Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications
Abstract
:1. Introduction
2. Bioactivities of BPs and Potential Use in Medicine
2.1. Anticancer Activity
2.2. Antidiabetic and Anti-Obesity Activity
No. | IC50 | Names |
---|---|---|
2.1 | 7.74 ± 0.14 (a), 2.63 ± 0.11 (b) | 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol [64] |
2.2 | 8.50 ± 0.45 (a), 7.24 ± 0.02 (b) | 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether [64] |
2.3 | 5.29 ± 0.08 (a), 1.92 ± 0.02 (b) | Bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) [64] |
2.4 | 0.84 (a) | 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(ethoxymethyl)benzyl) benzene-1,2-diol [65] |
2.5 | 0.63 (a) | 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isopropoxymethyl)benzyl)benzene-1,2-diol [67] |
2.6 | 1.50 (a) | 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isobutoxymethyl)benzyl)benzene-1,2-diol [69] |
2.7 | 2.42 (a) | 2,2′,3,3′-tetrabromo-4,4′,5,5′-tetra-hydroxydiphenyl methane [69] |
2.8 | 0.098 (b) | Bis(2, 3-dibromo-4, 5-dihydroxybenzyl)ether [71] |
2.9 | 1.7 (a) | 3-bromo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl)-1,2-benzenediol [72] |
2.10 | 0.89 (a) | 1-(2-(2,3-dibromo-4,5-dimethoxybenzyl)-4,5-dimethoxybenzyl)-2,3-dibromo-4,5-dimethoxybenzene [73] |
2.11 | 0.199 (a) | (2S,3R,4R,5R)-5-(((3-bromo-4,5-dihydroxybenzoyl)oxy)methyl)tetrahydrofuran-2,3,4-triyl tris(3-bromo-4,5-dihydroxybenzoate) [76] |
2.12 | 0.68 (a) | 5,5’-methylenebis(3,4,6-tribromobenzene-1,2-diol) [77] |
2.13 | 0.19 ± 0.05 (a) | 3,4-dibromo-5-(5-(4-(4-ethoxyphenoxy)phenyl)oxazol-2-yl)benzene-1,2-diol [78] |
2.14 | 94.27 (b), nM 0.09 (c), 38.11 (d), nM | (4-bromo-2,5-dimethoxyphenyl) (phenyl)methanone [79] |
2.15 | 15.23 (b), nM, 0.773 (c), nM, 8.03 (d) | (4-bromo-2,5 dihydroxyphenyl) (3,4-dihydroxyphenyl)methanone [80] |
2.16 | 19.64 (b), nM, 0.627 (c), nM, 9.12 (d) | 4-bromo-2,5 dihydroxyphenyl) (3,4,5-trihydroxyphenyl)methanone [80] |
2.17 | 20.05 (b), nM, 0.184 (c), nM, 5.83 (d) | (2-bromo-4-hydroxyphenyl) (4-hydroxyphenyl)methanone [80] |
2.18 | 11.72 (b), nM, 0.138 (c), nM, 8.56 (d) | (2-bromo-4-hydroxyphenyl) (phenyl)methanone [80] |
2.19 | 12.74 (b), nM, 0.129 (c), nM, 3.84 (d) | 4-(2-bromo-4-hydroxybenzyl)benzene-1,2 diol [80] |
2.20 | 15.73 (b), nM, 1.30 (c), nM, 6.14 (d) | (2-bromo-4-hydroxyphenyl) (phenyl)methanone [80] |
2.21 | 17.52 (b), nM, 0.688 (c), nM, 10.37 (d) | 2-bromo-5-(4-hydroxybenzyl)benzene-1,4-diol [80] |
2.22 | 17.11 (b), nM, 0.701 (c), nM, 5.16 (d) | 2-benzyl-5-bromobenzene-1,4-diol [80] |
2.23 | 11.55 (b), nM | (3-bromo-4-methoxyphenyl) (3,4-dimethoxyphenyl)methanone [81] |
2.24 | 17.77 (b), nM | (3-bromo-4-methoxyphenyl) (2,3-dibromo-4-hydroxy-5-methoxyphenyl)methanone [81] |
2.25 | 8.73 (b), nM | (2,3-dibromo-4-hydroxy-5-methoxyphenyl) (2,5-dibromo-4-methoxyphenyl)methanone [81] |
2.26 | 12.62 (b), nM | (3-bromo-4-methoxyphenyl) (2,5-dibromo-4-methoxyphenyl)methanone [81] |
2.27 | 26.15 (b), nM | (2,5-dibromo-4-methoxyphenyl) (phenyl)methanone [81] |
2.28 | 19.52 (b), nM | (3-bromo-4-hydroxyphenyl) (3,4-dihydroxyphenyl)methanone [81] |
2.29 | 24.93 (b), nM | (2,5-dibromo-4-hydroxyphenyl) (phenyl)methanone [81] |
2.3. Antiradical Activity
No. | IC50/EC50 | Names |
---|---|---|
3.1 | 9.52 ± 0.04 (a), 2.06 ± 0.08 (b) | 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol [83] |
3.2 | 7.43 ± 0.1 (a), 2.11 ± 0.04 (b) | 3,4-dibromo-5-((2,3-dihydroxypropoxy)methyl)benzene-1,2-dio [83] |
