Characterization of Molecular Species and Anti-Inflammatory Activity of Purified Phospholipids from Antarctic Krill Oil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of Antarctic Krill PL by UHPLC-Q-TOF-MS
2.2. Identification and Quantification of PL Molecular Species
2.3. Physicochemical Properties of Liposomes
2.4. Effect of Antarctic Krill PL Liposome on Cell Viability, Nitric Oxide (NO) Production, and Proinflammatory Cytokines Secretion in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Cells
2.5. Effects of Antarctic Krill PL Liposome on the Secretion of Proinflammatory Cytokines
2.6. Effect of Antarctic Krill PL Liposome on Intracellular Reactive Oxygen Species (ROS) Level
2.7. Effects of Antarctic Krill PL Liposome on Protein and mRNA Expressions of iNOS and COX-2 in LPS-Induced RAW 264.7 Cells
2.8. Effects of Antarctic Krill PL Liposome on NF-κB Subunits Activation in LPS-Stimulated RAW 264.7 Cells
2.9. Effect of Krill PL Liposome on Carrageenan-Induced Mouse Paw Edema
3. Materials and Methods
3.1. Chemicals
3.2. Antarctic Krill PL Purification
3.3. UHPLC-Q-TOF-MS Analysis
3.4. Characterization of PL Molecular Species
3.5. Preparation and Characterization of Antarctic Krill PL Liposome
3.6. Cell Culture
3.7. Cell Viability Assay
3.8. Measurement of NO Production
3.9. Measurement of Intracellular ROS Level
3.10. Cytokines Quantification by ELISA
3.11. Western Blot Analysis
3.12. Quantitative RT-PCR
3.13. Carrageenan-Induced Paw Edema
3.14. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Adefegha, S.A.; Leal, D.; de Oliveira, J.S.; Manzoni, A.G.; Bremm, J.M. Modulation of reactive oxygen species production, apoptosis and cell cycle in pleural exudate cells of carrageenan-induced acute inflammation in rats by rutin. Food Funct. 2017, 8, 4459–4468. [Google Scholar] [CrossRef] [PubMed]
- Allam-Ndoul, B.; Guenard, F.; Barbier, O.; Vohl, M.C. Effect of n-3 fatty acids on the expression of inflammatory genes in THP-1 macrophages. Lipids Health Dis. 2016, 15, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications-A Review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Bonaterra, A.G.; Driscoll, D.; Schwarzbach, H.; Kinscherf, R. Krill oil-in-water emulsion protects against lipopolysaccharide-induced proinflammatory activation of macrophages in vitro. Mar. Drugs 2017, 15, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. BBA-Mol. Cell Biol. 2015, 1851, 469–484. [Google Scholar] [CrossRef] [PubMed]
- Chapelle, S. Plasmalogens and O-alkylglycerophospholipids in aquatic animals. Comp. Biochem. Physiol. B. 1987, 88, 1–6. [Google Scholar] [CrossRef]
- Chakraborty, M.; Bhattacharya, S.; Mishra, R.; Saha, S.S.; Bhattacharjee, P.; Dhar, P.; Mishra, R. Combination of low dose major n3 PUFAs in fresh water mussel lipid is an alternative of EPA–DHA supplementation in inflammatory conditions of arthritis and LPS stimulated macrophages. PharmaNutrition 2015, 3, 67–75. [Google Scholar] [CrossRef]
- Costanzo, M.; Cesi, V.; Palone, F.; Pierdomenico, M.; Colantoni, E.; Leter, B.; Vitali, R.; Negroni, A.; Cucchiara, S.; Stronati, L. Krill oil, vitamin D and Lactobacillus reuteri cooperate to reduce gut inflammation. Benef. Microbes 2018, 9, 389–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francisco, V.; Figueirinha, A.; Costa, G.; Liberal, J.; Lopes, M.C.; García-Rodríguez, C.; Geraldes, C.F.G.C.; Cruz, M.T.; Batista, M.T. Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. J. Funct. Foods 2014, 10, 436–443. [Google Scholar] [CrossRef]
