Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota
Abstract
:1. Introduction
2. Results
2.1. Proximate Composition of Whole A. nodosum Biomass Samples and Composition of A. nodosum Extracts
2.2. Effects of Fructooligosaccharides (FOS), ANWB-F and ANWB-N on the Selected Faecal Bacterial Populations
2.3. Antibacterial and Prebiotic Properties of A. nodosum Extracts in Pure Bacterial Cultures
2.3.1. Conventional Extraction Methods
2.3.2. HAE Methodology
3. Discussion
4. Materials and Methods
4.1. Whole Biomass Samples and Extracts of A. nodosum
4.2. Batch Fermentation Assay
4.3. Quantification of Bacterial Groups Using Quantitative Real-Time Polymerase Chain Reaction (QPCR)
4.4. Bacterial Strains and Pure Culture Growth Assays
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Brestoff, J.R.; Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14, 676–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Rowland, I.; Gibson, G.; Heinken, A.; Scott, K.; Swann, J.; Thiele, I.; Tuohy, K. Gut microbiota functions: Metabolism of nutrients and other food components. Eur. J. Nutr. 2018, 57, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Servin, A.L. Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS Microbiol. Rev. 2004, 28, 405–440. [Google Scholar] [CrossRef] [Green Version]
- Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev. 2008, 72, 728–764. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Harris, H.M.; McCann, A.; Guo, C.; Argimon, S.; Zhang, W.; Yang, X.; Jeffery, I.B.; Cooney, J.C.; Kagawa, T.F.; et al. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera. Nat. Commun. 2015, 6, 8322. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, A.; van Sinderen, D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016, 7, 925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, A.; Mandal, S. Bifidobacteria-Insight into clinical outcomes and mechanisms of its probiotic action. Microbiol. Res. 2016, 192, 159–171. [Google Scholar] [CrossRef]
- Valeriano, V.D.; Balolong, M.P.; Kang, D.K. Probiotic roles of Lactobacillus sp. in swine: Insights from gut microbiota. J. Appl. Microbiol. 2017, 122, 554–567. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.J.; Markey, B.K.; Leonard, F.C.; Fitzpatrick, E.S.; Fanning, S.; Hartigan, P.J. Veterinary Microbiology and Microbial Disease, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Heredia, N.; Garcia, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- DeGruttola, A.K.; Low, D.; Mizoguchi, A.; Mizoguchi, E. Current understanding of dysbiosis in disease in human and animal models. Inflamm. Bowel Dis. 2016, 22, 1137–1150. [Google Scholar] [CrossRef] [Green Version]
- Shin, N.R.; Whon, T.W.; Bae, J.W. Proteobacteria: Microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015, 33, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Litvak, Y.; Byndloss, M.X.; Tsolis, R.M.; Baumler, A.J. Dysbiotic Proteobacteria expansion: A microbial signature of epithelial dysfunction. Curr. Opin. Microbiol. 2017, 39, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gresse, R.; Chaucheyras-Durand, F.; Fleury, M.A.; Van de Wiele, T.; Forano, E.; Blanquet-Diot, S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol. 2017, 25, 851–873. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- de Jesus Raposo, M.F.; de Morais, A.M.; de Morais, R.M. Marine polysaccharides from algae with potential biomedical applications. Mar. Drugs 2015, 13, 2967–3028. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef] [Green Version]