3.3 | 20.47 ± 0.07 (a), 1.87 ± 0.02 (b) | 5-(aminomethyl)-3,4-dibromobenzene-1,2-dio [83] |
3.4 | 19.84 ± 0.06 (a), 2.87 ± 0.11 (b) | 2-(2,3-dibromo-4,5-dihydroxyphenyl)acetic acid [83] |
3.5 | 50.58 ± 0.23 (a), 1.60 ± 0.04 (b) | 3-bromo-5-(hydroxymethyl)-2-methoxyphenol [83] |
3.6 | 8.72 ± 0.05 (a), 3.68 ± 0.12 (b) | (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one [83] |
3.7 | 8.5 (a) | (2R)-2-(2,3,6-tribromo-4,5-dihydroxybenzyl)-cyclohexanone [84] |
3.8 | 20.3 (a) | 3-bromo-4,5-dihydroxybenzaldehyde [85] |
3.9 | 5.22 ± 0.04 (a), 2.87 ± 0.1 (b) | 3-(2,3-dibromo-4,5-dihydroxybenzyl)pyrrolidine-2,5-dione [92] |
3.10 | 5.70 ± 0.03 (a), 2.14 ± 0.08 (b) | Methyl 4-(2,3-dibromo-4,5-dihydroxybenzylamino)-4-oxobutanoate [92] |
3.11 | 5.43 ± 0.02 (a), 2.31 ± 0.11 (b) | 4-(2,3-dibromo-4,5-dihydroxybenzylamino)-4-oxobutanoic acid [92] |
3.12 | 23.60 ± 0.1 (a), 2.11 ± 0.04 (b) | 3-bbromo-5-hydroxy-4-methoxy-benzamide [92] |
3.13 | 20.81 ± 0.08 (a), 2.36 ± 0.08 (b) | 2-(3-bromo-5-hydroxy-4-methoxyphenyl)acetamide [92] |
3.14 | 14.5 (a), µg/mL | Methyl 4-(3-(2,3,6-tribromo-4,5-dihydroxybenzyl)ureido)butanoate [93] |
3.15 | 20.5 (a), µg/mL | 2-(3-(2,5-dibromo-3,4-dihydroxyphenyl)-1-methoxy-1-oxopropan-2-yl)maleic acid [93] |
3.20 | 3.82 ± 0.01 (a), 4.37 ± 0.24 (b) | (R)-Rhodomelin A [44] |
3.21 | 8.90 (a) | (S)-Rhodomelin A [44] |
3.22 | 0.4 (c) | 5,2′-dibromo-2,4′,5′-trihydroxydiphenylmethanone [97] |
3.23 | 0.8 (c) | 2,3-dibromo-4,5-dihydroxydiphenylmethanone [97] |
3.24 | 0.9 (c) | 1-(4-(4-bromo-2-(2-bromo-4,5-dihydroxybenzoyl)benzyl)piperazin-1-yl)ethan-1-one [42] |
3.25 | 31.50 (a), 198.00 (b), µg/mL | (4-bromo-2,5-dimethoxyphenyl) (phenyl)methanone [81] |
3.26 | 28.87 (a), 231.00 (b), µg/mL | (3-bromo-4-methoxyphenyl) (3,4-dimethoxyphenyl)methanone [81] |
3.27 | 34.65 (a), 173.25 (b), µg/mL | (3-bromo-4-methoxyphenyl) (2,3-dibromo-4-hydroxy-5-methoxyphenyl)methanone [81] |
3.28 | 28.88 (a), 138.6 (b), µg/mL | (2,3-dibromo-4-hydroxy-5-methoxyphenyl) (2,5-dibromo-4-methoxyphenyl)methanone [81] |
3.29 | 26.65 (a), 231.00 (b), µg/mL | (3-bromo-4-methoxyphenyl) (2,5-dibromo-4-methoxyphenyl)methanone [81] |
3.30 | 23.10 (a), 69.3 (b), µg/mL | (2,5-dibromo-4-methoxyphenyl) (phenyl)methanone [81] |
3.31 | 33.00 (a), 115.50 (b), µg/mL | (3-bromo-4-hydroxyphenyl) (3,4-dihydroxyphenyl)methanone [81] |
3.32 | 16.44 (a), 6.55 (b), µg/mL | (4-bromo-2,5-dihydroxyphenyl) (3, 4-dihydroxyphenyl)methanone [96] |
3.33 | 14.43 (a), 6.86 (b), µg/mL | (4-bromo-2,5-dihydroxyphenyl) (3,4,5-trihydroxyphenyl)methanone [96] |
3.34 | 19.24 (a), 7.35 (b), µg/mL | (2-bromo-4-hydroxyphenyl) (4-hydroxyphenyl)methanone [96] |
3.35 | 13.32 (a), 6.86 (b), µg/mL | 2-benzyl-5-bromobenzene-1,4-diol [96] |
3.36 | 13.86 (a), 5.08 (b), µg/mL | 2-bromo-5-(4-hydroxybenzyl)benzene-1,4-diol [96] |
3.37 | 15.75 (a), 7.71 (b), µg/mL | 4-(2-bromo-4-hydroxybenzyl)benzene-1,2-diol [96] |
2.4. Antimicrobial Activity
2.5. Anti-Inflammatory Activity
2.6. Anti-Alzheimer’s Disease (AD) and Parkinson’s Disease (PD) Activity
2.7. Other Bioactivity
2.7.1. Tyrosinase Inhibitory Activity
2.7.2. Carbonic Anhydrase (CA) Inhibitory Activity
2.7.3. Glucose 6-Phosphate Dehydrogenase (G6PD) Inhibitory Activity
2.7.4. Possible Toxicological Effects of BPs
3. Mode of Interaction between the BP Compounds and Targets
