Targeted Isolation of Xenicane Diterpenoids From Taiwanese Soft Coral Asterospicularia laurae
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Animal Material
3.3. Global Natural Product Social Molecular Networking
3.4. Extraction and Isolation
3.5. Spectroscopic Data
- Asterolaurin O (1) amorphous, colorless gum, −1.0° (c 0.05, MeOH); IR (neat) νmax 3424, 2960, 2929, 1719, 1379, 1261, 1167, 1033 cm−1; 1H-NMR and 13C-NMR (CD3OD, 700/175 MHz) see Table 1; HRESIMS m/z 451.10903 (calcd for C20H29BrNaO5, 451.10906).
- Asterolaurin P (2) pale yellowish amorphous gum, −47.6° (c 0.05, MeOH); IR (neat) νmax 3454, 2926, 1727, 1455, 1263, 1029 cm−1; 1H-NMR and 13C-NMR (CD3OD, 600/150 MHz) see Table 1; HRESIMS m/z 369.20379 (calcd for C21H30O4Na, 369.20363).
- Asterolaurin Q (3) amorphous, colorless gum, −1.0° (c 0.05, MeOH); IR (neat) νmax 3420, 2962, 2927, 2360, 1703, 1638, 1261, 1091 cm−1; 1H-NMR and 13C-NMR (CD3OD, 700/175 MHz) see Table 1; HRESIMS m/z 371.18294 (calcd for C20H28O5Na, 371.18290).
- Asterolaurin R (4) amorphous, colorless gum, −47.6° (c 0.05, MeOH); IR (neat) νmax 3433, 2964, 1643, 1260, 1072 cm−1; 1H-NMR and 13C-NMR (CDCl3, 600/150 MHz) see Table 1; HRESIMS m/z 387.21425 (calcd for C21H32O5Na, 387.21420).
3.6. Cytotoxic Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Ksebati, M.B.; Schmitz, F.J. 24ξ-Methyl-5α-cholestane-3β,5,6β,22R,24-pentol 6-acetate: New polyhydroxylated sterol from the soft coral Asterospicularia randalli. Steroids 1984, 43, 639–649. [Google Scholar] [CrossRef]
- Bowden, B.; Cusack, B.; Dangel, A. 13-Epi-9-deacetoxyxenicin, a cytotoxic diterpene from the Soft Coral Asterospicularia laurae (Alcyonacea). Mar. Drugs 2003, 1, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-C.; El-Razek, M.H.A.; Hwang, T.-L.; Chiang, M.Y.; Kuo, Y.-H.; Dai, C.-F.; Shen, Y.-C. Asterolaurins A−F, xenicane diterpenoids from the Taiwanese soft coral Asterospicularia laurae. J. Nat. Prod. 2009, 72, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-S.; Fazary, A.E.; Chen, C.-H.; Kuo, Y.-H.; Shen, Y.-C.; Asterolaurins, G.-J. New xenicane diterpenoids from the Taiwanese soft coral Asterospicularia laurae. Helv. Chim. Acta 2011, 94, 273–281. [Google Scholar] [CrossRef]
- Lin, Y.-S.; Fazary, A.E.; Chen, C.-H.; Kuo, Y.-H.; Shen, Y.-C. Bioactive xenicane diterpenoids from the Taiwanese soft coral Asterospicularia laurae. Chem. Biodiv. 2011, 8, 1310–1317. [Google Scholar] [CrossRef]
- Su, J.-H.; Liu, C.-I.; Lu, M.-C.; Chang, C.-I.; Hsieh, M.-Y.; Lin, Y.-C.; Dai, C.-F.; Zhang, Y.-H.; Lin, Z.-Y.; Lin, Y.-S. New secondary metabolite with cytotoxicity from spawning soft coral Asterospicularia laurae in Taiwan. Nat. Prod. Res. 2019, 1–9. [Google Scholar] [CrossRef]
- Watrous, J.; Roach, P.; Alexandrov, T.; Heath, B.S.; Yang, J.Y.; Kersten, R.D.; van der Voort, M.; Pogliano, K.; Gross, H.; Raaijmakers, J.M.; et al. Mass spectral molecular networking of living microbial colonies. Proc. Natl. Acad. Sci. USA 2012, 109, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- Allard, P.-M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.-L. Integration of molecular networking and in-silico ms/ms fragmentation for natural products de-replication. Anal. Chem. 2016, 88, 3317–3323. [Google Scholar] [CrossRef]