- Cherry, P.; Yadav, S.; Strain, C.R.; Allsopp, P.J.; McSorley, E.M.; Ross, R.P.; Stanton, C. Prebiotics from seaweeds: An ocean of opportunity? Mar. Drugs 2019, 17, 327. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.J.; Falque, E.; Dominguez, H. Antimicrobial action of compounds from marine seaweed. Mar. Drugs 2016, 14, 52. [Google Scholar] [CrossRef] [Green Version]
- Shannon, E.; Abu-Ghannam, N. Antibacterial derivatives of marine algae: An overview of pharmacological mechanisms and applications. Mar. Drugs 2016, 14, 81. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.V.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peasura, N.; Laohakunjit, N.; Kerdchoechuen, O.; Wanlapa, S. Characteristics and antioxidant of Ulva intestinalis sulphated polysaccharides extracted with different solvents. Int. J. Biol. Macromol. 2015, 81, 912–919. [Google Scholar] [CrossRef]
- Sabeena Farvin, K.H.; Jacobsen, C. Phenolic compounds and antioxidant activities of selected species of seaweeds from Danish coast. Food Chem. 2013, 138, 1670–1681. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; O’Doherty, J.V.; Tiwari, B.K.; Sweeney, T.; Rajauria, G. Enhancing the extraction of polysaccharides and antioxidants from macroalgae using sequential hydrothermal-assisted extraction followed by ultrasound and thermal technologies. Mar. Drugs 2019, 17, 457. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, M.R.; Xia, A.; Murphy, J.D. Seasonal variation of chemical composition and biomethane production from the brown seaweed Ascophyllum nodosum. BioResour. Technol. 2016, 216, 219–226. [Google Scholar] [CrossRef]
- Gardiner, G.E.; Campbell, A.J.; O’Doherty, J.V.; Pierce, E.; Lynch, P.B.; Leonard, F.C.; Stanton, C.; Ross, R.P.; Lawlor, P.G. Effect of Ascophyllum nodosum extract on growth performance, digestibility, carcass characteristics and selected intestinal microflora populations of grower–finisher pigs. Anim. Feed Sci. Technol. 2008, 141, 259–273. [Google Scholar] [CrossRef]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Belanche, A.; Jones, E.; Parveen, I.; Newbold, C.J. A metagenomics approach to evaluate the impact of dietary supplementation with Ascophyllum nodosum or Laminaria digitata on rumen function in Rusitec fermenters. Front. Microbiol. 2016, 7, 299. [Google Scholar] [CrossRef]
- Chen, L.; Xu, W.; Chen, D.; Chen, G.; Liu, J.; Zeng, X.; Shao, R.; Zhu, H. Digestibility of sulfated polysaccharide from the brown seaweed Ascophyllum nodosum and its effect on the human gut microbiota in vitro. Int. J. Biol. Macromol. 2018, 112, 1055–1061. [Google Scholar] [CrossRef]
- Zhou, M.; Hünerberg, M.; Chen, Y.; Reuter, T.; McAllister, T.A.; Evans, F.; Critchley, A.T.; Guana, L.L. Air-dried brown seaweed, Ascophyllum nodosum, alters the rumen microbiome in a manner that changes rumen fermentation profiles and lowers the prevalence of foodborne pathogens. mSphere 2018, 3, e00017-18. [Google Scholar] [CrossRef] [Green Version]
