Microalgal Peloids for Cosmetic and Wellness Uses
Abstract
:1. Introduction
2. Peloids for Dermocosmetics and Wellness
2.1. Clays and Dermocosmetic Peloids
2.2. Minerals and Trace Elements in Dermocosmetic Peloids
2.3. Microalgae and Cyanobacteria in Dermocosmetic Peloids
2.4. Safety of Peloids for Application in Dermocosmetics
3. Proposal for a Procedure to Manufacture Microalgae Peloids
3.1. Composition of a Peloid
3.1.1. Solid Substrate: Clays
3.1.2. Solid Substrate: Mineral-Medicinal Water and Seawater
3.1.3. Microalgae and Cyanobacteria
3.2. Preparation of a Dermocosmetic Peloid with Microalgae
3.2.1. Selection of Raw Materials
3.2.2. Characterization of Raw Materials
3.2.3. Preparation and Testing of Mixtures
3.2.4. Characterization of the Peloid Sample
3.2.5. Use and Effectiveness Tests
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Silva, P.S.C.; Oliveira, S.M.B.; Farias, F.; Fávaro, D.I.I.; Mazzilli, B.P. Chemical and radiological characterization of clay minerals used in pharmaceutics and cosmetics. Appl. Clay Sci. 2011, 52, 145–149. [Google Scholar] [CrossRef]
- Maraver, F.; Fernández-Torán, M.A.; Corvillo, I.; Morer, C.; Vázquez, I.; Aguilera, L.; Armijo, F. Pelotherapy, a review. Med. Nat. 2015, 9, 38–46. [Google Scholar]
- Carretero, M.I. Clays in pelotherapy. A review. Part II: Organic compounds, microbiology and medical applications. Appl. Clay Sci. 2020, 189, 105531. [Google Scholar] [CrossRef]
- Gomes, C.; Carretero, M.I.; Pozo, M.; Maraver, F.; Cantista, P.; Armijo, F.; Legido, J.L.; Teixeira, F.; Rautureau, M.; Delgado, R. Peloids and pelotherapy: Historical evolution, classification and glossary. Appl. Clay Sci. 2013, 75, 28–38. [Google Scholar] [CrossRef]
- Veniale, F.; Barberis, E.; Carcangiu, G.; Morandi, N.; Setti, M.; Tamanini, M.; Tessier, D. Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters. Int. J. Biometeorol. 2004, 25, 135–148. [Google Scholar] [CrossRef]
- Legido, J.; Medina, C.; Mourelle, M.L.; Carretero, M.; Pozo, M. Comparative study of the cooling rates of bentonite, sepiolite and common clays for their use in pelotherapy. Appl. Clay Sci. 2007, 36, 148–160. [Google Scholar] [CrossRef]
- Meijide, R.; Mourelle, M.L. Afecciones dermatológicas y cosmética dermotermal. In Técnicas y Tecnologías en Hidrología Médica e Hidroterapia. Agencia de Evaluación de Tecnologías Sanitarias; Hernández Torres, A., Ed.; Instituto Carlos III: Madrid, Spain, 2006; pp. 175–194. (In Spanish) [Google Scholar]
- Mourelle, M.L. Caracterización Termofísica de Peloides para Aplicaciones Termoterapéuticas en Centros Termales. Ph.D. Thesis, Universidade de Vigo, Galicia, Spain, 2006. (In Spanish). [Google Scholar]
- Carbajo, J.M.; Corvillo, I.; Aguilera, A.; Meijide, R.; Diestro, P.; Crespo, V.; Maraver, F. Biophysical skin effects of peloids according to their maturity time. Balnea 2012, 6, 169–170. [Google Scholar]
- Halevy, S.; Sukenik, S. Different Modalities of Spa Therapy for Skin Diseases at the Dead Sea Area. Arch. Dermatol. 1998, 134, 1416–1420. [Google Scholar] [CrossRef]
- Emmanuel, T.; Lybæk, D.; Johansen, C.; Iversen, L. Effect of Dead Sea Climatotherapy on Psoriasis; A Prospective Cohort Study. Front. Med. 2020, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Ma’or, Z.; Henis, Y.; Alon, Y.; Orlov, E.; Sørensen, K.; & Oren, A. Antimicrobial properties of Dead Sea black mineral mud. Int. J. Dermatol. 2006, 45, 504–511. [Google Scholar] [CrossRef]
