Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth Characteristics of the Bacterial Culture S. cavourensis SV 21 within the Liquid Marine Broth (MB) and on Marine Agar (MA)
2.2. Physicochemical Characteristics of S. cavourensis SV 21 Supernatant
2.3. Purification of the Two Distinct Melanin Forms Produced by S. cavourensis SV 21: Water-soluble (WSM) and Particulate Melanin (PM)
2.4. Characterisation and Comparison of SM, AM, PDM, and PPM
2.4.1. Solubility Properties of SM, AM, PDM, and PPM in Organic and Inorganic Solutions
2.4.2. Scanning Electron Microscopy (SEM)
2.4.3. UV-VIS Absorption Spectra of SM, AM, PDM, and PPM Dissolved in Alkaline Solution
2.4.4. Elemental Analysis of SM, AM, PDM, and PPM
2.4.5. Comparing Structural Similarities of SM, AM, PDM, and PPM using RAMAN Spectroscopy
2.5. Bioactivities of the Different Melanin Samples
2.5.1. Antioxidizing Capacity, Radical Scavenging Activity of SM, AM, PDM, and PPM, and the Role of Melanin in UV Protection
2.5.2. Potential Antibacterial Role of Melanin Derived from S. cavourensis SV 21
2.5.3. Anti-Quorum Sensing Activity of SM, AM, and PDM
3. Conclusions
4. Materials and Methods
4.1. Culture Conditions of S. cavourensis SV 21 and the Experimental Design
4.2. Purification of Particulate (PM) and Water-Soluble Melanin (WSM)
4.2.1. AM and PDM
4.2.2. Purified Particulate Melanin (PPM) from PM
4.3. Analysis of the Melanin
4.3.1. UV-VIS Profile
4.3.2. Scanning Electron Microscope (SEM) Coupled to Energy-Dispersive X-Ray (EDX) Analysis
4.3.3. Elemental Combustion Analysis
4.3.4. Solubility Properties of the Different Melanin Samples
4.3.5. RAMAN Spectroscopy
4.4. Bioactivities of the Samples
4.4.1. Antioxidant and Radical Scavenging Activity
4.4.2. Antibacterial Activity of the Different Melanin Samples
4.4.3. Anti-Quorum Sensing Activity
4.4.4. Survival of the Melanin Producing S. cavourensis SV 21 Strain after Germicidal UV-C Irradiation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dastager, S.G.; Wen-Jun, L.; Dayanand, A.; Shu-Kun, T.; Xin-Peng, T.; Xiao-Yang, Z.; Li-Hua, X.; Cheng-Lin, J. Seperation, identification and analysis of pigment (melanin) production in Streptomyces. Afr. J. Biotechnol. 2006, 5, 1131–1134. [Google Scholar]
- Arai, T.; Mikami, Y. Chromogenicity of Streptomyces. Appl. Microbiol. 1972, 23, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Arai, T.; Mikami, Y. Chromogenesis mirabilis in Streptomyces griseus. Appl. Microbiol. 1972, 24, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, V.; Filippova, S.; Rybakova, A. nature of the brown pigment and the composition of the phenol oxidases of Streptomyces galbus. Mikrobiologiia 1984, 53, 251–256. [Google Scholar] [PubMed]
- Yang, H.-Y.; Chen, C.W. Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: A case of double-edged sword. PLoS ONE 2009, 4, e7462. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Li, Y.; Li, Y. Metal ions driven production, characterization and bioactivity of extracellular melanin from Streptomyces sp. ZL-24. Int. J. Biol. Macromol. 2019, 123, 521–530. [Google Scholar] [CrossRef]
- El-Naggar, N.E.; El-Ewasy, S.M. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Sci. Rep. 2017, 7, 42129. [Google Scholar] [CrossRef]
- Li, C.; Ji, C.; Tang, B. Purification, characterisation and biological activity of melanin from Streptomyces sp. FEMS Microbiol. Lett. 2018, 365, fny077. [Google Scholar] [CrossRef]
- Sivaperumal, P.; Kamala, K.; Rajaram, R. Bioactive DOPA melanin isolated and characterised from a marine actinobacterium Streptomyces sp. MVCS6 from Versova coast. Nat. Prod. Res. 2015, 29, 2117–2121. [Google Scholar] [CrossRef]
- Dholakiya, R.N.; Kumar, M.A.; Mody, K.H. Production and characterization of melanin from Streptomyces cavourensis strain RD8 using response surface optimization. EPP 2017, 2, 168–178. [Google Scholar]