- Rattigan, R.; Sweeney, T.; Vigors, S.; Thornton, K.; Rajauria, G.; O’Doherty, A.J.V. The effect of increasing inclusion levels of a fucoidan-rich extract derived from Ascophyllum nodosum on growth performance and aspects of intestinal health of pigs post-weaning. Mar. Drugs 2019, 17, 680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Updating the concept of prebiotics. Nutr. Res. Rev. 2004, 17, 259–275. [Google Scholar] [CrossRef] [Green Version]
- Venema, K.; van den Abbeele, P. Experimental models of the gut microbiome. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Vaquero, M.; Rajauria, G.; Miranda, M.; Sweeney, T.; Lopez-Alonso, M.; O’Doherty, J. Seasonal Variation of the Proximate Composition, Mineral Content, Fatty Acid Profiles and Other Phytochemical Constituents of Selected Brown Macroalgae. Mar. Drugs 2021, 19, 204. [Google Scholar] [CrossRef]
- Han, K.; Kobayashi, Y.; Nakamura, Y.; Shimada, K.; Aritsuka, T.; Ohba, K.; Morita, T.; Fukushima, M. Comparison of the effects of longer chain inulins with different degrees of polymerization on colonic fermentation in a mixed culture of swine fecal bacteria. J. Nutr. Sci. Vitaminol. 2014, 60, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lynch, M.B.; Sweeney, T.; Callan, B.F.J.J.; O’Doherty, J.V. The effect of high and low dietary crude protein and inulin supplementation on nutrient digestibility, nitrogen excretion, intestinal microflora and manure ammonia emissions from finisher pigs. Animal 2007, 1, 1112–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, J.K.; Yasuda, K.; Welch, R.M.; Miller, D.D.; Lei, X.G. Supplemental dietary inulin of variable chain lengths alters intestinal bacterial populations in young pigs. J. Nutr. 2010, 140, 2158–2161. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, H.R.; Biller, P.; Ross, A.B.; Adams, J.M.M. The seasonal variation of fucoidan within three species of brown macroalgae. Algal. Res. 2017, 22, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Ale, M.T.; Meyer, A.S. Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013, 3, 8131–8141. [Google Scholar] [CrossRef] [Green Version]
- Honya, M.; Mori, H.; Anzai, M.; Araki, Y.; Nisizawa, K. Monthly changes in the content of fucans, their constituent sugars and sulphate in cultured Laminaria japonica. Hydrobiologia 1999, 398, 411–416. [Google Scholar] [CrossRef]
- Skriptsova, A.V.; Shevchenko, N.M.; Zvyagintseva, T.N.; Imbs, T.I. Monthly changes in the content and monosaccharide composition of fucoidan from Undaria pinnatifida (Laminariales, Phaeophyta). J. Appl. Phycol. 2009, 22, 79–86. [Google Scholar] [CrossRef]
- Qu, Y.; Cao, Z.; Wang, W.; Wang, N.; Li, X.; Pan, J. Monthly variations of fucoidan content and its composition in the farmed brown alga Saccharina sculpera (Laminariales, Phaeophyceae). J. Appl. Phycol. 2019, 31, 2623–2628. [Google Scholar] [CrossRef]