- Abu-al-Basal, M.A. Histological evaluation of the healing properties of Dead Sea black mud on full-thickness excision cutaneous wounds in BALB/c mice. Pak. J. Biol. Sci. 2012, 15, 306–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzulla, S.; Chimenti, R.; Sesti, S.; De Stefano, S.; Morrone, M.; Martino, G. Effetto delle Bioglee solfuree su lesioni psoriasiche. Clin. Ter. 2004, 155, 499–504. (In Italian) [Google Scholar]
- Da Silva, P.S.C.; Torrecilha, J.K.; Gouvea, P.F.D.M.; Máduar, M.F.; de Oliveira, S.M.B.; Scapin, M.A. Chemical and radiological characterization of Peruíbe Black Mud. Appl. Clay Sci. 2015, 118, 221–230. [Google Scholar] [CrossRef]
- Shoieb, S.M.; Esmat, A.; Khalifa, A.E.; Abdel-Naim, A.B. Chrysin attenuates testosterone-induced benign prostate hyperplasia in rats. Food Chem. Toxicol. 2018, 111, 650–659. [Google Scholar] [CrossRef]
- Spilioti, E.; Vargiami, M.; Letsiou, S.; Gardikis, K.; Sygouni, V.; Koutsoukos, P.; Chinou, I.; Kasi, E.; Moutsatsou, P. Biological properties of mud extracts derived from various spa resorts. Environ. Geochem. Health 2017, 39, 821–833. [Google Scholar] [CrossRef] [PubMed]
- Zague, V.; de Almeida Silva, D.; Baby, A.R.; Kaneko, T.M.; Velasco, M.V. Clay facial masks: Physicochemical stability at different storage temperatures. J. Cosmet. Sci. 2007, 58, 45–51. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical industry: Part I. Excipients and medical applications. Appl. Clay Sci. 2009, 4, 73–80. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M. Clay and non-clay minerals in the pharmaceutical and cosmetic industries Part II. Active ingredients. Appl. Clay Sci. 2010, 47, 171–1801. [Google Scholar] [CrossRef]
- Carretero, M.I. Clays in pelotherapy. A review. Part I: Mineralogy, chemistry, physical and physicochemical properties. Appl. Clay Sci. 2020, 189, 105526. [Google Scholar] [CrossRef]
- Kamitsou, M.D.; Sygouni, V.; Kanellopoulou, D.G.; Gardikis, K.; Koutsoukos, P.G. Physicochemical characterization of sterilized muds for pharmaceutics/cosmetics applications. Environ. Geochem. Health 2018, 40, 1449–1464. [Google Scholar] [CrossRef]
- Silva-Valenzuela, M.; Chambi-Peralta, M.M.; Sayeg, I.J.; Carvalho, F.; Wang, S.; Valenzuela-Díaz, F. Enrichment of clay from Vitoria da Conquista (Brazil) for applications in cosmetics. Appl. Clay Sci. 2018, 155, 111–119. [Google Scholar] [CrossRef]
- Khiari, I.; Mefteh, S.; Sánchez-Espejo, R.; Aguzzi, C.; López-Galindo, A.; Jamoussi, F.; Iborra, C. Study of traditional Tunisian medina clays used in therapeutic and cosmetic mud-packs. Appl. Clay Sci. 2014, 101, 141–148. [Google Scholar] [CrossRef]
- Viseras, C.; Carazo, E.; Borrego-Sánchez, A.; García-Villén, F.; Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C. Clay Minerals in Skin Drug Delivery. Clays Clay Miner. 2019, 67, 59–71. [Google Scholar] [CrossRef]
- García-Villén, F.; Sánchez-Espejo, R.; Borrego-Sánchez, A.; Cerezo, P.; Perioli, L.; Viseras, C. Safety of Nanoclay/Spring Water Hydrogels: Assessment and Mobility of Hazardous Elements. Pharmaceutics 2020, 12, 764. [Google Scholar] [CrossRef]
- Katona, G.; Vojvodić, S.; Kalić, M.; Sarač, M.S.; Klimó, A.; Jovanović Lješković, N. The effect of Kanjiža peloid on skin hydration and skin barrier function. Maced. Pharm. Bull. 2020, 66, 105–106. [Google Scholar] [CrossRef]