- D’Ischia, M.; Wakamatsu, K.; Napolitano, A.; Briganti, S.; Garcia-Borron, J.C.; Kovacs, D.; Meredith, P.; Pezzella, A.; Picardo, M.; Sarna, T. Melanins and melanogenesis: Methods, standards, protocols. Pigm. Cell Melanoma R. 2013, 26, 616–633. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Rao, Z.; Yang, T.; Man, Z.; Xu, M.; Zhang, X. High-level production of melanin by a novel isolate of Streptomyces kathirae. FEMS Microbiol. Lett. 2014, 357, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Ito, S. Reexamination of the structure of eumelanin. BBA Gen. Subj. 1986, 883, 155–161. [Google Scholar] [CrossRef]
- Aghajanyan, A.E.; Hambardzumyan, A.A.; Hovsepyan, A.S.; Asaturian, R.A.; Vardanyan, A.A.; Saghiyan, A.A. Isolation, purification and physicochemical characterization of water-soluble Bacillus thuringiensis melanin. Pigm. Cell Res. 2005, 18, 130–135. [Google Scholar] [CrossRef]
- Madhusudhan, D.N.; Mazhari, B.B.; Dastager, S.G.; Agsar, D. Production and cytotoxicity of extracellular insoluble and droplets of soluble melanin by Streptomyces lusitanus DMZ-3. BioMed Res. Int. 2014, 2014, 306895. [Google Scholar] [CrossRef]
- Wibowo, J.T.; Kellermann, M.Y.; Versluis, D.; Putra, M.Y.; Murniasih, T.; Mohr, K.I.; Wink, J.; Engelmann, M.; Praditya, D.F.; Steinmann, E.; et al. Biotechnological potential of bacteria isolated from the sea cucumber Holothuria leucospilota and Stichopus vastus from Lampung, Indonesia. Mar. Drugs 2019, 17, 635. [Google Scholar] [CrossRef] [Green Version]
- Wibowo, J.T.; Kellermann, M.Y.; Köck, M.; Putra, M.Y.; Murniasih, T.; Mohr, K.I.; Wink, J.; Praditya, D.F.; Steinmann, E.; Schupp, P.J. Anti-infective and antiviral activity of valinomycin and its analogues from a sea cucumber-associated bacterium, Streptomyces sp. SV 21. Mar. Drugs 2021, 19, 81. [Google Scholar] [CrossRef]
- Gerber, N.; Lechevalier, H. Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol. 1965, 13, 935–938. [Google Scholar] [CrossRef] [PubMed]
- Perdue, E.; Ritchie, J. Dissolved organic matter in freshwaters. TrGeo 2003, 5, 605. [Google Scholar]
- Goodfellow, M.; Kämpfer, P.; Busse, H.-J.; Trujillo, M.E.; Suzuki, K.-I.; Ludwig, W.; Whitman, W.B. Bergey’s Manual® of Systematic Bacteriology: Volume Five The Actinobacteria, Part A; Springer: Berling, Germany, 2012. [Google Scholar]
- Kayatz, P.; Thumann, G.; Luther, T.T.; Jordan, J.F.; Bartz–Schmidt, K.U.; Esser, P.J.; Schraermeyer, U. Oxidation causes melanin fluorescence. Investig. Ophthalmol. Vis. Sci. 2001, 42, 241–246. [Google Scholar]
- Almeida-Paes, R.; Frases, S.; de Sousa Araújo, G.; de Oliveira, M.M.E.; Gerfen, G.J.; Nosanchuk, J.D.; Zancopé-Oliveira, R.M. Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of L-tyrosine. Appl. Environ. Microbiol. 2012, 78, 8623–8630. [Google Scholar] [CrossRef] [Green Version]
- Pralea, I.-E.; Moldovan, R.-C.; Petrache, A.-M.; Ilieș, M.; Hegheș, S.-C.; Ielciu, I.; Nicoară, R.; Moldovan, M.; Ene, M.; Radu, M. From extraction to advanced analytical methods: The challenges of melanin analysis. Int. J. Mol. Sci. 2019, 20, 3943. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Kikuta, M.; Koike, S.; Szewczyk, G.; Sarna, M.; Zadlo, A.; Sarna, T.; Wakamatsu, K. Roles of reactive oxygen species in UVA-induced oxidation of 5, 6-dihydroxyindole-2-carboxylic acid-melanin as studied by differential spectrophotometric method. Pigm. Cell Melanoma R. 2016, 29, 340–351. [Google Scholar] [CrossRef]
- Wang, Z.; Tschirhart, T.; Schultzhaus, Z.; Kelly, E.E.; Chen, A.; Oh, E.; Nag, O.; Glaser, E.R.; Kim, E.; Lloyd, P.F. Melanin produced by the fast-growing marine bacterium Vibrio natriegens through heterologous biosynthesis: Characterization and application. Appl. Environ. Microb. 2020, 86, e02749-e19. [Google Scholar] [CrossRef]