- Gabriel, D.; Manuel, P.; Eduardo, G.E.; Gallardo, J.M.; Isaac, R.; Rafael, C.; Isabel, M. Healthy effect of different proportions of marine ω-3 PUFAs EPA and DHA supplementation in Wistar rats: Lipidomic biomarkers of oxidative stress and inflammation. J. Nutr. Biochem. 2015, 26, 1385–1392. [Google Scholar]
- Gammon, K. Inflammation: A complex problem. Nature 2013, 502, S86–S87. [Google Scholar] [CrossRef]
- Huang, G.J.; Pan, C.H.; Wu, C.H. Sclareol exhibits anti-inflammatory activity in both lipopolysaccharide-stimulated macrophages and the lambda-carrageenan-induced paw edema model. J. Nat. Prod. 2012, 75, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Moon, J.; Park, A.R.; Choi, H.; Lee, J.E.; Choi, S.; Lim, C. Anti-inflammatory, antinociceptive and anti-angiogenic activities of a phospholipid mixture purified from porcine lung tissues. Immunopharm. Immunot. 2012, 34, 398–407. [Google Scholar] [CrossRef]
- Kao, Y.F.; Wu, Y.S.; Chou, C.H.; Fu, S.G.; Liu, C.W.; Chai, H.J.; Chen, Y.C. Manufacture and characterization of anti-inflammatory liposomes from jumbo flying squid (Dosidicus gigas) skin phospholipid extraction. Food Funct. 2018, 9, 3986–3996. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 2019, 74, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Jennings, W.; Epand, R.M. Roles of specific lipid species in the cell and their molecular mechanism. Prog. Lipid Res. 2016, 62, 75–92. [Google Scholar] [CrossRef]
- Dean, J.M.; Lodhi, I.J. Structural and functional roles of ether lipids. Protein Cell 2018, 9, 196–206. [Google Scholar] [CrossRef]
- Paltauf, F. Ether lipids in biomembranes. Chem. Phys. Lipids 1994, 74, 101–139. [Google Scholar] [CrossRef]
- Sung, H.H.; Sinclair, A.J.; Huynh, K.; Smith, A.T.; Mellett, N.A.; Meikle, P.J.; Su, X.Q. Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: A randomized crossover study. Nutrition 2019, 65, 191–201. [Google Scholar] [CrossRef]
- Song, G.H.; Wang, H.; Zhang, M.G.; Zhang, Y.P.; Wang, H.H.; Yu, X.N.; Wang, J.; Sheng, Q. Real-time monitoring of the oxidation characteristics of Antarctic krill oil (Euphausia superba) during storage by electric soldering iron ionization mass spectrometry-based lipidomics. J. Agric. Food Chem. 2020, 68, 1457–1467. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, F.; Zhang, M.H.; Liu, J.K. A green enzymatic extraction optimization and oxidative stability of krill oil from Euphausia Superba. Mar. Drugs 2020, 18, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Grandois, J.; Marchioni, E.; Zhao, M.J.; Giuffrida, F.; Ennahar, S.; Bindler, F. Investigation of natural phosphatidylcholine sources: Separation and identification by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS2) of molecular species. J. Agric. Food Chem. 2009, 57, 6014–6020. [Google Scholar] [CrossRef]
- Lordan, R.; Redfern, S.; Tsoupras, A.; Zabetakis, I. Inflammation and cardiovascular disease: Are marine phospholipids the answer? Food Funct. 2020, 11, 2861–2885. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I. Phospholipids of Animal and Marine Origin: Structure, Function, and Anti-Inflammatory Properties. Molecules 2017, 22, 1964–1999. [Google Scholar] [CrossRef] [Green Version]
- Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev. 2001, 47, 3–19. [Google Scholar] [CrossRef]
- Murray, J.S.; Pfeiffer, C.; Madri, J.; Bottomly, K. Major histocompatibility complex (MHC) control of CD4 T cell subset activation. II. A single peptide induces either humoral or cell-mediated responses in mice of distinct MHC genotype. Eur. J. Immunol. 1992, 22, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Nicolaou, K.C.; Ramphal, J.Y.; Petasis, N.A.; Serhan, C.N. Lipoxins and Related Eicosanoids: Biosynthesis, Biological Properties, and Chemical Synthesis. Angewandte 1991, 30, 1100–1116. [Google Scholar] [CrossRef]