- Hoteteu, M.; Munteanu, C.; Ionescu, E.; Almășan, R.; Balnear, T.; Sanatorium, R. Bioactive substances of the Techirghiol therapeutic mud. Balneo Res. J. 2018, 9, 5–10. [Google Scholar] [CrossRef]
- Pavlovska, I.; Klaviņa, A.; Auce, A.; Vanadziņš, I.; Silova, A.; Komarovska, L.; Silamiķele, B.; Dobkeviča, L.; Paegle, L. Assessment of sapropel use for pharmaceutical products according to legislation, pollution parameters, and concentration of biologically active substances. Sci. Rep. 2020, 10, 21527. [Google Scholar] [CrossRef]
- Bergamaschi, B.; Marzola, L.; Radice, M.; Manfredini, S.; Baldini, E.; Vicentini, C.B.; Marrocchino, E.; Molesini, S.; Ziosi, P.; Vaccaro, C.; et al. Comparative Study of SPA Mud from “Bacino Idrominerario Omogeneo dei Colli Euganei (B.I.O.C.E.)-Italy” and Industrially Optimized Mud for Skin Applications. Life 2020, 10, 78. [Google Scholar] [CrossRef]
- Bawab, A.A.; Bozeya, A.; Abu-Mallouh, S.; Irmaileh, B.A.; Daqour, I.; Abu-Zurayk, R. The Dead Sea Mud and Salt: A Review of Its Characterization, Contaminants, and Beneficial Effects. IOP Conf. Ser. Mater. Sci. Eng. 2018, 305, 012003. [Google Scholar] [CrossRef]
- Britschka, Z.M.N.; Teodoro, W.R.; Velosa, A.P.P.; Mello, S.B.V. The efficacy of Brazilian black mud treatment in chronic experimental arthritis. Rheumatol. Int. 2007, 28, 39–45. [Google Scholar] [CrossRef]
- Yarkent, Ç.; Gürlek, C.; Oncel, S.S. Potential of microalgal compounds in trending natural cosmetics: A review. Sustain. Chem. Pharm. 2020, 17, 100304. [Google Scholar] [CrossRef]
- Ceschi-Berrini, C.; de Appolonia, F.; Dalla Valle, L.; Komárek, J.; Andreoli, C. Morphological and molecular characterization of a thermophilic cyanobacterium (Oscillatoriales) from Euganean Thermal Springs (Padua, Italy). Arch. Hydrobiol. Algol. Stud. 2004, 113, 73–85. [Google Scholar]
- Marcolongo, G.; de Appolonia, F.; Venzo, A.; Berrie, C.P.; Carofiglio, T.; Ceschi Berrini, C. Diacylglycerolipids isolated from a thermophile cyanobacterium from the Euganean hot springs. Nat. Prod. Res. 2006, 20, 766–774. [Google Scholar] [CrossRef]
- Moro, I.; Rascio, N.; La Rocca, N.; Di Bella, M.; Andreoli, C. Cyanobacterium aponinum, a new Cyanoprokaryote from the microbial mat of Euganean Thermal Springs (Padua, Italy). Arch. Hydrobiol. Suppl. Algol. Stud. 2007, 123, 1–15. [Google Scholar] [CrossRef]
- Poli, A.; Romano, I.; Cordella, P.; Orlando, P.; Nicolaus, B.; Ceschi Berrini, C. Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles 2009, 13, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Moro, I.; Rascio, N.; La Rocca, N.; Sciuto, K.; Albertano, P.; Bruno, L.; Andreoli, C. Polyphasic characterization of a thermo-tolerant filamentous cyanobacterium isolated from the Euganean thermal muds (Padua, Italy). Eur. J. Phycol. 2010, 45, 143–154. [Google Scholar] [CrossRef]
- Centini, M.; Tredici, M.R.; Biondi, N.; Buonocore, A.; Maffei Facino, R.; Anselmi, C. Thermal mud maturation: Organic matter and biological activity. Int. J. Cosmet. Sci. 2015, 37, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Centini, M.; Roberto Tredici, M.; Biondi, N.; Buonocore, A.; Facino, R.M.; Anselmi, C. Bioglea as a Source of Bioactive Ingredients: Chemical and Biological Evaluation. Cosmetics 2020, 7, 81. [Google Scholar] [CrossRef]
- Calderan, A.; Carraro, A.; Honisch, C.; Lalli, A.; Ruzza, P.; Tateo, F. Euganean therapeutic mud (NE Italy): Chlorophyll a variations over two years and relationships with mineralogy and geochemistry. Appl. Clay Sci. 2020, 185, 105361. [Google Scholar] [CrossRef]
