Cytotoxic Indole-Diterpenoids from the Marine-Derived Fungus Penicillium sp. KFD28
Abstract
:1. Introduction
2. Results and Discussions
2.1. Structure Elucidation
2.2. Biological Assay
3. Experimental
3.1. General Experimental Procedures
3.2. Fungus Material
3.3. Culture Conditions
3.4. Extraction and Isolation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Lindequist, U. Marine-derived pharmaceuticals-challenges and opportunities. Biomol. Ther. 2016, 24, 561–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2019, 36, 122–173. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.W.; Chen, J.H.; Hu, G.P.; Yu, J.C.; Zhu, X.; Lin, Y.C.; Chen, S.P.; Yuan, J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef]
- Li, T.T.; Wang, Y.; Li, L.; Tang, M.Y.; Meng, Q.H.; Zhang, C.; Hua, E.B.; Pei, Y.H.; Sun, Y. New cytotoxic cytochalasans from a plant-associated fungus Chaetomium globosum kz-19. Mar. Drugs 2021, 19, 438. [Google Scholar] [CrossRef]
- Kubota, T.; Nakamura, K.; Kurimoto, S.I.; Sakai, K.; Fromont, J.; Gonoi, T.; Kobayashi, J. Zamamidine D, a manzamine alkaloid from an okinawan Amphimedon sp. marine sponge. J. Nat. Prod. 2017, 80, 1196–1199. [Google Scholar] [CrossRef]
- Kong, F.D.; Zhang, S.L.; Zhou, S.Q.; Ma, Q.Y.; Xie, Q.Y.; Chen, J.P.; Li, J.H.; Zhou, L.M.; Yuan, J.Z.; Hu, Z.; et al. Quinazoline-containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. J. Nat. Prod. 2019, 82, 3456–3463. [Google Scholar] [CrossRef]
- Guo, Y.W.; Liu, X.J.; Yuan, J.; Li, H.J.; Mahmud, T.; Hong, M.T.; Yu, J.C.; Lan, W.J. L-tryptophan induces a marine-derived Fusarium sp. to produce indole alkaloids with activity against the Zika virus. J. Nat. Prod. 2020, 83, 3372–3380. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.D.; Fan, P.; Zhou, L.M.; Ma, Q.Y.; Xie, Q.Y.; Zheng, H.Z.; Zhang, R.S.; Yuan, J.Z.; Dai, H.F.; Luo, D.Q.; et al. Penerpenes A-D, four indole terpenoids with potent protein tyrosine phosphatase inhibitory activity from the marine-derived fungus Penicillium sp. KFD28. Org. Lett. 2019, 21, 4864–4867. [Google Scholar] [CrossRef]
- Zhou, L.M.; Kong, F.D.; Fan, P.; Ma, Q.Y.; Xie, Q.Y.; Li, J.H.; Zheng, H.Z.; Zheng, Z.H.; Yuan, J.Z.; Dai, H.F.; et al. Indole-diterpenoids with protein tyrosine phosphatase inhibitory activities from the marine-derived fungus Penicillium sp. KFD28. J. Nat. Prod. 2019, 82, 2638–2644. [Google Scholar] [CrossRef] [PubMed]
- Bode, H.B.; Bethe, B.; Höfs, R.; Zeeck, A. Big effects from small changes: Possible ways to explore nature’s chemical diversity. ChemBioChem 2002, 3, 619–627. [Google Scholar] [CrossRef]
- Xu, W.; Gavia, D.J.; Tang, Y. Biosynthesis of fungal indole alkaloids. Nat. Prod. Rep. 2014, 31, 1474–1487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.H.; Xu, M.Y.; Li, H.J.; Li, J.Q.; Chen, Y.X.; Ma, W.Z.; Li, Y.P.; Xu, J.; Yang, D.P.; Lan, W.J. Amino acid-directed strategy for inducing the marine-derived fungus Scedosporium apiospermum F41–1 to maximize alkaloid diversity. Org. Lett. 2017, 19, 4888–4891. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Yang, L.; Kong, F.D.; Zhao, J.H.; Yao, L.; Yuchi, Z.G.; Ma, Q.Y.; Xie, Q.Y.; Zhou, L.M.; Guo, M.F.; et al. Three new quinazoline-containing indole alkaloids from the marine-derived fungus Aspergillus sp. HNMF114. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef]
