Oceanalin B, a Hybrid α,ω-Bifunctionalized Sphingoid Tetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp.
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Procedures
3.2. Animal Material
3.3. Extraction and Isolation
3.4. Compound Characterization Data
3.5. Acetylation of Oceanalin B (1): Oceanalin B Peracetate
3.6. Hydrolysis of Oceanalin B (1)
3.7. Ozonolysis of 1a Obtained by Method A
3.8. Ozonolysis of Mixture 1a + 1b Obtained by Method B
3.9. Antifungal Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makarieva, T.N.; Denisenko, V.A.; Stonik, V.A.; Milgrom, Y.N.; Rashkes, Y.W. Rhizochalin, a novel secondary metabolite of mixed biosynthesis from the sponge Rhizochalina incrustata. Tetrahedron Lett. 1989, 30, 6581–6584. [Google Scholar] [CrossRef]
- Makarieva, T.N.; Guzii, A.G.; Denisenko, V.A.; Dmitrenok, P.S.; Santalova, E.A.; Pokanevich, E.V.; Molinski, T.F.; Stonik, V.A. Rhizochalin A, a novel two-headed sphingolipid from the sponge Rhizochalina incrustata. J. Nat. Prod. 2005, 68, 255–257. [Google Scholar] [CrossRef] [PubMed]
- Makarieva, T.N.; Dmitrenok, P.S.; Zakharenko, A.M.; Denisenko, V.A.; Guzzi, A.G.; Li, R.; Skepper, C.K.; Molinski, T.F.; Stonik, V.A. Rhizochalins C and D from the sponge Rhizochalina incrustata. A rare threo-sphingolipid and a facile method for determination of the carbonyl position in α,ω-bifunctionalized ketosphingolipids. J. Nat. Prod. 2007, 70, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Makarieva, T.N.; Denisenko, V.A.; Dmitrenok, P.S.; Guzii, A.G.; Santalova, E.A.; Stonik, V.A.; MacMillan, J.B.; Molinski, T.F. Oceanalin A, a hybrid α,ω-bifunctionalized sphingoid tetrahydroisoquinoline β-glycoside from the marine sponge Oceanapia sp. Org. Lett. 2005, 7, 2897–2900. [Google Scholar] [CrossRef] [PubMed]
- Nicholas, G.M.; Hong, T.W.; Molinski, T.F.; Lerch, M.L.; Cancilla, M.T.; Lebrilla, C.B. Oceanapiside, an antifungal bis-α,ω-amino alcohol glycoside from the marine sponge Oceanapia phillipensis. J. Nat. Prod. 1999, 62, 1678–1681. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.N.; Mattern, M.P.; Johnson, R.K.; Kingston, D.G.I. Structure and stereochemistry of a novel bioactive sphingolipid from a Calyx sp. Tetrahedron 2001, 57, 9549–9554. [Google Scholar] [CrossRef]
- Kong, F.H.; Faulkner, D.J. Leucettamines A and B, two antimicrobial lipids from the calcareous sponge Leucetta microraphis. J. Org. Chem. 1993, 58, 970–971. [Google Scholar] [CrossRef]
- Sugawara, K.; Watarai, H.; Ise, Y.; Yokose, H.; Morii, Y.; Yamawaki, N.; Okada, S.; Matsunaga, S. Structure elucidation of calyxoside b, a bipolar sphingolipid from a marine sponge Cladocroce sp. through the use of Beckmann rearrangement. Mar. Drugs 2021, 19, 287. [Google Scholar] [CrossRef] [PubMed]
- Willis, R.H.; De Vries, D.J. BRS1, a C30 bis-amino, bis-hydroxy polyunsaturated lipid from an Australian calcareous sponge that inhibits protein kinase C. Toxicon 1997, 35, 1125–1129. [Google Scholar] [CrossRef]