- Palanisamy, S.; Vinosha, M.; Rajasekar, P.; Anjali, R.; Sathiyaraj, G.; Marudhupandi, T.; Selvam, S.; Prabhu, N.M.; You, S. Antibacterial efficacy of a fucoidan fraction (Fu-F2) extracted from Sargassum polycystum. Int. J. Biol. Macromol. 2019, 125, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.T.; Rioux, L.E.; Turgeon, S.L. Alpha-amylase and alpha-glucosidase inhibition is differentially modulated by fucoidan obtained from Fucus vesiculosus and Ascophyllum nodosum. Phytochemistry 2014, 98, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Lordan, S.; Smyth, T.J.; Soler-Vila, A.; Stanton, C.; Ross, R.P. The alpha-amylase and alpha-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013, 141, 2170–2176. [Google Scholar] [CrossRef] [PubMed]
- Apostolidis, E.; Karayannakidis, P.D.; Kwon, Y.I.; Lee, C.M.; Seeram, N.P. Seasonal variation of phenolic antioxidant-mediated alpha-glucosidase inhibition of Ascophyllum nodosum. Plant Foods Hum. Nutr. 2011, 66, 313–319. [Google Scholar] [CrossRef]
- Bonardi, S. Salmonella in the pork production chain and its impact on human health in the European Union. Epidemiol. Infect 2017, 145, 1513–1526. [Google Scholar] [CrossRef] [Green Version]
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, M.; Siragusa, S.; Berloco, M.; Caputo, L.; Settanni, L.; Alfonsi, G.; Amerio, M.; Grandi, A.; Ragni, A.; Gobbetti, M. Selection of potential probiotic lactobacilli from pig feces to be used as additives in pelleted feeding. Res. Microbiol. 2006, 157, 792–801. [Google Scholar] [CrossRef]
- Moroni, O.; Kheadr, E.; Boutin, Y.; Lacroix, C.; Fliss, I. Inactivation of adhesion and invasion of food-borne Listeria monocytogenes by bacteriocin-producing Bifidobacterium strains of human origin. Appl. Environ. Microbiol. 2006, 72, 6894–6901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klose, V.; Bayer, K.; Bruckbeck, R.; Schatzmayr, G.; Loibner, A.P. In vitro antagonistic activities of animal intestinal strains against swine-associated pathogens. Vet. Microbiol. 2010, 144, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.; Rodriguez, M.; Garcia, F.; Fernandez, E.; Fuentes, M.C.; Cune, J. Probiotic properties of Lactobacillus plantarum CECT 7315 and CECT 7316 isolated from faeces of healthy children. Lett. Appl. Microbiol. 2012, 54, 240–246. [Google Scholar] [CrossRef]
- da Silva Sabo, S.; Vitolo, M.; Gonzalez, J.M.D.; Oliveira, R.P.S. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Res. Int. 2014, 64, 527–536. [Google Scholar] [CrossRef]
- Tanner, S.A.; Chassard, C.; Zihler Berner, A.; Lacroix, C. Synergistic effects of Bifidobacterium thermophilum RBL67 and selected prebiotics on inhibition of Salmonella colonization in the swine proximal colon PolyFermS model. Gut Pathog. 2014, 6, 44. [Google Scholar] [CrossRef]
- Hou, C.; Zeng, X.; Yang, F.; Liu, H.; Qiao, S. Study and use of the probiotic Lactobacillus reuteri in pigs: A review. J. Anim. Sci. Biotechnol. 2015, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Gagnon, M.; Vimont, A.; Darveau, A.; Fliss, I.; Jean, J. Study of the ability of bifidobacteria of human origin to prevent and treat Rotavirus infection using colonic cell and mouse models. PLoS ONE 2016, 11, e0164512. [Google Scholar] [CrossRef] [PubMed]
