, Hyun-Ji Oh, Eunjin Kim, Jongwook Kim, Boo-Yong Lee, Sun-Il Choi, and et al. 2022. "In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds" Marine Drugs 20, no. 10: 607. https://doi.org/10.3390/md20100607
APA StyleMen, X., Han, X., Lee, S. -J., Oh, G., Jin, H., Oh, H. -J., Kim, E., Kim, J., Lee, B. -Y., Choi, S. -I., & Lee, O. -H. (2022). In-Depth Understanding of Ecklonia stolonifera Okamura: A Review of Its Bioactivities and Bioactive Compounds. Marine Drugs, 20(10), 607. https://doi.org/10.3390/md20100607