- Gris, B.; Treu, L.; Zampieri, R.M.; Caldara, F.; Romualdi, C.; Campanaro, S.; La Rocca, N. Microbiota of the Therapeutic Euganean Thermal Muds with a Focus on the Main Cyanobacteria Species. Microorganisms 2020, 8, 1590. [Google Scholar] [CrossRef]
- Zampieri, R.M.; Adessi, A.; Caldara, F.; Codato, A.; Furlan, M.; Rampazzo, C.; De Philippis, R.; La Rocca, N.; Dalla Valle, L. Anti-Inflammatory Activity of Exopolysaccharides from Phormidium sp. ETS05, the Most Abundant Cyanobacterium of the Therapeutic Euganean Thermal Muds, Using the Zebrafish Model. Biomolecules 2020, 10, 582. [Google Scholar] [CrossRef] [Green Version]
- Giorgio, A.; Carraturo, F.; Aliberti, F.; De Bonis, S.; Libralato, G.; Morra, M.; Guida, M. Characterization of microflora composition and antimicrobial activity of algal extracts from Italian thermal muds. J. Nat. Sci. Biol. Med. 2018, 9, 150–158. [Google Scholar]
- Paduano, S.; Valeriani, F.; Romano-Spica, V.; Bargellini, A.; Borella, P.; Marchesi, I. Microbial biodiversity of thermal water and mud in an Italian spa by metagenomics: A pilot study. Water Sci. Technol. Water Supply 2017, 18, 1456–1465. [Google Scholar] [CrossRef]
- Demay, J.; Halary, S.; Knittel-Obrecht, A.; Villa, P.; Duval, C.; Hamlaoui, S.; Roussel, T.; Yéprémian, C.; Reinhardt, A.; Bernard, C.; et al. Anti-Inflammatory, Antioxidant, and Wound-Healing Properties of Cyanobacteria from Thermal Mud of Balaruc-Les-Bains, France: A Multi-Approach Study. Biomolecules 2021, 11, 28. [Google Scholar] [CrossRef] [PubMed]
- Duval, C.; Hamlaoui, S.; Piquet, B.; Toutirais, G.; Yéprémian, C.; Reinhardt, A.; Duperron, S.; Marie, B.; Demay, J.; Bernard, C. Characterization of cyanobacteria isolated from thermal muds of Balaruc-Les-Bains (France) and description of a new genus and species Pseudo-chroococcus couteii. bioRxiv 2020. [Google Scholar] [CrossRef]
- Duval, C.; Hamlaoui, S.; Piquet, B.; Toutirais, G.; Yéprémian, C.; Reinhardt, A.; Duperron, S.; Marie, B.; Demay, J.; Bernard, C. Diversity of cyanobacteria from thermal muds (Balaruc-Les-Bains, France) with the description of Pseudochroococcus coutei gen. nov., sp. nov. FEMS Microbes 2021, 2, xtab006. [Google Scholar] [CrossRef]
- Halevy, S.; Giryes, H.; Friger, M.; Grossman, N.; Karpas, Z.; Sarov, B.; Sukenik, S. The role of trace elements in psoriatic patients undergoing balneotherapy with Dead Sea bath salt. IMAJ 2001, 3, 828–832. [Google Scholar] [PubMed]
- Obeidat, M. Isolation and characterization of extremely halotolerant Bacillus species from Dead Sea black mud and determination of their antimicrobial and hydrolytic activities. Afr. J. Microbiol. Res. 2017, 11, 1303–1314. [Google Scholar]
- Al-Karablieh, N. Antimicrobial Activity of Bacillus Persicus 24-DSM Isolated from Dead Sea Mud. Open Microbiol. J. 2017, 11, 372–383. [Google Scholar] [CrossRef]
- Dolmaa, G.; Bayaraa, B.; Tserenkhand, B.; Nomintsetseg, B.; Ganzaya, G. Chemical investigation of medical mud from Lake Nogoon. Proc. Mong. Acad. Sci. 2018, 57, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Bigovic, M.; Pantović, S.; Milašević, I.; Ivanović, L.; Djurović, D.; Slavić, V.; Popovic, M.; Vrvić, M.; Roganovic, M. Organic composition of Igalo Bay peloid (Montenegro). IJTK 2019, 18, 837–848. [Google Scholar]