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Gamal, A.A.E. Biological importance of marine algae. Saudi. Pharm. J. 2010, 18, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijesekara, I.; Pangestuti, R.; Kim, S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Katsui, N.; Suzuki, Y.; Kitamura, S.; Irie, T. 5,6-dibromoprotocatechualdehyde and 2,3-dibromo-4,5-dihydroxybenzyl methyl ether: New dibromophenols from Rhodomela Larix. Tetrahedron 1967, 23, 1185–1188. [Google Scholar] [CrossRef]
- Cherian, C.; Vennila, J.J.; Sharan, L. Marine bromophenols as an effective inhibitor of virulent proteins (peptidyl arginine deiminase, gingipain R and hemagglutinin A) in Porphyromas gingivalis. Arch. Oral. Biol. 2019, 100, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Yin, L.Y.; Gao, J.H.; Gao, L.J.; Song, F.H. Antifungal bromophenols from marine red alga Symphyocladia latiuscula. Chem. Biodivers. 2015, 11, 807–811. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Yin, L.Y.; Wang, Y.H.; Wang, S.Y.; Song, F.H. A new bromobenzyl methyl sulphoxide from marine red alga Symphyocladia latiuscula. Nat. Prod. Res. 2012, 27, 723–726. [Google Scholar] [CrossRef]
- Choi, Y.K.; Ye, B.R.; Kim, E.A.; Kim, J.; Kim, M.S.; Lee, W.W.; Ahn, G.N.; Kang, N.; Jung, W.K.; Heo, S.J. Bis (3-bromo-4,5-dihydroxybenzyl) ether, a novel bromophenol from the marine red alga Polysiphonia morrowii that suppresses LPS-induced inflammatory response by inhibiting ROS-mediated ERK signaling pathway in RAW 264.7 macrophages. Biomed. Pharm. 2018, 103, 1170–1177. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, L.J.; Jiang, B.; Wu, N.; Li, X.Q.; Liu, S.F.; Luo, J.; Shi, D.Y. Anti-angiogenic properties of BDDPM, a bromophenol from marine red alga Rhodomela confervoides, with multi receptor tyrosine kinase inhibition effects. Int. J. Mol. Sci. 2015, 16, 13548–13560. [Google Scholar] [CrossRef] [Green Version]
- Paudel, P.; Seong, S.H.; Zhou, Y.J.; Park, H.J.; Jung, H.A.; Choi, J.S. Anti-Alzheimer’s disease activity of bromophenols from a red alga, Symphyocladia latiuscula (Harvey) Yamada. ACS. Omega. 2019, 4, 12259–12270. [Google Scholar] [CrossRef] [Green Version]
- Flodin, C.; Whitfield, F.B. 4-Hydroxybenzoic acid: A likely precursor of 2,4,6-tribromophenol in Ulva lactuca. Phytochemistry 1999, 51, 249–255. [Google Scholar] [CrossRef]
- Sun, H.H.; Paul, V.J.; Fenical, W. Avrainvilleol, a brominated diphenylmethane derivative with feeding deterrent properties from the tropical green alga Avrainvillea longicaulis. Phytochemistry 1983, 22, 743–745. [Google Scholar] [CrossRef]
- Park, M.; Fenical, W.; Hay, M.E. Debromoisocymobarbatol, a new chromanol feeding deterrent from the marine alga Cymopolia barbata. Phytochemistry 1992, 31, 4115–4118. [Google Scholar] [CrossRef]
- Mcconnell, O.J.; Hughes, P.A.; Targett, N.M. Diastereoisomers of cyclocymopol and cyclocymopol monomethyl ether from Cymopolia barbata. Phytochemistry 1982, 21, 2139–2141. [Google Scholar] [CrossRef]
- Laney, M. Isorawsonol and related IMP dehydrogenase inhibitors from the tropical green alga Avrainvillea rawsonii. J. Nat. Prod. 1994, 57, 947–952. [Google Scholar]
- Xiu, L.X.; Xiao, F.; Fu, H.S.; Jie, L.Z.; Li, J.H.; Jian, G.S. A new bromophenol from the brown alga Leathesia nana. Chin. Chem. Lett. 2004, 015, 661–663. [Google Scholar]
- Green, D.; Kashman, Y.; Miroz, A. Colpol, a new cytotoxic C6-C4-C6 metabolite from the alga Colpomenia sinuosa. J. Nat. Prod. 1993, 56, 1201–1202. [Google Scholar] [CrossRef]
