Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives
Funding
Conflicts of Interest
References
- Wray, G.A. 1999. Echinodermata. Spiny-Skinned Animals: Sea Urchins, Starfish, and Their Allies. Version 14 December 1999 (Under Construction). Available online: http://tolweb.org/Echinodermata/2497/1999.12.14 (accessed on 26 February 2021).
- Gomes, A.R.; Freitas, A.C.; Rocha-Santos, T.A.P.; Duarte, A.C. Bioactive compounds derived from echinoderms. RSC Adv. 2014, 4, 29365–29382. [Google Scholar] [CrossRef]
- Goodfellow, E.R.M.; Goad, L.J. The steryl sulfate content of echinoderms and some marine invertebrates. Comp. Biochem. Physiol. 1983, 76B, 575–578. [Google Scholar]
- Claereboudt, E.J.S.; Eeckhaut, I.; Lins, L.; Deleu, M. How different sterols contribute to saponin tolerant plasma membranes in sea cucumbers. Sci. Rep. 2018, 8, 10845. [Google Scholar] [CrossRef] [PubMed]
- Goad, L.J.; Rubinstein, I.; Smith, A.G. The sterols of echinoderms. Comp. Biochem. Physiol. 1972, 180B, 223–246. [Google Scholar]
- Stonik, V.A.; Ivanchina, N.V.; Kicha, A.A. New polar steroids from starfish. Nat. Prod. Commun. 2008, 3, 1587–1610. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.M.; Andrade, P.B.; Pires, R.A.; Reis, R.L. Chemical ecology of echinoderms: Impact of environment and diet in metabolomic profile. In Ecology, Habitants and Reproductive Biology; Whitmore, E., Ed.; Nova Science Publisher: Hauppauge, NY, USA, 2014; pp. 58–76. [Google Scholar]
- Hou, Y.; Vasileva, E.A.; Carne, A.; McConnell, M.; El-Din, A.; Bekhitaan, A.; Mishchenko, N.P. Naphthoquinones of the spinochrome class: Occurrence, isolation, biosynthesis and biomedical applications. RSC Adv. 2018, 8, 32637–32650. [Google Scholar] [CrossRef] [Green Version]
- Shikov, A.N.; Pozharitskaya, O.N.; Krishtopina, A.S.; Makarov, V.G. Naphthoquinone pigments from sea urchins: Chemistry and pharmacology. Phytochem. Rev. 2018, 17, 509–534. [Google Scholar] [CrossRef]
- Tan, R.X.; Chen, J.H. The cerebrosides. Nat. Prod. Rep. 2003, 20, 509–534. [Google Scholar] [CrossRef] [PubMed]
- Higuchi, R.; Inagaki, M.; Yamada, K.; Miyamoto, Y. Biologically active gangliosides from echinoderms. J. Nat. Med. 2007, 61, 367–370. [Google Scholar] [CrossRef]
- Careaga, V.; Majer, M. Cerebrosides from marine organisms. In Studies in Natural Product Chemistry; Atta-ur-Rahman, Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 42, pp. 59–81. [Google Scholar]
- Hasan, I.; Gerdol, M.; Fujii, Y.; Ozeki, Y. Functional characterization of OXYL, a SghC1qDC LacNAc-specific lectin from the crinoid feather star Anneissia japonica. Mar. Drugs 2019, 17, 136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, Y.; Yang, S.; Yu, M.; Jiang, T.; Lv, Z. Glycosaminoglycan from Apostichopus japonicus improves glucose metabolism in the liver of insulin resistant mice. Mar. Drugs 2020, 18, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishchenko, N.P.; Krylova, N.V.; Iunikhina, O.V.; Vasileva, E.A.; Likhatskaya, G.N.; Pislyagin, E.A.; Tarbeeva, D.V.; Dmitrenok, P.S.; Fedoreyev, S.A. Antiviral potential of sea urchin aminated spinochromes against herpes simplex virus type 1. Mar. Drugs 2020, 18, 550. [Google Scholar] [CrossRef] [PubMed]