- Sedláček, I.; Kwon, S.W.; Švec, P.; Mašlanˇová, I.; Kýrová, K.; Holochová, P.; Černohlávková, J.; Busse, H.J. Aquitalea pelogenes sp. nov., isolated from mineral peloid. Int. J. Syst. Evol. Microbiol. 2016, 66, 962–967. [Google Scholar] [CrossRef] [PubMed]
- Pesciaroli, C.; Viseras, C.; Aguzzi, C.; Rodelas, B.; González-López, J. Study of bacterial community structure and diversity during the maturation process of a therapeutic peloid. Appl. Clay Sci. 2016, 132–133, 59–67. [Google Scholar] [CrossRef]
- Ma’or, Z.; Halicz, L.; Portugal-Cohen, M.; Russo, M.; Robino, F.; Vanhaecke, T.; Rogiers, V. Safety evaluation of traces of nickel and chrome in cosmetics: The case of Dead Sea mud. Regul. Toxicol. Pharmacol. 2015, 73, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Baldovin, T.; Amoruso, I.; Caldara, F.; Buja, A.; Baldo, V.; Cocchio, S.; Bertoncello, C. Microbiological Hygiene Quality of Thermal Muds: A Pilot Study in Pelotherapy Facilities of the Euganean Thermal District (NE Italy). Int. J. Environ. Res. Public Health 2020, 13, 5040. [Google Scholar] [CrossRef]
- Arribas, M.; Gómez, C.P.; Mourelle, M.L. Nuevos casos clínicos tratados con peloide La Toja. In Proceedings of the Libro de resúmenes del V Congreso Iberoamericano de peloides, Badajoz, Spain, 11–14 June 2017. (In Spanish). [Google Scholar]
- Cabana, B.; Galiñares, M.; Mourelle, L. Estudio preliminar con peloides en paciente con psoriasis. In Proceedings of the Libro de resúmenes del V Congreso Iberoamericano de peloides, Badajoz, Spain, 11–14 June 2017. (In Spanish). [Google Scholar]
- Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Cosmética dermotermal: Valor añadido para los centros termales. In Proceedings of the I Congreso Internacional del Agua—Termalismo y Calidad de Vida, Ourense, Spain, 23–24 September 2015. (In Spanish). [Google Scholar]
- Carretero, M.I.; Pozo, M.; Legido, J.L.; Fernández-González, M.V.; Delgado, R.; Gómez, I.; Armijo, F.; Maraver, F. Assessment of three Spanish clays for their use in pelotherapy. Appl. Clay Sci. 2017, 99, 131–143. [Google Scholar]
- Glavaš, N.; Mourelle, M.L.; Gómez, C.P.; Legido, J.L.; Šmuc, N.R.; Dolenec, M.; Kovac, N. The mineralogical, geochemical, and thermophysical characterization of healing saline mud for use in pelotherapy. Appl. Clay Sci. 2017, 135, 119–128. [Google Scholar]
- Maraver, F.; Vázquez, I.; Armijo, F. Vademécum III de Aguas Mineromedicinales Españolas; Ediciones Complutense: Madrid, Spain, 2020. (In Spanish) [Google Scholar]
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural mineral waters: Chemical characteristics and health effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Casas, L.M.; Pozo, M.; Gómez, C.P.; Pozo, E.; Bessieres, D.; Plantier, F.; Legido, J.L. Thermal behavior of mixtures of bentonitic clay and saline solutions. Appl. Clay Sci. 2013, 72, 18–25. [Google Scholar]
- Dolganyuk, V.; Andreeva, A.; Budenkova, E.; Sukhikh, S.; Babich, O.; Ivanova, S.; Prosekov, A.; Ulrikh, E. Study of Morphological Features and Determination of the Fatty Acid Composition of the Microalgae Lipid Complex. Biomolecules 2020, 10, 1571. [Google Scholar] [CrossRef] [PubMed]
- Casas, L.M.; Legido, J.L.; Pozo, M.; Mourelle, L.; Plantier, F.; Bessieres, D. Specific heat of mixtures of bentonitic clay with sea water or distilled water for their use in thermotherapy. Thermochim. Acta. 2011, 524, 68–73. [Google Scholar] [CrossRef]