- Van den Nieuwboer, M.; Van Hemert, S.; Claassen, E.; de Vos, W.M. Lactobacillus plantarum WCFS1 and its host interaction: A dozen years after the genome. Microb. Biotechnol. 2016, 9, 452–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, Q.; Tavella, V.J.; Luo, X.M. Role of Lactobacillus reuteri in human health and diseases. Front. Microbiol. 2018, 9, 757. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Macquarrie, D. Microwave assisted extraction of sulfated polysaccharides (fucoidan) from Ascophyllum nodosum and its antioxidant activity. Carbohydr. Polym. 2015, 129, 101–107. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D.J. Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. BioResour. Technol. 2015, 198, 819–827. [Google Scholar] [CrossRef]
- Liu, M.; Liu, Y.; Cao, M.J.; Liu, G.M.; Chen, Q.; Sun, L.; Chen, H. Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydr. Polym. 2017, 172, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Kuo, C.H.; Lee, C.H. Antibacterial and antioxidant capacities and attenuation of lipid accumulation in 3T3-L1 adipocytes by low-molecular-weight fucoidans prepared from compressional-puffing-pretreated Sargassum Crassifolium. Mar. Drugs 2018, 16, 24. [Google Scholar] [CrossRef] [Green Version]
- Saravana, P.S.; Cho, Y.N.; Patil, M.P.; Cho, Y.J.; Kim, G.D.; Park, Y.B.; Woo, H.C.; Chun, B.S. Hydrothermal degradation of seaweed polysaccharide: Characterization and biological activities. Food Chem. 2018, 268, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.; Dong, S.; Gao, J.; Jiang, C. In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota. Int. J. Biol. Macromol. 2016, 91, 867–871. [Google Scholar] [CrossRef]
- Hwang, P.A.; Phan, N.N.; Lu, W.J.; Ngoc Hieu, B.T.; Lin, Y.C. Low-molecular-weight fucoidan and high-stability fucoxanthin from brown seaweed exert prebiotics and anti-inflammatory activities in Caco-2 cells. Food Nutr. Res. 2016, 60, 32033. [Google Scholar] [CrossRef] [Green Version]
- Okolie, C.L.; Mason, B.; Mohan, A.; Pitts, N.; Udenigwe, C.C. The comparative influence of novel extraction technologies on in vitro prebiotic-inducing chemical properties of fucoidan extracts from Ascophyllum nodosum. Food Hydrocoll. 2019, 90, 462–471. [Google Scholar] [CrossRef]
- Tierney, M.S.; Smyth, T.J.; Rai, D.K.; Soler-Vila, A.; Croft, A.K.; Brunton, N. Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size. Food Chem. 2013, 139, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Brummer, Y.; Cui, S.W. Understanding carbohydrate analysis. In Food Carbohydrates: Chemistry, Physical Properties and Applications; Cui, S.W., Ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–38. [Google Scholar]
- Rajauria, G.; Ravindran, R.; Garcia-Vaquero, M.; Rai, D.K.; Sweeney, T.; O’Doherty, J. Molecular characteristics and antioxidant activity of laminarin extracted from the seaweed species Laminaria hyperborea, using hydrothermal-assisted extraction and a multi-step purification procedure. Food Hydrocoll. 2021, 112, 106332. [Google Scholar] [CrossRef]
- Usov, A.I.; Smirnova, G.P.; Klochkova, N.G. Polysaccharides of algae: 55. Polysaccharide composition of several brown algae from Kamchatka. Russ. J. Bioorganic Chem. 2001, 27, 395–399. [Google Scholar] [CrossRef]