- Hosoe, T.; Nozawa, K.; Udagawa, S.I.; Nakajima, S.; Kawai, K.I. Structures of new indoloditerpenes, possible biosynthetic precursors of the tremorgenic mycotoxins, penitrems, from Penicillium crustosum. Chem. Phar. Bull. 2008, 38, 3473–3475. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, K.; Horie, Y.; Udagawa, S.I.; Kawai, K.I.; Yamazaki, M. Isolation of a new tremorgenic indologiterpene, 1′-O-Acetylpaxilline, from Emericella striata and distribution of paxilline in Emericella spp. Chem. Phar. Bull. 1989, 37, 1387–1389. [Google Scholar] [CrossRef] [Green Version]
- Belofsky, G.N.; Gloer, J.B.; Wicklow, D.T.; Dowd, P.F. Antiinsectan alkaloids: Shearinines A-C and a new paxilline derivative from the Ascostromata of Eupenicillium Shearii. Tetrahedron 1995, 51, 3959–3968. [Google Scholar] [CrossRef]
- Fan, Y.Q.; Wang, Y.; Liu, P.P.; Fu, P.; Zhu, T.H.; Wang, W.; Zhu, W.M. Indole-diterpenoids with anti-H1N1 activity from the aciduric fungus Penicillium camemberti OUCMDZ-1492. J. Nat. Prod. 2013, 76, 1328–1336. [Google Scholar] [CrossRef]
- Chen, M.Y.; Xie, Q.Y.; Kong, F.D.; Ma, Q.Y.; Zhou, L.M.; Yuan, J.Z.; Dai, H.F.; Wu, Y.G.; Zhao, Y.X. Two new indole-diterpenoids from the marine-derived fungus Penicillium sp. KFD28. J. Asian Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef]
- Ariantari, N.P.; Ancheeva, E.; Wang, C.Y.; Mándi, A.; Knedel, T.O.; Kurtán, T.; Chaidir, C.; Müller, W.E.G.; Kassack, M.U.; Janiak, C.; et al. Indole diterpenoids from an endophytic Penicillium sp. J. Nat. Prod. 2019, 82, 1412–1423. [Google Scholar] [CrossRef]
- Munday-Finch, S.C.; Wilkins, A.L.; Miles, C.O. Isolation of paspaline B, an indole-diterpenoid from Penicillium paxilli. Phytochemistry 1996, 41, 327–332. [Google Scholar] [CrossRef]
- Liang, Z.Y.; Shen, N.X.; Zhou, X.J.; Zheng, Y.Y.; Chen, M.; Wang, C.Y. Bioactive indole diterpenoids and polyketides from the marine-derived fungus penicillium javanicum. Chem. Nat. Comp. 2020, 56, 379–382. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Nozawa, K.; Hosoe, T.; Nakajima, S.; Kawai, K.I. Indoloditerpenes related to tremorgenic mycotoxins, penitrems, from Penicillium crustosum. Phytochemistry 1993, 32, 1177–1181. [Google Scholar] [CrossRef]
- Nozawa, K.; Nakajima, S.; Kawai, K.I.; Udagawa, S.I. Isolation and structures of indoloditerpenes, possible biosynthetic intermediates to the tremorgenic mycotoxin, paxilline, from Emericella striata. J. Chem. Soc. Perkin Trans. 1988, 9, 2607–2610. [Google Scholar] [CrossRef]
- Kimura, Y.; Nishibe, M.; Nakajima, H.; Hamasaki, T.; Shigemitsu, N.; Sugawara, F.; Stout, T.J.; Clardy, J. Emeniveol: A new pollen growth inhibitor from the fungus, Emericella nivea. Tetrahedr. Lett. 1992, 33, 6987–6990. [Google Scholar] [CrossRef]