- Xu, X.L.; Xiao, F.; Song, F.H.; Zhao, J.L.; Han, L.J.; Yang, Y.C.; Shi, J.G. Bromophenols from the brown alga Leathesia nana. J. Asian. Nat. Prod. Res. 2004, 6, 217–221. [Google Scholar] [CrossRef]
- Yao, X.S. Isolation and characterization of polybrominated diphenyl ethers as inhibitors of microtubule assembly from the marine sponge Phyllospongia dendyi collected at palau. J. Nat. Prod. 2004, 67, 472–474. [Google Scholar]
- Chung, H.Y.; Ma, W.C.J.; Ang, O.P.; Kim, J.S.; Chen, F. Seasonal variations of bromophenols in brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J. Agric. Food Chem. 2003, 51, 2619–2624. [Google Scholar] [CrossRef]
- Ciminiello, P.; Dell′ Aversano, C.; Fattorusso, E.; Magno, S.; Pansini, M. Chemistry of verongida sponges. 10. Secondary metabolite composition of the caribbean sponge Verongula gigantea. J. Nat. Prod. 2000, 63, 263–266. [Google Scholar] [CrossRef]
- Fu, X.; Schmitz, F.J.; Govindan, M.; Abbas, S.A.; Hanson, K.M.; Horton, P.A.; Crews, P.; Laney, M.; Schatzman, R.C. Enzyme inhibitors: New and known polybrominated phenols and diphenyl ethers from four Indo-Pacific Dysidea sponges. J. Nat. Prod. 1995, 58, 1384–1391. [Google Scholar] [CrossRef] [PubMed]
- Hattori, T.; Konno, A.; Adachi, K.; Shizuri, Y. Four new bioactive bromophenols from the palauan sponge Phyllospongia dendyi. Fish. Sci. 2002, 67, 899–903. [Google Scholar] [CrossRef]
- Hanif, N.; Tanaka, J.A.; Trianto, A.; DeVoogd, N.; Murni, A.; Tanaka, C.; Higa, T. Polybrominated diphenyl ethers from the indonesian sponge Lamellodysidea herbacea. J. Nat. Prod. 2007, 70, 432–435. [Google Scholar] [CrossRef] [PubMed]
- Popov, A.M. Spongiadioxins A and B, two new polybrominated dibenzo-p-dioxins from an Australian marine sponge Dysidea dendyi. J. Nat. Prod. 2001, 64, 151–153. [Google Scholar]
- Lindsay, B.S.; Battershill, C.N.; Copp, B.R. Isolation of 2-(3′-bromo-4′-hydroxyphenol) ethanamine from the New Zealand Ascidian Cnemidocarpa bicornuta. J. Nat. Prod. 1998, 61, 857–858. [Google Scholar] [CrossRef] [PubMed]
- Rudi, A.; Evan, T.; Aknin, M.; Kashman, Y. Polycitone B and prepolycitrin A: Two novel alkaloids from the marine ascidian Polycitor africanus. J. Nat. Prod. 2000, 63, 832–833. [Google Scholar] [CrossRef] [PubMed]
- Carroll, A.R.; Healy, P.C.; Quinn, R.J.; Tranter, C.J. Prunolides A, B, and C: Novel tetraphenolic bis-spiroketals from the Australian ascidian Synoicum prunum. J. Org. Chem. 1999, 64, 2680–2682. [Google Scholar] [CrossRef]
- Malmvarn, A.; Marsh, G.; Kautsky, L.; Athanasiadou, M.; Asplund, L. Hydroxylated and methoxylated brominated diphenyl ethers in the red algae Ceramium tenuicorne and blue mussels from the Baltic Sea. Environ. Sci. Technol. 2005, 39, 2990–2997. [Google Scholar] [CrossRef]
- Whitfield, F.B.; Drew, M.; Helidoniotis, F.; Svoronos, D. Distribution of bromophenols in species of marine polychaetes and bryozoans from eastern Australia and the role of such animals in the flavor of edible ocean fish and prawns (shrimp). J. Agric. Food Chem. 1999, 47, 4756–4762. [Google Scholar] [CrossRef]
- Agarwal, V.; Gamal, A.A.E.; Yamanaka, K.; Poth, D.; Kersten, R.D.; Schorn, M.; Allen, E.E.; Moore, B.S. Biosynthesis of polybrominated aromatic organic compounds by marine bacteria. Nat. Chem. Biol. 2014, 10, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Kicklighter, C.E.; Kubanek, J.; Hay, M.E. Do brominated natural products defend marine worms from consumers? Some do, most don’t. Limnol. Oceanogr. 2004, 49, 430–441. [Google Scholar] [CrossRef]