- Kiran, G.S.; Jackson, S.A.; Priyadharsini, S.; Dobson, A.D.; Selvin, J. Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Sci. Rep. 2017, 7, 9167. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Santos, A.; Salazar, R.; Lamilla, C.; Pavez, B.; Meza, P.; Hunter, R.; Barrientos, L. Evaluation of dye sensitized solar cells based on a pigment obtained from Antarctic Streptomyces fildesensis. Sol. Energy 2019, 181, 379–385. [Google Scholar] [CrossRef]
- Kimura, T.; Fukuda, W.; Sanada, T.; Imanaka, T. Characterization of water-soluble dark-brown pigment from Antarctic bacterium, Lysobacter oligotrophicus. J. Biosci. Bioeng 2015, 120, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Wold, C.W.; Gerwick, W.H.; Wangensteen, H.; Inngjerdingen, K.T. Bioactive triterpenoids and water-soluble melanin from Inonotus obliquus (Chaga) with immunomodulatory activity. J. Func. Foods 2020, 71, 104025. [Google Scholar] [CrossRef]
- Wang, Y.; Aisen, P.; Casadevall, A. Melanin, melanin “ghosts”, and melanin composition in Cryptococcus neoformans. Infect. Immun. 1996, 64, 2420–2424. [Google Scholar] [CrossRef] [Green Version]
- Shalaby, A.S.G.; Ragab, T.I.M.; Helal, M.M.I.; Esawy, M.A. Optimization of Bacillus licheniformis MAL tyrosinase: In vitro anticancer activity for brown and black eumelanin. Heliyon 2019, 5, e01657. [Google Scholar] [CrossRef] [Green Version]
- Mbonyiryivuze, A.; Nuru, Z.Y.; Diop Ngom, B.; Mwakikunga, B.; Mokhotjwa Dhlamini, S.; Park, E.; Maaza, M. Morphological and chemical composition characterization of commercial sepia melanin. Am. J. Nanomater. 2015, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Guo, G.-Y.; Lu, Y.; Song, S.; Wang, H.-Y.; Yang, L. Purification, structure and anti-radiation activity of melanin from Lachnum YM404. Int. J. Biol. Macromol. 2014, 63, 170–176. [Google Scholar] [CrossRef]
- Liu, Y.; Hong, L.; Kempf, V.R.; Wakamatsu, K.; Ito, S.; Simon, J.D. Ion-exchange and adsorption of Fe (III) by Sepia melanin. Pigm. Cell Res. 2004, 17, 262–269. [Google Scholar] [CrossRef]
- Römkens, P.F.; Dolfing, J. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol. 1998, 32, 363–369. [Google Scholar] [CrossRef]
- Huang, Z.; Lui, H.; Chen, M.X.; Alajlan, A.; McLean, D.I.; Zeng, H. Raman spectroscopy of in vivo cutaneous melanin. J. Biomed. Opt. 2004, 9, 1198–1206. [Google Scholar] [CrossRef]
- Zhao, J.; Lui, H.; McLean, D.I.; Zeng, H. Real-time Raman spectroscopy for noninvasive in vivo skin analysis and diagnosis. New Dev. Biomed. 2010, 24, 455–474. [Google Scholar]
- Galván, I.; Araujo-Andrade, C.; Marro, M.; Loza-Alvarez, P.; Wakamatsu, K. Raman spectroscopy quantification of eumelanin subunits in natural unaltered pigments. Pigm. Cell Melanoma R. 2018, 31, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Kurian, N.K.; Bhat, S.G. Data on the characterization of non-cytotoxic pyomelanin produced by marine Pseudomonas stutzeri BTCZ10 with cosmetological importance. Data Brief. 2018, 18, 1889–1894. [Google Scholar] [CrossRef] [PubMed]
- Tarangini, K.; Mishra, S. Production, Characterization and Analysis of Melanin from Isolated Marine Pseudomonas sp. using Vegetable waste. Res. J. Eng. Sci. 2013, 2, 40–46. [Google Scholar]
- Manivasagan, P.; Venkatesan, J.; Senthilkumar, K.; Sivakumar, K.; Kim, S.-K. Isolation and characterization of biologically active melanin from Actinoalloteichus sp. MA-32. Int. J. Biol. Macromol. 2013, 58, 263–274. [Google Scholar] [CrossRef]
- Pacelli, C.; Cassaro, A.; Maturilli, A.; Timperio, A.M.; Gevi, F.; Cavalazzi, B.; Stefan, M.; Ghica, D.; Onofri, S. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl. Microbiol. Biotechnol. 2020, 104, 6385–6395. [Google Scholar] [CrossRef]