- Nicholas, G.M.; Li, R.; Macmillan, J.B.; Molinski, T.F. Antifungal activity of bifunctional sphingolipids. Intramolecular synergism within long-chain α,ω-bis-aminoalcohols. Bioorg. Med. Chem. Lett. 2002, 12, 2159–2162. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Rogers, E.W.; Molinski, T.E. Oceanapiside, a marine natural product, targets the sphingolipid pathway of fluconazole-resistant Candida glabrata. Mar. Drugs 2021, 19, 126. [Google Scholar] [CrossRef] [PubMed]
- Makarieva, T.N.; Ivanchina, N.V.; Stonik, V.A. Application of oxidative and reductive transformations in the structure determination of marine natural products. J. Nat. Prod. 2020, 83, 1314–1333. [Google Scholar] [CrossRef] [PubMed]
- Molinski, T.F.; Makarieva, T.N.; Stonik, V.A. (−)-Rhizochalin is a dimeric enantiomorphic (2R)-sphingolipid: Absolute configuration of pseudo-C2v-symmetric bis-2-amino-3-alkanols by CD. Angew. Chem. Int. Ed. 2000, 112, 4242–4245. [Google Scholar] [CrossRef]
- Snatzke, G. Semi-empirical rules in circular-dichroism of natural-products. Pure Appl. Chem. 1979, 51, 769–785. [Google Scholar] [CrossRef]
- Snatzke, G. Circular dichroism and absolute conformation: Application of qualitative MO theory to chiroptical phenomena. Angew. Chem. Int. Ed. Engl. 1979, 18, 363–377. [Google Scholar] [CrossRef]
- Lichfield, C.; Morales, R.W.; Harrison, F.W.; Cowden, R.R. Are Demospongiae membrane unique among living organisms? In Aspects of Sponge Biology; Harrison, F., Ed.; Academic Press: New York, NY, USA, 1976; pp. 183–200. [Google Scholar]
- Kornpbrost, J.M.; Barnatan, G. Demospospongic acid revisted. Mar. Drugs 2010, 8, 2569–2577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2020, 37, 175–223. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Joshi, G.; Kalra, S.; Singh, S.; Kumar, R. Synthetic versus enzymatic Pictet-Spengler reaction: An overview. Curr. Org. Synth. 2018, 15, 924–939. [Google Scholar] [CrossRef]
- Dalisay, D.S.; Rogers, E.W.; Edison, A.S.; Molinski, T.F. Structure elucidation at the nanomole-scale. 1. Trisoxazole macrolides and thiazole-containing cyclic peptides from the nudibranch Hexabranchus sanguineus. J. Nat. Prod. 2009, 72, 732–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Atom No. | δC | δH | COSY | HMBC |
---|---|---|---|---|
1 | 16.0 | 1.27 (d, 6.7) | H-2 | C-2, C-3 |
2 | 52.7 | 3.17 (m) | H-1, H-3 | |
3 | 81.0 | 3.67 (ddd, 3.2, 7.2, 9.7) | H-2, H-4a | |
4a | 33.3 | 1.52 (m) | H-3 | |
4b | 1.68 (m) | |||
5–13 | 30.8–31.6 | 1.27–1.29 (brs) | ||
14 | 31.2 | 1.37 (m) | ||
15 | 33.9 | 2.02 (m, 2H) | H-14 | C-14, C-15, C-17 |
16 | 133.1 | 5.58 (dt, 7.0, 15.4) | H-17, H-15 | C-15, C-18 |
17 | 135.1 | 5.39 (dd, 15.4, 7.0) | H-16, H-18 | C-15, C-18 |
18 | 74.3 | 3.94 (q, 7.0) | H-17, H-19a,b | C-16 |