- Flodin, C.; Whitfield, F.B. Biosynthesis of bromophenols in marine algae. Water. Sci. Technol. 1999, 40, 53–58. [Google Scholar] [CrossRef]
- Moore, B.S. Metagenomic discovery of polybrominated diphenyl ether biosynthesis by marine sponges. Nat. Chem. Biol. 2017, 13, 537–543. [Google Scholar]
- Lin, K.D.; Zhou, S.Y.; Chen, X.; Ding, J.F.; Kong, X.Y.; Gan, J. Formation of hydroxylated polybrominated diphenyl ethers from laccase-catalyzed oxidation of bromophenols. Chemosphere 2015, 138, 806–813. [Google Scholar] [CrossRef]
- Lindqvist, D.; Dahlgren, E.; Asplund, L. Biosynthesis of hydroxylated polybrominated diphenyl ethers and the correlation with photosynthetic pigments in the red alga Ceramium tenuicorne. Phytochemistry 2017, 133, 51–58. [Google Scholar] [CrossRef]
- Dahlgren, E.; Enhus, C.; Lindqvist, D.; Eklund, B.; Asplund, L. Induced production of brominated aromatic compounds in the alga Ceramium tenuicorne. Environ. Sci. Pollut. Res. Int. 2015, 22, 18107–18114. [Google Scholar] [CrossRef]
- Xu, X.L.; Yang, H.J.; Khalil, Z.G.; Yin, L.Y.; Xiao, X.; Neupane, P.; Bernhardt, P.V.; Salim, A.A.; Song, F.; Capon, R.J. Chemical diversity from a Chinese marine red alga, Symphyocladia latiuscula. Mar. Drugs 2017, 15, 374. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hansen, P.E.; Lin, X.K. Bromophenols in marine algae and their bioactivities. Mar. Drugs 2011, 9, 1273–1292. [Google Scholar] [CrossRef] [Green Version]
- Akbaba, Y.; Balaydın, H.T.; Menzek, A.; Göksu, S.; Sahin, E.; Ekinci, D. Synthesis and biological evaluation of novel bromophenol derivatives as carbonic anhydrase inhibitors. Arch. Pharm. 2013, 346, 447–454. [Google Scholar] [CrossRef]
- Akbaba, Y.; Türkes, C.; Polat, L.; Söyüt, H.; Sahin, E.; Menzek, A.; Göksu, S.; Beydemir, S. Synthesis and paroxonase activities of novel bromophenols. J. Enzyme. Inhib. Med. Chem. 2013, 28, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Balaydın, H.T.; Sentürk, M.; Menzek, A. Synthesis and carbonic anhydrase inhibitory properties of novel cyclohexanonyl bromophenol derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 1352–1357. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Qin, W.; Jie, G.; Shu, B.; Qing, L. Synthesis of novel nitrogen-containing heterocycle bromophenols and their interaction with Keap1 protein by molecular docking. Molecules 2017, 22, 2142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.L.; Murphy, M.B.; Wan, Y.; Fong, B.M.W.; Tam, S.; Giesy, J.P.; Leung, K.S.Y.; Lam, M.H.W. Synthesis and characterization of bromophenol glucuronide and sulfate conjugates for their direct LC-MS/MS quantification in human urine as potential exposure markers for polybrominated diphenyl ethers. Anal. Chem. 2012, 84, 9881–9888. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Wang, Y.F.; Li, X.M.; Wang, W.J.; Xu, T. Isolation, synthesis, and radical-scavenging activity of rhodomelin A, a ureidobromophenol from the marine red alga Rhodomela confervoides. Org. Lett. 2018, 20, 417–420. [Google Scholar] [CrossRef]
- Lin, K.D.; Gan, J.; Liu, W.P. Production of hydroxylated polybrominated diphenyl ethers from bromophenols by bromoperoxidase-catalyzed dimerization. Environ. Sci. Technol. 2014, 48, 11977–11983. [Google Scholar] [CrossRef]
- Boztas, M.; Taslimi, P.; Yavari, M.A.; Gulcin, I.; Sahin, E.; Menzek, A. Synthesis and biological evaluation of bromophenol derivatives with cyclopropyl moiety: Ring opening of cyclopropane with monoester. Bioorg. Chem. 2019, 89, 103017. [Google Scholar] [CrossRef]