- Geng, J.; Tang, W.; Wan, X.; Zhou, Q.; Wang, X.J.; Shen, P.; Lei, T.C.; Chen, X.D. Photoprotection of bacterial-derived melanin against ultraviolet A–induced cell death and its potential application as an active sunscreen. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 852–858. [Google Scholar] [CrossRef]
- Brenner, M.; Hearing, V.J. The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 2008, 84, 539–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulschen, A.A.; Rodrigues, F.; Duarte, R.T.; Araujo, G.G.; Santiago, I.F.; Paulino-Lima, I.G.; Rosa, C.A.; Kato, M.J.; Pellizari, V.H.; Galante, D. UV-resistant yeasts isolated from a high-altitude volcanic area on the Atacama Desert as eukaryotic models for astrobiology. Microbiologyopen 2015, 4, 574–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yang, W.; Ruan, L.; Sun, M. A Bacillus thuringiensis host strain with high melanin production for preparation of light-stable biopesticides. Ann. Microbiol. 2013, 63, 1131–1135. [Google Scholar] [CrossRef]
- Dunne, R.P.; Brown, B.E. Penetration of solar UVB radiation in shallow tropical waters and its potential biological effects on coral reefs: Results from the central Indian Ocean and Andaman Sea. Mar. Ecol. Prog. Ser. 1996, 144, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, V.; Jasmin, C.; Anas, A.; Parakkaparambil Kuttan, S.; Vinothkumar, S.; Perunninakulath Subrayan, P.; Nair, S. Sponge-associated bacteria produce non-cytotoxic melanin which protects animal cells from photo-toxicity. Appl. Biochem. Biotechnol. 2017, 183, 396–411. [Google Scholar] [CrossRef]
- Kimes, N.E.; Grim, C.J.; Johnson, W.R.; Hasan, N.A.; Tall, B.D.; Kothary, M.H.; Kiss, H.; Munk, A.C.; Tapia, R.; Green, L. Temperature regulation of virulence factors in the pathogen Vibrio coralliilyticus. ISME J. 2012, 6, 835–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garren, M.; Son, K.; Tout, J.; Seymour, J.R.; Stocker, R. Temperature-induced behavioral switches in a bacterial coral pathogen. ISME J. 2016, 10, 1363–1372. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Z.; Cai, X.; Wang, P.; Guo, Y.; Liu, X.; Li, B.; Wang, X. Biofilm formation and heat stress induce pyomelanin production in deep-sea Pseudoalteromonas sp. SM9913. Front. Microbiol. 2017, 8, 1822. [Google Scholar] [CrossRef] [Green Version]
- Menges, F. Spectragryph-Optical Spectroscopy Software, Version 1.2.14. 2020. Available online: https://www.effemm2.de/spectragryph/ (accessed on 12 December 2021).
Tested Organic Solvents (Increasing in Polarity from Left to Right) | Tested Inorganic Solutions | ||||||
---|---|---|---|---|---|---|---|
Sample | n-Hexane | DCM | n-Butanol | MeOH | Milli-Q | Acidic Cond. (pH 2) | Alkaline Cond. (pH 12) |
SM | - | - | - | + | - | - | +++ |
AM | - | - | - | + | - | - | +++ |
PDM | - | - | - | - | +++ | +++ | +++ |
PPM | - | - | - | - | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wibowo, J.T.; Kellermann, M.Y.; Petersen, L.-E.; Alfiansah, Y.R.; Lattyak, C.; Schupp, P.J. Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium. Mar. Drugs 2022, 20, 54. https://doi.org/10.3390/md20010054
Wibowo JT, Kellermann MY, Petersen L-E, Alfiansah YR, Lattyak C, Schupp PJ. Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium. Marine Drugs. 2022; 20(1):54. https://doi.org/10.3390/md20010054
Chicago/Turabian StyleWibowo, Joko Tri, Matthias Y. Kellermann, Lars-Erik Petersen, Yustian R. Alfiansah, Colleen Lattyak, and Peter J. Schupp. 2022. "Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium" Marine Drugs 20, no. 1: 54. https://doi.org/10.3390/md20010054
APA StyleWibowo, J. T., Kellermann, M. Y., Petersen, L. -E., Alfiansah, Y. R., Lattyak, C., & Schupp, P. J. (2022). Characterization of an Insoluble and Soluble Form of Melanin Produced by Streptomyces cavourensis SV 21, a Sea Cucumber Associated Bacterium. Marine Drugs, 20(1), 54. https://doi.org/10.3390/md20010054