- Mato, M.M.; Casas, L.M.; Legido, J.L.; Gómez, C.P.; Mourelle, L.; Bessieres, D.; Plantier, F. Specific heat of mixtures of kaolin with sea water or distilled water for their use in thermotherapy. J. Therm. Anal. Calorim. 2017, 130, 479–484. [Google Scholar] [CrossRef]
- Sánchez-Espejo, R.; Cerezo, P.; Aguzzi, C.; López-Galindo, A.; Machado, J.; Viseras, C. Physicochemical and in vitro cation release relevance of therapeutic muds “maturation”. Appl. Clay Sci. 2015, 116–117, 1–7. [Google Scholar] [CrossRef]
- Carretero, M.I.; Pozo, M.; Sánchez, C.; García, F.J.; Medina, J.A.; Bernabé, J.M. Comparison of saponite and montmorillonite behaviour during static and stirring maturation with seawater for pelotherapy. Appl. Clay Sci. 2007, 36, 161–173. [Google Scholar] [CrossRef]
- Constantin, M.M.; Bucur, S.; Serban, E.D.; Olteanu, R.; Bratu, O.G.; Constantin, T. Measurement of skin viscoelasticity: A non-invasive approach in allergic contact dermatitis. Exp. Ther. Med. 2020, 20, 184. [Google Scholar] [CrossRef] [PubMed]
- Qassem, M.; Kyriacou, P.A. Review of Modern Techniques for the Assessment of Skin Hydration. Cosmetics 2019, 6, 19. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.A.; Kim, E.J.; Lee, H.K. Use of SkinFibrometer® to measure skin elasticity and its correlation with Cutometer® and DUB® Skinscanner. Skin Res. Technol. 2018, 24, 466–471. [Google Scholar] [CrossRef]
Chemical Element | Effect on the Skin |
---|---|
Calcium | Effect on proteins that regulate cell divisions: calmodulin and cellular retinoic-acid-binding protein (CRAB) Catalysing action of differentiation enzymes: transglutaminase, protease, and phospholipases Indispensable for regulating permeability of cell membranes Regulation of proliferation and differentiation of keratinocytes |
Sulphur | Cell regenerator, keratolytic/keratoplastic (dose-dependent) Antibacterial, antifungal |
Magnesium | Inhibits synthesis of some polyamines involved in psoriasis pathogenesis at concentrations of 5 × 10−4, and its reduction by magnesium improves disease condition Anti-inflammatory, antiphlogistic Catalyses synthesis of nucleic acids and proteins Catalyses ATP production Produces sedation in the central nervous system |
Chloride | Fluid balance of tissues |
Sodium | Fluid balance of tissues |
Copper | Anti-inflammatory, immune system maintenance |
Chromium | Enzymatic activator |
Fluorine | Energy supply in keratinocytes |
Manganese | Immune system modulator |
Nickel | Stimulates cell development in tissues |
Zinc | Antioxidant; prevents ageing; healing and regeneration of skin tissues |
Silicon | Involved in collagen and elastin synthesis and cell metabolism Present in colloidal silica form in many mineral waters used in dermatology Has a dermoabrasive and emollient effect on psoriatic plaques |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Microalgal Peloids for Cosmetic and Wellness Uses. Mar. Drugs 2021, 19, 666. https://doi.org/10.3390/md19120666
Mourelle ML, Gómez CP, Legido JL. Microalgal Peloids for Cosmetic and Wellness Uses. Marine Drugs. 2021; 19(12):666. https://doi.org/10.3390/md19120666
Chicago/Turabian StyleMourelle, M. Lourdes, Carmen P. Gómez, and José L. Legido. 2021. "Microalgal Peloids for Cosmetic and Wellness Uses" Marine Drugs 19, no. 12: 666. https://doi.org/10.3390/md19120666
APA StyleMourelle, M. L., Gómez, C. P., & Legido, J. L. (2021). Microalgal Peloids for Cosmetic and Wellness Uses. Marine Drugs, 19(12), 666. https://doi.org/10.3390/md19120666