- Rocha, D.H.A.; Seca, A.M.L.; Pinto, D.C.G.A. Seaweed secondary metabolites in vitro and in vivo anticancer activity. Mar. Drugs 2018, 16, 410. [Google Scholar] [CrossRef] [Green Version]
- Cotas, J.; Leandro, A.; Pacheco, D.; Gonçalves, A.M.M.; Pereira, L. A comprehensive review of the nutraceutical and therapeutic applications of red seaweeds (Rhodophyta). Life 2020, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Osako, K.; Teixeira, V.L. Natural products from marine algae of the genus Osmundaria (Rhodophyceae, Ceramiales). Nat. Prod. Commun. 2013, 8, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Zhang, W.; Wei, J.T.; Qiu, L.; Lin, X.K. Marine bromophenol bis (2,3-dibromo-4,5-dihydroxybenzyl) ether, induces mitochondrial apoptosis in K562 cells and inhibits topoisomerase I in vitro. Toxicol. Lett. 2012, 211, 126–134. [Google Scholar] [CrossRef]
- Liu, M.; Wang, G.Z.; Xiao, L.; Xu, X.L.; Liu, X.H.; Xu, P.X.; Lin, X.K. Bis (2,3-dibromo-4,5-dihydroxybenzyl) ether, a marine algae derived bromophenol, inhibits the growth of botrytis cinerea and interacts with DNA molecules. Mar. Drugs 2014, 12, 3838–3851. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Liu, G.; Qiu, L.; Lin, X.K.; Liu, M. Marine bromophenol bis (2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems. Biomed. Pharmacother. 2015, 75, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Luo, J.; Jiang, B.; Wang, L.J.; Wang, S.Y.; Wang, C.H.; Fu, C.Q.; Li, J.; Shi, D.Y. Marine bromophenol bis (2,3-dibromo-4,5-dihydroxy-phenyl)-methane inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells via modulating β1-integrin/FAK signaling. Mar. Drugs 2015, 13, 1010–1025. [Google Scholar] [CrossRef] [PubMed]
- Su, J.H.; Chen, Y.C.; El Shazly, M.; Du, Y.C.; Su, C.W.; Tsao, C.W.; Liu, L.L.; Chou, Y.; Chang, W.B.; Su, Y.D.; et al. Towards the small and the beautiful: A small dibromotyrosine derivative from Pseudoceratina sp. sponge exhibits potent apoptotic effect through targeting IKK/NFκB signaling pathway. Mar. Drugs 2013, 11, 3168–3185. [Google Scholar] [CrossRef]
- Wang, L.J.; Wang, S.Y.; Jiang, B.; Wu, N.; Li, X.Q.; Wang, B.C.; Luo, J.; Yang, M.; Jin, S.H.; Shi, D.Y. Design, synthesis and biological evaluation of novel bromophenol derivatives incorporating indolin-2-one moiety as potential anticancer agents. Mar. Drugs 2015, 13, 806–823. [Google Scholar] [CrossRef]
- Wang, L.J.; Guo, C.L.; Li, X.Q.; Wang, S.Y.; Jiang, B.; Zhao, Y.; Luo, J.; Xu, K.; Liu, H.; Guo, S.J.; et al. Discovery of novel bromophenol hybrids as potential anticancer agents through the ROS-mediated apoptotic pathway: Design, synthesis and biological evaluation. Mar. Drugs 2017, 15, 343. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.L.; Wang, L.J.; Zhao, Y.; Liu, H.; Li, X.Q.; Jiang, B.; Luo, J.; Guo, S.J.; Wu, N.; Shi, D.Y. A novel bromophenol derivative BOS-102 Induces cell cycle arrest and apoptosis in human A549 lung cancer cells via ROS-mediated PI3K/Akt and the MAPK signaling pathway. Mar. Drugs 2018, 16, 43. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.L.; Wang, L.J.; Zhao, Y.; Jiang, B.; Luo, J.; Shi, D.Y. BOS-93, a novel bromophenol derivative, induces apoptosis and autophagy in human A549 lung cancer cells via PI3K/Akt/mTOR and MAPK signaling pathway. Exp. Ther. Med. 2019, 17, 3848–3858. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.L.; Wang, L.J.; Li, X.X.; Wang, S.Y.; Yu, X.M.; Xu, K.; Zhao, Y.; Luo, J.; Li, X.Q.; Jiang, B.; et al. Discovery of novel bromophenol–thiosemicarbazone hybrids as potent selective inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) for use in cancer. J. Med. Chem. 2019, 62, 3051–3067. [Google Scholar]