- Yang, M.H.; Wang, J.S.; Luo, J.G.; Wang, X.B.; Kong, L.Y. Chisopanins A-K, 11 new protolimonoids from chisocheton paniculatus and their anti-inflammatory activities. Bioorg. Med. Chem. 2011, 19, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.D.; Wu, S.H.; Wu, D.G.; Ma, Y.B.; Qi, S.H. Three new apo-tirucallols with six-membered hemiacetal from meliaceae. Tetrahedron 2002, 58, 6691–6695. [Google Scholar] [CrossRef]
- Chen, C.; Liang, F.; Chen, B.; Sun, Z.Y.; Xue, T.D.; Yang, R.L.; Luo, D.Q. Identification of demethylincisterol A3 as a selective inhibitor of protein tyrosine phosphatase Shp2. Eur. J. Phar. 2016, 795, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Sallam, A.A.; Houssen, W.E.; Gissendanner, C.R.; Orabi, K.Y.; Foudah, A.I.; Sayed, K.A.E. Bioguided discovery and pharmacophore modeling of the mycotoxic indole diterpene alkaloids penitrems as breast cancer proliferation, migration, and invasion inhibitors. Med. Chem. Commun. 2013, 4, 1360–1369. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.J.; Dai, B.L.; Chen, N.P.; Jin, L.X.; Jiang, F.S.; Ding, Z.S.; Qian, C.D. The anti-staphylococcus aureus activity of the phenanthrene fraction from fibrous roots of Bletilla striata. BMC Complement. Altern. Med. 2016, 16, 491–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | δH (J in Hz) | |
2 | 7.04 (1H, s) | |||
4 | 7.55 (1H, d, 8.0) | |||
5 | 1.92 (1H, m) | 1.88 (1H, overlap) | 6.93 (1H, t, 8.0) | 2.01 (1H, m) |
1.80 (1H, m) | 1.60 (1H, overlap) | 1.94 (1H, m) | ||
6 | 1.51 (1H, m) | 1.90 (1H, m) | 7.02 (1H, t, 8.0) | 1.72 (1H, overlap) |
1.62 (1H, overlap) | 1.48 (1H, m) | 2.20 (1H, m) | ||
7 | 3.03 (1H, dd, 12.1, 3.8) | 3.49 (1H, dd, 9.7, 7.0) | 7.30 (1H, d, 8.0) | 4.46 (1H, m) |
8 | 2.07 (1H, m) | |||
3.15 (1H, d, 13.3) | ||||
9 | 3.10 (1H, dd, 12.0, 2.7) | 1.81 (1H, m) | 5.05 (1H, s) | |
10 | 1.41 (1H, m) | 4.04 (1H, dd, 2.1, 6.7) | 1.10 (1H, m) | |
1.62 (1H, overlap) | 1.65 (1H, m) | |||
11 | 1.74 (1H, m) | 1.88 (1H, overlap) | 1.26 (2H, m) | |
1.69 (1H, s) | 1.70 (1H, m) | |||
12 | 1.81 (1H, m) | 5.54 (1H, s) | ||
13 | 1.39 (1H, m) | 2.06 (1H, dd, 12.7, 3.1) | ||
14 | 0.83 (1H, m) | 1.74 (1H, m) | 2.55 (1H, m) | |
2.35 (1H, m) | 1.64 (1H, m) | |||
15 | 1.44 (1H, m) | 1.78 (1H, m) | 1.42 (2H, overlap) | 1.53 (1H, m) |
1.62 (1H, m) | 1.60 (1H, overlap) | 1.62 (1H, overlap) | ||
16 | 2.61 (1H, m) | 2.86 (1H, m) | 1.24 (1H, overlap) | 1.72 (1H, overlap) |
1.54 (1H, m) | 1.62 (1H, overlap) | |||
17 | 2.54 (1H, m) | 2.61 (1H, m) | 3.27 (1H, m) | 2.68 (1H, m) |
2.21 (1H, dd, 12.3, 10.9) | 2.29 (1H, dd, 11.2, 12.6) | |||
18 | 2.33 (1H, m) | |||
2.61 (1H, m) | ||||
19 | 1.02 (1H, m) | |||
1.47 (1H, m) | ||||
20 | 7.27 (1H, d, 7.5) | 7.27 (1H, d, 7.5) | 1.84 (2H, m) | |
21 | 6.91 (1H, t, 7.5) | 6.90 (1H, m) | 5.05 (1H, t, 7.6) | 7.27 (1H, m) |
22 | 6.91 (1H, t, 7.5) | 6.94 (1H, m) | 6.92 (1H, t, 7.9) | |
23 | 7.24 (1H, d, 7.5) | 7.26 (1H, d, 7.5) | 1.55 (3H, s) | 6.96 (1H, t, 7.9) |
24 | 1.62 (3H, s) | 7.27 (1H, m) | ||
25 | 0.94 (3H, s) | 0.94 (3H, s) | 0.94 (3H, s) | |
26 | 1.13 (3H, s) | 1.17 (3H, s) | 1.11 (3H, s) | 1.01 (3H, s) |
27 | 0.62 (3H, s) | 0.82 (3H, s) | ||
28 | 1.08 (3H, s) | 1.26 (3H, s) | ||
29 | 1.03 (3H, s) | 1.24 (3H, s) | 1.14 (3H, s) | |
30 | 3.69 (1H, m) | 1.13 (3H, s) | ||
3.86 (1H, m) | ||||
1-NH | 10.55 (1H, s) | 10.68 (1H, s) | 10.67 (1H, s) | 10.72(1H, s) |