19a | 39.1 | 1.42 (m) | H-18 | |
19b | 1.50 (m) | H-18 | ||
20–23 | 30.8–31.6 | 1.27–1.29 (brs) | ||
24a | 27.2 | 1.36 (m) | H-25a | |
24b | 1.49 (m) | H-25a,b | ||
25a | 35.7 | 2.02 (m) | H-24a,b, H-26 | |
25b | 1.87 (m) | H-24b | ||
26 | 57.3 | 4.32 (dd, 4.6, 8.2) | H-25a,b | C-35 |
28a | 41.6 | 3.50 (m) | ||
28b | 3.50 (m) | H-29a,b | C-30 | |
29a | 26.3 | 2.89 (dt, 17.0, 6.0) | H-28b, H-29b | C-28, C-31, C-35 |
29b | 2.97 (ddd, 6.5, 8.3, 17.0) | H-28b, H-29a | C-31, C-35 | |
30 | 124.2 | - | ||
31 | 116.8 | 6.61 (s) | C-29, C-33, C-35 | |
32 | 147.3 | - | ||
33 | 146.5 | - | ||
34 | 114.5 | 6.64 (s) | C-26, C-32, C-30 | |
35 | 124.8 | - | ||
1′ | 104.6 | 4.32 (d, 7.2) | H-2′ | C-3 |
2′ | 73.3 | 3.51 (dd, 7.2, 9.8) | H-3′, H-1′ | |
3′ | 75.1 | 3.47 (dd, 3.4, 9.8) | ||
4′ | 71.1 | 3.78 (d, 3.4) | ||
5′ | 77.6 | 3.54 (dd, 4.6, 6.5) | ||
6′ | 63.6 | 3.72 (m); 3.74 (m) |
Atom No. | δH | Atom No. | δH |
---|---|---|---|
1 | 1.165 (d, 6.8) | 31 | 6.93 (s) |
2 | 4.09 (m) | 32-OAc | 2.28 (s) |
2-NHAc | 5.82 (d, 8.3) | 33-OAc | 2.27 (s); 2.29 (s) |
3 | 3.49 (td, 2.7, 6.5) | 34 | 6.94 (s) |
6–13 | 1.25 (brs) | 1′ | 4.48 (d, 8.0) |
16 | 5.67 (m) | 2′ | 5.16 (dd, 8.0, 10,6) |
17 | 5.37 (m) | 3′ | 5.04 (dd, 3.3, 10.6) |
18 | 5.17 (m) | 4′ | 5.39 (dd, 0.8, 3.3) |
18-OAc | 2.02 (s) | 5′ | 3.91 (td, 0.8, 6.6) |
20–24 | 1.25 (brs) | 6′ | 4.10 (dd, 6.6, 11.3) |
26 | 5.58 (dd, 5.5, 9.7) | 4.19 (dd, 6.6, 11.3) | |
27-NAc | 2.15 (s); 2.16 (s) | 4xOAc | 1.96 (s) |
28a | 3.78 (ddd, 4.0, 5.4, 13.6) | 1.99 (s) | |
28b | 3.52 (m) | 2.04 (s) | |
29a | 2.80 (m) | 2.05 (s) | |
29b | 2.90 (m) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarieva, T.N.; Ivanchina, N.V.; Dmitrenok, P.S.; Guzii, A.G.; Stonik, V.A.; Dalisay, D.S.; Molinski, T.F. Oceanalin B, a Hybrid α,ω-Bifunctionalized Sphingoid Tetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp. Mar. Drugs 2021, 19, 635. https://doi.org/10.3390/md19110635
Makarieva TN, Ivanchina NV, Dmitrenok PS, Guzii AG, Stonik VA, Dalisay DS, Molinski TF. Oceanalin B, a Hybrid α,ω-Bifunctionalized Sphingoid Tetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp. Marine Drugs. 2021; 19(11):635. https://doi.org/10.3390/md19110635
Chicago/Turabian StyleMakarieva, Tatyana N., Natalia V. Ivanchina, Pavel S. Dmitrenok, Alla G. Guzii, Valentin A. Stonik, Doralyn S. Dalisay, and Tadeusz F. Molinski. 2021. "Oceanalin B, a Hybrid α,ω-Bifunctionalized Sphingoid Tetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp." Marine Drugs 19, no. 11: 635. https://doi.org/10.3390/md19110635
APA StyleMakarieva, T. N., Ivanchina, N. V., Dmitrenok, P. S., Guzii, A. G., Stonik, V. A., Dalisay, D. S., & Molinski, T. F. (2021). Oceanalin B, a Hybrid α,ω-Bifunctionalized Sphingoid Tetrahydroisoquinoline β-Glycoside from the Marine Sponge Oceanapia sp. Marine Drugs, 19(11), 635. https://doi.org/10.3390/md19110635