- Richard, D.; Kefi, K.; Barbe, U.; Bausero, P.; Visioli, F. Polyunsaturated fatty acids as antioxidants. Pharmacol. Res. 2008, 57, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, G.; Ecker, J. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 2008, 47, 147–155. [Google Scholar] [CrossRef]
- Showman, C.; Barnes, K.; Jaczynski, J.; Matak, K.E. Separation and concentration of n-3 PUFA rich phospholipids by hydration of krill oil. LWT-Food Sci. Technol. 2020, 126, 109–284. [Google Scholar] [CrossRef]
- Sun, D.W.; Zhang, L.; Chen, H.J.; Feng, R.; Cao, P.; Liu, Y.F. Effect of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet. Lipids. Health Dis. 2017, 16, 218–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, L.; Chen, T.; Chen, X.; Tao, L.; Lin, X.; Tao, J.; Huang, X.; Jiang, J.; Liu, H.; et al. β-Arrestin-1 protects against endoplasmic reticulum stress/p53-upregulated modulator of apoptosis-mediated apoptosis via repressing p-p65/inducible nitric oxide synthase in portal hypertensive gastropathy. Free Radical. Biol. Med. 2015, 87, 69–83. [Google Scholar] [CrossRef]
- Van, Q.; Nayak, B.N.; Reimer, M.; Jones, P.J.H.; Fulcher, R.G.; Rempel, C.B. Anti-inflammatory effect of Inonotus obliquus, Polygala senega L, and Viburnum trilobum in a cell screening assay. J. Ethnopharmacol. 2009, 125, 487–493. [Google Scholar] [CrossRef]
- Vigerust, N.F.; Bjørndal, B.; Bohov, P.; Brattelid, T.; Svardal, A.; Berge, P.K. Krill oil versus fish oil in modulation of inflammation and lipid metabolism in mice transgenic for TNF-α. Eur. J. Nutr. 2013, 52, 1315–1325. [Google Scholar] [CrossRef]
- Xie, D.; Gong, M.Y.; Wei, W.; Jin, J.; Wang, X.S.; Wang, X.G.; Jin, Q.Z. Antarctic krill (Euphausia superba) oil: A comprehensive review of chemical composition, extraction technologies, health benefits, and current applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 515–534. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.Q.; Hansson, G.K. Innate immunity, macrophage activation, and atherosclerosis. Immunol. Rev. 2007, 219, 187–203. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Zhao, M.J.; Ennahar, S.; Bindler, F.; Marchioni, E. Determination of phosphatidylethanolamine molecular species in various food matrices by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS). Anal. Bioanal. Chem. 2012, 403, 291–300. [Google Scholar] [CrossRef]
- Ibañez, C.; Mouhid, L.; Reglero, G.; de Molina, A.R. Lipidomics Insights in Health and Nutritional Intervention Studies. J. Agric. Food Chem. 2017, 65, 7827–7842. [Google Scholar] [CrossRef] [PubMed]
Precursors | Molecular Species | m/z (observed) | m/z (calculated) | Error (ppm) | Contents (nmol/g) | Total Contents (nmol/g) |
---|---|---|---|---|---|---|
PE | ||||||
[M − H]− | 16:0/18:3 | 712.4955 | 712.4923 | 4.49 | 2.14 | 306.05 |
[M − H]− | 14:0e/22:6 | 720.5007 | 720.4974 | 4.58 | 8.67 | |
[M − H]− | 17:0/18:2 | 728.5261 | 728.5230 | 4.26 | 2.82 | |
[M − H]− | 18:1e/20:5 | 748.5259 | 748.5287 | −3.74 | 3.29 | |
[M − H]− | 16:1e/22:5 | 748.5314 | 748.5287 | 3.61 | 3.07 | |
[M − H]− | 16:0e/22:6 | 748.5334 | 748.5287 | 6.28 | 97.40 | |
[M − H]− | 16:0e/22:5 | 750.5471 | 750.5443 | 3.73 | 3.27 | |
[M − H]− | 16:1/22:6 | 760.4916 | 760.4917 | −0.13 | 3.79 | |
[M − H]− | 16:0/22:6 | 762.5118 | 762.5079 | 5.08 | 164.65 | |
[M − H]− | 20:5/20:5 | 782.4785 | 782.4761 | 3.07 | 12.80 | |
[M − H]− | 20:4/22:6 | 810.5107 | 810.5074 | 4.07 | 4.15 | |
LPE | ||||||