14-OH | 4.04 (1H, s) | |||
17-OH | 4.22 (1H, d, 4.8) | |||
10-OH | 4.88 (1H, s) | |||
27-OH | 4.16 (1H, s) | |||
28-OH | 4.77 (1H, s) | |||
30-OH | 4.07 (1H, s) |
Position | 1 | 2 | 3 | 4 |
---|---|---|---|---|
δC | δC | δC | δC | |
2 | 151.5, C | 150.9, C | 122.6, CH | 150.2, C |
3 | 52.9, C | 50.8, C | 114.4, C | 42.5, C |
3a | 127.6, C | |||
4 | 39.9, C | 38.5, C | 118.7, CH | 50.0, C |
5 | 32.7, CH2 | 30.6, CH2 | 117.9, CH | 30.8, CH2 |
6 | 24.5, CH2 | 23.2, CH2 | 120.6, CH | 30.0, CH2 |
7 | 85.2, CH | 78.2, CH | 111.2, CH | 83.0, CH |
7a | 136.3, C | |||
8 | 25.5, CH2 | |||
9 | 84.9, CH | 109.8, C | 42.9, CH | 102.3, CH |
10 | 25.7, CH2 | 73.1, CH | 27.2, CH2 | |
11 | 23.8, CH2 | 43.7, CH2 | 20.7, CH2 | 166.8, C |
12 | 48.8, C | 84.6, C | 41.1, CH | 113.1, CH |
13 | 46.9, CH | 38.8, CH | 42.0, C | 163.1, C |
14 | 31.8, CH2 | 26.2, CH2 | 76.4, C | 42.8, CH |
15 | 21.3, CH2 | 25.2, CH2 | 29.9, CH2 | 25.6, CH2 |
16 | 49.0, CH | 49.0, CH | 28.5, CH2 | 23.9, CH2 |
17 | 27.3, CH2 | 27.1, CH2 | 71.5, CH | 48.7, CH |
18 | 116.1, C | 115.9, C | 40.6, C | 26.9, CH2 |
19 | 124.6, C | 124.4, C | 37.0, CH2 | 115.8, C |
20 | 117.8 CH | 117.7, CH | 21.2, CH2 | 124.3, C |
21 | 118.6, CH | 118.5, CH | 125.3, CH | 117.7, CH |
22 | 119.3, CH | 119.4, CH | 129.8, C | 118.5, CH |
23 | 112.0, CH | 111.9, CH | 17.5, CH3 | 119.5, CH |
24 | 140.4, C | 140.1, C | 25.6, CH3 | 111.9, CH |
25 | 14.8, CH3 | 14.4, CH3 | 14.6, CH3 | 140.1, C |
26 | 19.5, CH3 | 16.7, CH3 | 16.3, CH3 | 14.7, CH3 |
27 | 70.7, C | 70.9, C | 17.2, CH3 | 15.4, CH3 |
28 | 26.9, CH3 | 26.4, CH3 | 69.9, C | |
29 | 24.9, CH3 | 24.7, CH3 | 24.0, CH3 | |
30 | 58.5, CH2 | 23.8, CH3 |
Compound | IC50 (μM) | ||
---|---|---|---|
HeLa | A549 | BeL-7402 | |
4 | 36.3 | >50 | >50 |
9 | >50 | 28.4 | 5.3 |
15 | 33.1 | 24.4 | 40.6 |
Cisplatin a | 8.6 | 4.5 | 4.1 |
Compound | MIC(μg/mL) | |
---|---|---|
Staphylococcus aureus ATCC 6538 | Bacillus subtilis ATCC 6633 | |
5 | 128 | 32 |
7 | 64 | 16 |
10 | 64 | 64 |
12 | 64 | 128 |
14 | 64 | >128 |
15 | 32 | >128 |
Ampicillin a | <1 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.-T.; Yang, L.; Kong, F.-D.; Ma, Q.-Y.; Xie, Q.-Y.; Dai, H.-F.; Yu, Z.-F.; Zhao, Y.-X. Cytotoxic Indole-Diterpenoids from the Marine-Derived Fungus Penicillium sp. KFD28. Mar. Drugs 2021, 19, 613. https://doi.org/10.3390/md19110613
Dai L-T, Yang L, Kong F-D, Ma Q-Y, Xie Q-Y, Dai H-F, Yu Z-F, Zhao Y-X. Cytotoxic Indole-Diterpenoids from the Marine-Derived Fungus Penicillium sp. KFD28. Marine Drugs. 2021; 19(11):613. https://doi.org/10.3390/md19110613
Chicago/Turabian StyleDai, Lu-Ting, Li Yang, Fan-Dong Kong, Qing-Yun Ma, Qing-Yi Xie, Hao-Fu Dai, Zhi-Fang Yu, and You-Xing Zhao. 2021. "Cytotoxic Indole-Diterpenoids from the Marine-Derived Fungus Penicillium sp. KFD28" Marine Drugs 19, no. 11: 613. https://doi.org/10.3390/md19110613
APA StyleDai, L. -T., Yang, L., Kong, F. -D., Ma, Q. -Y., Xie, Q. -Y., Dai, H. -F., Yu, Z. -F., & Zhao, Y. -X. (2021). Cytotoxic Indole-Diterpenoids from the Marine-Derived Fungus Penicillium sp. KFD28. Marine Drugs, 19(11), 613. https://doi.org/10.3390/md19110613