- Chao, R.; Hou, X.-M.; Xu, W.-F.; Hai, Y.; Wei, M.-Y.; Wang, C.-Y.; Gu, Y.-C.; Shao, C.-L. Targeted Isolation of Asperheptatides from a Coral-Derived Fungus Using LC-MS/MS-Based Molecular Networking and Antitubercular Activities of Modified Cinnamate Derivatives. J. Nat. Prod. 2021, 84, 11–19. [Google Scholar] [CrossRef]
- Kashman, Y.; Groweiss, A. Xeniolide-A and xeniolide-B, two new diterpenoids from the soft-coral xenia macrospiculata. Tetrahedron Lett. 1978, 48, 4833–4836. [Google Scholar] [CrossRef]
- Braekman, J.C.; Daloze, D.; Tursch, B.; Declercq, J.P.; Germain, G.; Meerssche, M.V. Chemical Studies of Marine Invertebrates. XXXIX. Three novel diterpenoids from the soft coral Xenia novae-britanniae. Bull. Soc. Chim. Belg. 1979, 88, 71–77. [Google Scholar] [CrossRef]
- Kashman, Y.; Groweiss, A. New diterpenoids from the soft corals Xenia macrospiculata and Xenia obscuronata. J. Org. Chem. 1980, 45, 3814–3824. [Google Scholar] [CrossRef]
- Anta, C.; González, N.; Santafé, G.; Rodríguez, J.; Jiménez, C. New xenia diterpenoids from the Indonesian soft coral Xenia sp. J. Nat. Prod. 2002, 65, 766–768. [Google Scholar] [CrossRef] [PubMed]
- Iwagawa, T.; Kawasaki, J.-I.; Hase, T. New xenia diterpenes isolated from the soft coral, Xenia florida. J. Nat. Prod. 1998, 61, 1513–1515. [Google Scholar] [CrossRef]
- Iwagawa, T.; Kawasaki, J.-I.; Hase, T.; Wright, J.L. New di- and tricarbocyclic diterpenes possessing a bicyclic [4.3.1] ring system isolated from the soft coral, Xenia florida. Tetrahedron 1997, 53, 6809–6816. [Google Scholar] [CrossRef]
- Iwagawa, T.; Kawasaki, J.-I.; Hase, T.; Yu, C.-M.; Walter, J.A.; Wright, J.L.C. A new tricarbocyclic diterpene structure from the soft coral Xenia florida. J. Chem. Soc. Chem. Com. 1994, 2073–2074. [Google Scholar] [CrossRef]
- El-Gamal, A.A.H.; Chiang, C.-Y.; Huang, S.-H.; Wang, S.-K.; Duh, C.-Y. Xenia diterpenoids from the formosan soft coral Xenia blumi. J. Nat. Prod. 2005, 68, 1336–1340. [Google Scholar] [CrossRef]
- El-Gamal, A.A.H.; Wang, S.-K.; Duh, C.-Y. Cytotoxic xenia diterpenoids from the soft coral Xenia umbellata. J. Nat. Prod. 2006, 69, 338–341. [Google Scholar] [CrossRef]
- Couperus, P.A.; Clague, A.D.H.; Van Dongen, J.P.C.M. 13C chemical shifts of some model olefins. Org. Mag. Reson. 1976, 8, 426–431. [Google Scholar] [CrossRef]
- Ou-Yang, F.; Tsai, I.-H.; Tang, J.-Y.; Yen, C.-Y.; Cheng, Y.-B.; Farooqi, A.A.; Chen, S.-R.; Yu, S.-Y.; Kao, J.-K.; Chang, H.-W. Antiproliferation for Breast Cancer Cells by Ethyl Acetate Extract of Nepenthes thorellii x (ventricosa x maxima). Int. J. Mol. Sci. 2019, 20, 3238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Samadi, A.K.; Roby, K.F.; Timmermann, B.; Cohen, M.S. Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A. Gynecol. Oncol. 2012, 124, 606–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessner, D.; Chambers, M.; Burke, R.; Agus, D.; Mallick, P. ProteoWizard: Open source software for rapid proteomics tools development. Bioinformatics 2008, 24, 2534–2536. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
1 b | 2 a | 3 b | 4 c | |||||
---|---|---|---|---|---|---|---|---|
δH (J in Hz) | δc | δH (J in Hz) | δc | δH (J in Hz) | δc | δH (J in Hz) | δc | |
1 | 176.9, s | 4.11, dd (5.9, 11.3) | 72.4, t | 4.09, dd (4.1, 11.0) | 71.5, t | 3.61, dd (6.5, 11.5) | 65.9, t | |
3.63, t (11.3) | 3.91, t (11.0) | 3.28, t (11.5) | ||||||