- Venardou, B.; O’Doherty, J.V.; McDonnell, M.J.; Mukhopadhya, A.; Kiely, C.; Ryan, M.T.; Sweeney, T. Evaluation of the in vitro effects of the increasing inclusion levels of yeast beta-glucan, a casein hydrolysate and its 5 kDa retentate on selected bacterial populations and strains commonly found in the gastrointestinal tract of pigs. Food Funct. 2021, 12, 2189–2200. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 491–502. [Google Scholar] [CrossRef] [Green Version]
- Frank, D.N.; St. Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780. [Google Scholar] [CrossRef] [Green Version]
- Metzler-Zebeli, B.U.; Hooda, S.; Pieper, R.; Zijlstra, R.T.; van Kessel, A.G.; Mosenthin, R.; Ganzle, M.G. Nonstarch polysaccharides modulate bacterial microbiota, pathways for butyrate production, and abundance of pathogenic Escherichia coli in the pig gastrointestinal tract. Appl. Environ. Microbiol. 2010, 76, 3692–3701. [Google Scholar] [CrossRef] [Green Version]
- Penders, J.; Vink, C.; Driessen, C.; London, N.; Thijs, C.; Stobberingh, E.E. Quantification of Bifidobacterium spp., Escherichia coli and Clostridium difficile in faecal samples of breast-fed and formula-fed infants by real-time PCR. FEMS Microbiol. Lett. 2005, 243, 141–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, H.; Saito, R.; Miya, S.; Tanaka, Y.; Miyamura, N.; Kuda, T.; Kimura, B. Development of quantitative real-time PCR for detection and enumeration of Enterobacteriaceae. Int. J. Food Microbiol. 2017, 246, 92–97. [Google Scholar] [CrossRef]
- McDonnell, M.J.; Rivas, L.; Burgess, C.M.; Fanning, S.; Duffy, G. Inhibition of verocytotoxigenic Escherichia coli by antimicrobial peptides caseicin A and B and the factors affecting their antimicrobial activities. Int. J. Food Microbiol. 2012, 153, 260–268. [Google Scholar] [CrossRef] [PubMed]
Proximate Composition 1 | Whole Dried A. nodosum Biomass | |
---|---|---|
ANWB-F | ANWB-N | |
Dry matter (%) | 90.38 ± 0.01 | 93.94 ± 0.04 |
Ash (% DW basis) | 23.31 ± 0.30 | 21.87 ± 0.09 |
Protein (% DW basis) | 6.14 ± 0.01 | 3.52 ± 0.01 |
Ether extract (% DW basis) | 3.33 ± 0.00 | 2.73 ± 0.03 |
Total soluble sugars (% DW basis) | 13.66 ± 0.08 | 11.63 ± 0.06 |
Total glucans (% DW basis) | 2.70 ± 0.08 | 3.30 ± 0.02 |
Fucoidan (% DW basis) | 20.17 ± 0.18 | 19.50 ± 0.11 |
Total phenolic content (% DW basis) | 0.67 ± 0.01 | 0.97 ± 0.01 |
A. nodosum Extracts | Extract Composition 1 | ||
---|---|---|---|
Total Soluble Sugars (mg Total Soluble Sugars/100 mg Dry Extract) | Laminarin (mg Total Glucans/100 mg Dry Extract) | Fucoidan (mg Fucoidan/100 mg Dry Extract) | |
ANWE | 8.95 ± 0.72 | ND | 2.44 ± 0.09 |
ANEE | 6.64 ± 0.47 | ND | 0.80 ± 0.05 |
ANE1 | ND | 1.31 ± 0.06 | 26.75 ± 0.12 |
ANE2 | ND | 1.57 ± 0.10 | 29.97 ± 0.60 |
ANE3 | ND | 0.99 ± 0.12 | 28.53 ± 0.48 |
ANE4 | ND | 1.26 ± 0.03 | 27.44 ± 0.08 |
Compound | Time Point | Bacterial Group (logGCN/g Faeces) | Compound Concentration (mg/mL) | SEM | p-Value | |||
---|---|---|---|---|---|---|---|---|
0 | 1 | 2.5 | 5 | |||||
FOS | 10 h | Total bacteria | 8.69 a | 9.13 ab | 9.54 b | 9.49 b | 0.149 | 0.017 |
Lactobacillus spp. | 8.64 | 8.71 | 8.74 | 8.78 | 0.080 | 0.703 | ||
Bifidobacterium spp. | 6.39 | 6.48 | 6.72 | 6.70 | 0.080 | 0.053 | ||
Enterobacteriaceae | 7.73 | 7.79 | 8.08 | 7.67 | 0.145 | 0.284 | ||
24 h | Total bacteria | 9.63 | 9.78 | 9.77 | 9.95 | 0.112 | 0.321 | |