[M − H]− | 16:1e | 436.2834 | 436.2828 | 1.38 | 4.99 | 122.93 |
[M − H]− | 15:0 | 438.2641 | 438.2626 | 3.42 | 5.04 | |
[M − H]− | 16:0e | 438.2992 | 438.2984 | 1.83 | 47.26 | |
[M − H]− | 16:1 | 450.2639 | 450.2626 | 2.89 | 2.48 | |
[M − H]− | 18:2e | 462.2997 | 462.2990 | 1.51 | 3.96 | |
[M − H]− | 18:1e | 464.3130 | 464.3141 | −2.37 | 9.88 | |
[M − H]− | 18:0e | 466.3291 | 466.3303 | −2.57 | 14.10 | |
[M − H]− | 18:2 | 476.2797 | 476.2783 | 2.94 | 7.25 | |
[M − H]− | 20:1 | 506.3225 | 506.3247 | −4.35 | 2.65 | |
[M − H]− | 22:6 | 524.2776 | 524.2783 | −1.34 | 25.32 | |
PE-OH | ||||||
[M − H]− | 16:0/18:2 | 699.4998 | 699.4970 | 4.00 | 12.33 | 12.33 |
PC | ||||||
[M + CH3COO]− | 14:0e/20:5 | 796.5502 | 796.5498 | 0.50 | 87.89 | 8676.65 |
[M + CH3COO]− | 15:1e/20:5 | 808.5529 | 808.5498 | 3.83 | 71.45 | |
[M + CH3COO]− | 14:0/20:5 | 810.5310 | 810.5291 | 2.34 | 250.36 | |
[M + CH3COO]− | 16:0/18:4 | 812.5482 | 812.5447 | 4.31 | 117.95 | |
[M + CH3COO]− | 16:0/18:3 | 814.5638 | 814.5604 | 4.17 | 399.92 | |
[M + CH3COO]− | 14:0e/22:6 | 822.5657 | 822.5654 | 0.36 | 119.04 | |
[M + CH3COO]− | 16:1e/20:5 | 822.5660 | 822.5654 | 0.73 | 131.89 | |
[M +CH3COO]− | 17:0/18:2 | 830.5957 | 830.5917 | 4.82 | 180.77 | |
[M + CH3COO]− | 14:0/22:6 | 836.5480 | 836.5447 | 3.94 | 207.58 | |
[M + CH3COO]− | 16:0/20:4 | 840.5812 | 840.5760 | 6.19 | 2988.04 | |
[M + CH3COO]− | 16:0/22:5 | 866.5966 | 866.5917 | 5.65 | 1841.90 | |
[M + CH3COO]− | 18:1/20:1 | 872.6412 | 872.6386 | 2.98 | 93.12 | |
[M + CH3COO]− | 18:0/22:6 | 892.6121 | 892.6073 | 5.38 | 184.81 | |
[M + CH3COO]− | 18:0/22:5 | 894.6262 | 894.6230 | 3.58 | 605.82 | |
[M + CH3COO]− | 20:5/22:6 | 910.5667 | 910.5604 | 6.92 | 1298.17 | |
[M + CH3COO]− | 22:6e/22:6 | 922.5999 | 922.5967 | 3.47 | 97.94 | |
LPC | ||||||
[M + CH3COO]− | 16:0 | 554.3469 | 554.3463 | 1.08 | 1123.18 | 2183.34 |
[M + CH3COO]− | 18:1 | 580.3623 | 580.3620 | 0.52 | 307.66 | |
[M + CH3COO]− | 18:0 | 582.3772 | 582.3776 | −0.69 | 326.04 | |
[M + CH3COO]− | 20:5 | 600.3318 | 600.3307 | 1.83 | 426.46 | |
PG | ||||||
[M − H]− | 16:0/20:1 | 775.5499 | 775.5495 | 0.52 | 16.19 | 16.19 |
LPG | ||||||
[M − H]− | 16:1 | 481.2576 | 481.2572 | 0.83 | 4.81 | 9.82 |
[M − H]− | 16:0 | 483.2707 | 483.2728 | −4.35 | 5.01 | |
PI | ||||||
[M − H]− | 18:1/20:5 | 881.5224 | 881.5186 | 4.31 | 115.77 | 115.77 |
LPI | ||||||
[M − H]− | 16:0 | 571.2910 | 571.2889 | 3.68 | 10.05 | 10.05 |
PA | ||||||
[M − H]− | 16:0/18:2 | 671.4678 | 671.4658 | 3.04 | 40.24 | 91.07 |
[M − H]− | 16:0/18:1 | 673.4848 | 673.4814 | 5.08 | 50.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, L.; Wu, X.; Yang, F.; Zhang, M.; Huang, R.; Liu, J. Characterization of Molecular Species and Anti-Inflammatory Activity of Purified Phospholipids from Antarctic Krill Oil. Mar. Drugs 2021, 19, 124. https://doi.org/10.3390/md19030124
Zhou L, Wu X, Yang F, Zhang M, Huang R, Liu J. Characterization of Molecular Species and Anti-Inflammatory Activity of Purified Phospholipids from Antarctic Krill Oil. Marine Drugs. 2021; 19(3):124. https://doi.org/10.3390/md19030124
Chicago/Turabian StyleZhou, Li, Xing Wu, Fu Yang, Minghao Zhang, Rong Huang, and Jikai Liu. 2021. "Characterization of Molecular Species and Anti-Inflammatory Activity of Purified Phospholipids from Antarctic Krill Oil" Marine Drugs 19, no. 3: 124. https://doi.org/10.3390/md19030124
APA StyleZhou, L., Wu, X., Yang, F., Zhang, M., Huang, R., & Liu, J. (2021). Characterization of Molecular Species and Anti-Inflammatory Activity of Purified Phospholipids from Antarctic Krill Oil. Marine Drugs, 19(3), 124. https://doi.org/10.3390/md19030124