3 | 4.44, d (12.0) | 73.2, t | 171.4, s | 172.2, s | 5.17, brs | 99.2, d | ||
5.06, d (12.0) | ||||||||
4 | 137.0, s | 134.6, s | 133.3, s | 138.5, s | ||||
4a | 3.18, t (12.0) | 39.3, d | 2.70, dt (2.9, 11.0) | 52.0, d | 3.17, t (9.2) | 42.8, d | 2.97, brd (11.5) | 43.1, d |
5 | 1.95, m | 33.4, t | 1.61, m | 39.1, t | 1.84, m | 38.5, t | 1.61, m | 34.8, t |
1.87, m | 1.83, m | |||||||
6α | 2.08, m | 40.8, t | 2.19, m | 40.9, t | 1.92, m | 31.0, t | 2.20, t (3.6) | 40.5, t |
6β | 1.82, m | 2.22, t (3.6) | ||||||
7 | 37.4, s | 133.2, s | 149.0, s | 59.2, s | ||||
8 | 4.09, d (5.7) | 71.2, d | 5.26, d (7.4) | 131.8, d | 3.97, d (9.0) | 83.1, d | 3.00, d (8.0) | 66.9, d |
9 | 4.37, td (5.7, 8.7) | 75.1, d | 4.72, t (7.4) | 67.9, d | 4.06, dd (3.9, 9.0) | 70.5, d | 3.80, dd (8.0, 7.4) | 69.1, d |
10α | 2.24, d (8.7) | 39.8, t | 2.34, d (13.6) | 46.2, t | 2.48, m | 45.0, t | 2.45, m | 44.7, t |
10β | 2.22, d (5.7) | 2.50, dd (13.6, 6.4) | 2.60, m | 2.47, t (7.4) | ||||
11 | 72.5, s | 149.5, s | 148.3, s | 147.4, s | ||||
11a | 2.88, d (12.0) | 57.3, d | 2.06, dd (5.9, 11.0) | 51.1, d | 2.46, m | 44.7, d | 2.26, dd (6.5, 11.5) | 50.7, d |
12 | 6.15, d (11.1) | 129.7, d | 6.53, d (11.0) | 137.3, d | 7.04, d (11.8) | 140.4, d | 6.36, d (11.3) | 126.5, d |
13 | 6.34, dd (11.1, 15.3) | 122.3, d | 6.76, dd (11.0, 15.7) | 126.6, d | 6.57, dd (11.8, 15.1) | 121.7, d | 6.44, dd (11.3,14.9) | 120.4, d |
14 | 5.94, d (15.3) | 146.2, d | 5.98, d (15.7) | 146.4, d | 6.35, d (15.1) | 153.2, d | 5.97, d (14.9) | 144.6, d |
15 | 71.3, s | 76.5, s | 71.5, s | 71.0, s | ||||
16 | 1.30, s | 29.8, q | 1.30, s | 26.0, q | 1.34, s | 29.7, q | 1.32, s | 29.9, q |
17 | 1.30, s | 29.8, q | 1.30, s | 25.9, q | 1.34, s | 29.7, q | 1.32, s | 29.9, q |
18 | 1.15, s | 34.7, q | 1.70, s | 17.3, q | 5.20, d (1.6) | 120.2, t | 1.44, s | 17.3, q |
5.10, d (1.6) | ||||||||
19A | 1.76, d (14.6) | 44.7, t | 5.06, s | 115.3, t | 5.02, d (1.8) | 116.5, t | 4.85, s | 114.8, t |
19B | 1.84, d (14.6) | 4.95, s | 4.84, d (1.8) | 5.11, s | ||||
OH | 4.61, brs | |||||||
OMe | 3.16, s | 50.9, q | 3.47, s | 55.1, q |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Y.-C.; Chen, Y.-J.; Chen, S.-R.; Lien, W.-J.; Chang, H.-W.; Yang, Y.-L.; Liaw, C.-C.; Su, J.-H.; Chen, C.-Y.; Cheng, Y.-B. Targeted Isolation of Xenicane Diterpenoids From Taiwanese Soft Coral Asterospicularia laurae. Mar. Drugs 2021, 19, 123. https://doi.org/10.3390/md19030123
Lin Y-C, Chen Y-J, Chen S-R, Lien W-J, Chang H-W, Yang Y-L, Liaw C-C, Su J-H, Chen C-Y, Cheng Y-B. Targeted Isolation of Xenicane Diterpenoids From Taiwanese Soft Coral Asterospicularia laurae. Marine Drugs. 2021; 19(3):123. https://doi.org/10.3390/md19030123
Chicago/Turabian StyleLin, Yu-Chi, Yi-Jen Chen, Shu-Rong Chen, Wan-Ju Lien, Hsueh-Wei Chang, Yu-Liang Yang, Chia-Ching Liaw, Jui-Hsin Su, Ching-Yeu Chen, and Yuan-Bin Cheng. 2021. "Targeted Isolation of Xenicane Diterpenoids From Taiwanese Soft Coral Asterospicularia laurae" Marine Drugs 19, no. 3: 123. https://doi.org/10.3390/md19030123
APA StyleLin, Y. -C., Chen, Y. -J., Chen, S. -R., Lien, W. -J., Chang, H. -W., Yang, Y. -L., Liaw, C. -C., Su, J. -H., Chen, C. -Y., & Cheng, Y. -B. (2021). Targeted Isolation of Xenicane Diterpenoids From Taiwanese Soft Coral Asterospicularia laurae. Marine Drugs, 19(3), 123. https://doi.org/10.3390/md19030123