Lactobacillus spp. | 8.69 | 8.76 | 8.69 | 8.77 | 0.106 | 0.923 | ||
Bifidobacterium spp. | 6.68 | 6.69 | 6.68 | 6.79 | 0.048 | 0.323 | ||
Enterobacteriaceae | 7.75 | 7.64 | 7.60 | 7.30 | 0.260 | 0.659 | ||
ANWB-F | 10 h | Total bacteria | 8.92 | 9.31 | 9.36 | 9.41 | 0.206 | 0.374 |
Lactobacillus spp. | 8.60 | 8.79 | 8.71 | 8.68 | 0.094 | 0.577 | ||
Bifidobacterium spp. | 6.42 | 3.70 | 1.80 | U/D | 1.357 | 0.057 | ||
Enterobacteriaceae | 7.58 | 7.75 | 7.70 | 7.54 | 0.098 | 0.447 | ||
24 h | Total bacteria | 9.48 | 9.82 | 9.84 | 9.97 | 0.162 | 0.268 | |
Lactobacillus spp. | 8.68 | 8.75 | 8.76 | 8.76 | 0.104 | 0.938 | ||
Bifidobacterium spp. | 6.87 b | 5.92 b | 1.57 a | U/D a | 0.718 | 0.001 | ||
Enterobacteriaceae | 7.99 | 8.10 | 7.83 | 7.68 | 0.150 | 0.297 | ||
ANWB-N | 10 h | Total bacteria | 8.12 | 9.00 | 8.99 | 9.13 | 0.228 | 0.055 |
Lactobacillus spp. | 8.62 | 8.75 | 8.70 | 8.52 | 0.080 | 0.290 | ||
Bifidobacterium spp. | 6.39 b | 6.46 b | 1.64 a | U/D a | 0.826 | 0.002 | ||
Enterobacteriaceae | 6.99 | 7.09 | 7.08 | 6.90 | 0.108 | 0.603 | ||
24 h | Total bacteria | 8.95 a | 9.58 b | 9.69 b | 9.67 b | 0.127 | 0.013 | |
Lactobacillus spp. | 8.66 ab | 8.82 b | 8.82 b | 8.60 a | 0.047 | 0.030 | ||
Bifidobacterium spp. | 6.79 c | 5.03 b | U/D a | U/D a | 0.235 | <0.001 | ||
Enterobacteriaceae | 7.26 b | 7.58 c | 7.51 bc | 6.83 a | 0.077 | 0.001 |
A. nodosum Extract | Bacterial Strain | Final Bacterial Concentration (logCFU/mL) | SEM | Linear Effect p-Value | Quadratic Effect p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
0 mg/mL 1 | 0.25 mg/mL 1 | 0.5 mg/mL 1 | 1 mg/mL 1 | 2 mg/mL 1 | |||||
ANWE | L. plantarum | 7.55 | 7.17 | 6.89 | 6.96 | 7.10 | 0.101 | <0.001 | 0.001 |
L. reuteri | 7.06 | 5.70 | 5.17 | 5.66 | 1.68 | 0.224 | 0.422 | 0.032 | |
B. thermophilum | 6.67 | 6.82 | 6.97 | 7.24 | 7.26 | 0.128 | 0.002 | 0.050 | |
S. Typhimurium | 9.09 | 9.15 | 9.16 | 9.20 | 9.36 | 0.066 | 0.001 | 0.950 | |
ANEE | L. plantarum | 7.22 | 7.75 | 7.90 | 7.81 | 7.97 | 0.123 | 0.005 | 0.132 |
L. reuteri | 7.12 | 6.07 | 5.92 | 4.78 | 1.43 | 0.172 | <0.001 | 0.066 | |
B. thermophilum | 6.80 | 6.71 | 5.92 | 4.51 | 2.80 | 0.368 | <0.001 | 0.645 | |
S. Typhimurium | 8.73 | 8.92 | 8.96 | 8.94 | 8.92 | 0.071 | 0.382 | 0.193 | |
ANE1 | L. plantarum | 7.89 | 7.91 | 7.95 | 7.91 | 7.96 | 0.072 | 0.373 | 0.813 |
L. reuteri | 7.59 | 7.42 | 7.71 | 7.72 | 7.78 | 0.084 | 0.036 | 0.630 | |
B. thermophilum | 6.57 | 6.55 | 6.46 | 6.24 | 5.63 | 0.150 | <0.001 | 0.364 | |
ETEC | 8.26 | 8.36 | 8.23 | 8.14 | 3.36 | 0.105 | <0.001 | <0.001 | |
S. Typhimurium | 8.88 | 8.65 | 8.98 | 8.76 | 3.41 | 0.093 | <0.001 | <0.001 | |
ANE2 | L. plantarum | 7.70 | 7.83 | 7.83 | 8.01 | 7.90 | 0.083 | 0.125 | 0.085 |
L. reuteri | 7.17 | 7.08 | 7.21 | 7.15 | 7.11 | 0.081 | 0.992 | 0.583 | |
B. thermophilum | 6.69 | 6.56 | 6.69 | 6.26 | 5.62 | 0.052 | 0.423 | 0.016 | |
ETEC | 8.42 | 8.96 | 8.87 | 8.56 | 7.44 | 0.143 | 0.033 | 0.001 | |
S. Typhimurium | 8.94 | 9.06 | 9.08 | 8.96 | 8.79 | 0.067 | 0.011 | 0.117 | |
ANE3 | L. plantarum | 7.87 | 7.88 | 7.90 | 7.93 | 7.92 | 0.058 | 0.488 | 0.690 |
L. reuteri | 7.31 | 7.37 | 7.34 | 7.24 | 7.28 | 0.099 | 0.217 | 0.531 | |