- Dyshlovoy, S.A.; Pelageev, D.N.; Hauschild, J.; Sabutskii, Y.E.; Khmelevskaya, E.A.; Krisp, C.; Kaune, M.; Venz, S.; Borisova, K.L.; Busenbender, T.; et al. Inspired by sea urchins: Warburg effect mediated selectivity of novel synthetic non-glycoside 1,4-naphthoquinone-6S-glucose conjugates in prostate cancer. Mar. Drugs 2020, 18, 251. [Google Scholar] [CrossRef] [PubMed]
- Polonik, S.; Likhatskaya, G.; Sabutski, Y.; Pelageev, D.; Denisenko, V.; Pislyagin, E.; Chingizova, E.; Menchinskaya, E.; Aminin, D. Synthesis, cytotoxic activity evaluation and quantitative structure-activity analysis of substituted 5,8-dihydroxy-1,4-naphthoquinones and their O- and S-glycoside derivatives tested against Neuro-2a cancer cells. Mar. Drugs 2020, 18, 602. [Google Scholar] [CrossRef] [PubMed]
- Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andrijaschenko, P.V.; Popov, R.S.; Dmitrenok, P.S.; Chingizova, E.A.; Ermakova, S.P.; Malyarenko, O.S.; Dautov, S.S.; et al. Structures and bioactivities of quadrangularisosides A, A1, B, B1, B2, C, C1, D, D1–D4, and E from the sea cucumber Colochirus quadrangularis: The first discovery of the glycosides, sulfated by C-4 of the terminal 3-O-methylglucose residue. Synergetic effect on colony formation of tumor HT-29 cells of these glycosides with radioactive irradiation. Mar. Drugs 2020, 18, 394. [Google Scholar]
- Silchenko, A.S.; Kalinovsky, A.I.; Avilov, S.A.; Andrijaschenko, P.V.; Popov, R.S.; Dmitrenok, P.S.; Chingizova, E.A.; Kalinin, V.I. Kurilosides A1, A2, C1, D, E and F-triterpene glycosides from the Far Eastern sea cucumber Thyonidium (= Duasmodactyla) kurilensis (Levin): Structures with unusual non-holostane aglycones and cytotoxicities. Mar. Drugs 2020, 18, 551. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, T.V.; Kicha, A.A.; Malyarenko, O.S.; Zakharenko, V.M.; Kotlyarov, I.P.; Kalinovsky, A.I.; Popov, R.S.; Svetashev, V.I.; Ivanchina, N.V. New conjugates of polyhydroxysteroids with long-chain fatty acids from the deep-water far eastern starfish Ceramaster patagonicus and their anticancer activity. Mar. Drugs 2020, 18, 260. [Google Scholar] [CrossRef] [PubMed]
- Carreón-Palau, L.; Özdemir, N.S.; Parrish, C.C.; Parzanini, C. Sterol composition of sponges, cnidarians, arthropods, mollusks, and echinoderms from the deep northwest Atlantic: A comparison with shallow coastal Gulf of Mexico. Mar. Drugs 2020, 18, 598. [Google Scholar] [CrossRef] [PubMed]
- Ustyuzhanina, N.E.; Bilan, M.I.; Dmitrenok, A.S.; Silchenko, A.S.; Grebnev, B.B.; Stonik, V.A.; Nifantiev, N.E.; Usov, A.I. Fucosylated chondroitin sulfates from the sea cucumbers Paracaudina chilensis and Holothuria hilla: Structures and anticoagulant activity. Mar. Drugs 2020, 18, 540. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinin, V.I. Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives. Mar. Drugs 2021, 19, 125. https://doi.org/10.3390/md19030125
Kalinin VI. Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives. Marine Drugs. 2021; 19(3):125. https://doi.org/10.3390/md19030125
Chicago/Turabian StyleKalinin, Vladimir I. 2021. "Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives" Marine Drugs 19, no. 3: 125. https://doi.org/10.3390/md19030125
APA StyleKalinin, V. I. (2021). Echinoderms Metabolites: Structure, Functions, and Biomedical Perspectives. Marine Drugs, 19(3), 125. https://doi.org/10.3390/md19030125