B. thermophilum | 6.69 | 6.54 | 6.55 | 6.47 | 6.53 | 0.168 | 0.768 | 0.602 | |
ETEC | 8.40 | 8.45 | 8.58 | 8.56 | 8.63 | 0.070 | 0.235 | 0.806 | |
S. Typhimurium | 8.98 | 8.97 | 8.87 | 9.06 | 8.90 | 0.039 | 0.549 | 0.345 | |
ANE4 | L. plantarum | 7.95 | 7.98 | 8.03 | 8.16 | 8.08 | 0.052 | 0.225 | 0.179 |
L. reuteri | 7.50 | 7.65 | 7.55 | 7.61 | 7.70 | 0.064 | 0.043 | 0.921 | |
B. thermophilum | 6.48 | 7.01 | 7.13 | 7.35 | 7.37 | 0.112 | <0.001 | 0.004 | |
ETEC | 8.66 | 8.56 | 8.58 | 8.75 | 8.68 | 0.098 | 0.300 | 0.672 | |
S. Typhimurium | 9.11 | 9.19 | 9.09 | 9.16 | 9.01 | 0.052 | 0.168 | 0.185 |
A. nodosum Sample | Extraction Method 1 | Solvent 1 | Conditions 1 | Optimised for Targeted Bioactives |
---|---|---|---|---|
ANWB-F ANWB-N | N/A | N/A | Oven-dried at 50 °C for 9 days and milled to 1 mm particle size | N/A |
Conventional extraction methods | ||||
ANWE | solvent extraction | water | Room temperature (20 °C) 24 h 20 mL solvent/g seaweed Stirring at 170 rpm | crude |
ANEE | solvent extraction | 80% ethanol 20% water | Room temperature (20 °C) 24 h 10 mL solvent/g seaweed Stirring at 170 rpm | polyphenols |
Hydrothermal-assisted extraction methodology | ||||
ANE1 | HAE | 0.1 M HCl | 120 °C 62.1 min 30 mL solvent/g seaweed | Fucoidan |
ANE2 | HAE | 0.1 M HCl | 99.3 °C 30 min 21.3 mL solvent/g seaweed | Laminarin |
ANE3 | HAE | 0.1 M HCl | 120 °C 76.06 min 10 mL solvent/g seaweed | Antioxidant activity |
ANE4 | HAE | 0.1 M HCl | 120 °C 80.9 min 12.02 mL solvent/g seaweed | For laminarin, fucoidan and antioxidant activity |
Target Bacterial Group | Reverse Primer (5′-3′) Forward Primer (5′-3′) | Amplicon Length (bp) | Tm (°C) | References |
---|---|---|---|---|
Total bacteria | F: GTGCCAGCMGCCGCGGTAA R: GACTACCAGGGTATCTAAT | 291 | 64.2 52.4 | [75] |
Lactobacillus spp. | F: AGCAGTAGGGAATCTTCCA R: CACCGCTACACATGGAG | 341 | 54.5 55.2 | [76] |
Bifidobacterium spp. | F: GCGTGCTTAACACATGCAAGTC R: CACCCGTTTCCAGGAGCTATT | 125 | 60.3 59.8 | [77] |
Enterobacteriaceae | F: ATGTTACAACCAAAGCGTACA R: TTACCYTGACGCTTAACTGC | 185 | 54.0 56.3 | [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venardou, B.; O’Doherty, J.V.; Garcia-Vaquero, M.; Kiely, C.; Rajauria, G.; McDonnell, M.J.; Ryan, M.T.; Sweeney, T. Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota. Mar. Drugs 2022, 20, 41. https://doi.org/10.3390/md20010041
Venardou B, O’Doherty JV, Garcia-Vaquero M, Kiely C, Rajauria G, McDonnell MJ, Ryan MT, Sweeney T. Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota. Marine Drugs. 2022; 20(1):41. https://doi.org/10.3390/md20010041
Chicago/Turabian StyleVenardou, Brigkita, John V. O’Doherty, Marco Garcia-Vaquero, Claire Kiely, Gaurav Rajauria, Mary J. McDonnell, Marion T. Ryan, and Torres Sweeney. 2022. "Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota" Marine Drugs 20, no. 1: 41. https://doi.org/10.3390/md20010041
APA StyleVenardou, B., O’Doherty, J. V., Garcia-Vaquero, M., Kiely, C., Rajauria, G., McDonnell, M. J., Ryan, M. T., & Sweeney, T. (2022). Evaluation of the Antibacterial and Prebiotic Potential of Ascophyllum nodosum and Its Extracts Using Selected Bacterial Members of the Pig Gastrointestinal Microbiota. Marine Drugs, 20(1), 41. https://doi.org/10.3390/md20010041