- Wang, L.J.; Zhang, S.H.; Yu, X.M.; Guo, C.L. Novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor DDHCB inhibits proliferation of BRCA mutant breast cancer cell in vitro and in vivo through a synthetic lethal mechanism. Chem. Res. Toxicol. 2020. [Google Scholar] [CrossRef]
- Jarald, E.; Joshi, S.B.; Jain, D.C. Diabetes and herbal medicines. Iran. J. Pharmacol. Ther. 2008, 7, 97–106. [Google Scholar]
- Asante Appiah, E.; Kennedy, B.P. Protein tyrosine phosphatases: The quest for negative regulators of insulin action. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E663–E670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, B.T.; Nguyen, D.H.; Le, D.D.; Choi, J.S.; Min, B.S.; Woo, M.H. Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch. Pharm. Res. 2018, 41, 130–161. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.; Seong, S.H.; Park, H.J.; Jung, H.A.; Choi, J.S. Anti-diabetic activity of 2,3,6-tribromo-4,5-dihydroxybenzyl derivatives from symphyocladia latiuscula through PTP1B downregulation and α-glucosidase inhibition. Mar. Drugs 2019, 17, 166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Luo, J.; Wu, N.; Zhang, R.S.; Shi, D.Y. BPN, a marine-derived PTP1B inhibitor, activates insulin signaling and improves insulin resistance in C2C12 myotubes. Int. J. Biol. Macromol. 2018, 106, 379–386. [Google Scholar] [CrossRef]
- Guo, S.J.; Wang, L.J.; Chen, D.; Jiang, B. Effects of a natural PTP1B inhibitor from Rhodomela confervoides on the amelioration of fatty acid-induced insulin resistance in hepatocytes and hyperglycaemia in STZ-induced diabetic rats. RSC Adv. 2020, 10, 3429–3437. [Google Scholar] [CrossRef]
- Shi, D.Y.; Guo, S.J.; Jiang, B.; Guo, C.; Wang, T.; Zhang, L.Y.; Li, J.Y. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: Synthesis and anti-diabetic effects in C57BL/KsJ-db/db mice. Mar. Drugs 2013, 11, 350–362. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Xu, Q.; Jiang, B.; Zhang, R.S.; Jia, X.L.; Li, X.Q.; Wang, L.J.; Guo, C.L.; Wu, N.; Shi, D.Y. Selectivity, cell permeability and oral availability studies of novel bromophenol derivative HPN as protein tyrosine phosphatase 1B inhibitor. Br. J. Pharmacol. 2018, 175, 140–153. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, S.J.; Shi, D.Y.; Guo, C.; Wang, T. Discovery of novel bromophenol 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(isobutoxymethyl)benzyl)benzene-1,2-diol as protein tyrosine phosphatase 1B inhibitor and its anti-diabetic properties in C57BL/KSJ-db/db mice. Eur. J. Med. Chem. 2013, 64, 129–136. [Google Scholar] [CrossRef]
- Xu, F.; Wang, F.; Wang, Z.H.; Lv, W.S.; Wang, W.; Wang, Y.G. Glucose uptake activities of bis (2, 3-dibromo-4, 5-dihydroxybenzyl) ether, a novel marine natural product from red alga Odonthaliacorymbifera with protein tyrosine phosphatase 1B inhibition, in vitro and in vivo. PLoS ONE 2016, 11, e0147748. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, W.; Wei, J.T.; Lin, X.K. Synthesis and α-glucosidase inhibitory mechanisms of bis (2,3-dibromo-4,5-dihydroxybenzyl) ether, a potential marine bromophenol α-glucosidase inhibitor. Mar. Drugs 2011, 9, 1554–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, J.; Hou, Y.F.; Xie, M.Y.; Ma, W.L.; Shi, D.Y.; Jiang, B. CYC31, A natural bromophenol PTP1B inhibitor, activates insulin signaling and improves long chain-fatty acid oxidation in C2C12 myotubes. Mar. Drugs 2020, 18, 267. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Shi, D.Y.; Cui, Y.C.; Guo, S.J. Design, synthesis, and biological evaluation of bromophenol derivatives as protein tyrosine phosphatase 1B inhibitors. Arch. Pharm. 2012, 345, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Jiang, B.; Li, C.; Jia, X.L.; Shi, D.Y. CYC27 synthetic derivative of bromophenol from red alga rhodomela confervoides: Anti-diabetic dffects of sensitizing insulin signaling pathways and modulating RNA splicing-associated RBPs. Mar. Drugs 2019, 17, 49. [Google Scholar] [CrossRef] [Green Version]
- Nutter, C.A.; Kuyumcu Martinez, M.N. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. Wiley. Interdiscip. Rev. RNA 2018, 9, e1459. [Google Scholar] [CrossRef]
- Zhang, R.S.; Yu, R.L.; Xu, Q.; Li, X.Q.; Luo, J.; Jiang, B.; Wang, L.J.; Guo, S.J.; Wu, N.; Shi, D.Y. Discovery and evaluation of the hybrid of bromophenol and saccharide as potent and selective protein tyrosine phosphatase 1B inhibitors. Eur. J. Med. Chem. 2017, 134, 24–33. [Google Scholar] [CrossRef]
- Shi, D.Y.; Li, J.; Jiang, B.; Guo, S.J.; Su, H.; Wang, T. Bromophenols as inhibitors of protein tyrosine phosphatase 1B with antidiabetic properties. Bioorg. Med. Chem. Lett. 2012, 22, 2827–2832. [Google Scholar] [CrossRef]
- Li, X.Q.; Xu, Q.; Li, C.; Luo, J.; Li, X.X.; Wang, L.J.; Jiang, B.; Shi, D.Y. Toward a treatment of diabesity: In vitro and in vivo evaluation of uncharged bromophenol derivatives as a new series of PTP1B inhibitors. Eur. J. Med. Chem. 2019, 166, 178–185. [Google Scholar] [CrossRef]
- Demir, Y.; Taslimi, P.; Ozaslan, M.S.; Oztaskin, N.; Çetinkaya, Y.; Gulçin, İ.; Beydemir, Ş.; Goksu, S. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch. Pharm. 2018, 351, e1800263. [Google Scholar] [CrossRef]
- Taslimi, P.; Aslan, H.E.; Demir, Y.; Oztaskin, N.; Maraş, A.; Gulçin, İ.; Beydemir, S.; Goksu, S. Diarilmethanon, bromophenols and diarilmetan compounds: Discovery of potent aldose reductase, α-amylase and α-glycosidase inhibitors as new therapeutic approach in diabetes and functional hyperglycemia. Int. J. Biol. Macromol. 2018, 119, 857–863. [Google Scholar] [CrossRef]
- Öztaşkın, N.; Kaya, R.; Maraş, A.; Şahin, E.; Gülcin, İ.; Göksu, S. Synthesis and characterization of novel bromophenols: Determination of their anticholinergic, antidiabetic and antioxidant activities. Bioorg. Chem. 2019, 87, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.C.; Ding, Y.; Kim, J.; Ye, B.R.; Kim, E.A.; Jung, W.K.; Heo, S.J.; Lee, S.H. Bromophenol (5-bromo-3,4-dihydroxybenzaldehyde) isolated from red alga Polysiphonia morrowii inhibits adipogenesis by regulating expression of adipogenic transcription factors and AMP-activated protein kinase activation in 3T3-L1 adipocytes. Phytother. Res. 2019, 33, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, X.M.; Gloer, J.B.; Wang, B.G. Isolation, characterization, and antioxidant activity of bromophenols of the marine red alga Rhodomela confervoides. J. Agric. Food Chem. 2011, 59, 9916–9921. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Park, H.J.; Jung, H.A.; Chung, H.Y.; Jung, J.H.; Choi, W.C. A cyclohexanonyl bromophenol from the red alga Symphyocladia latiuscula. J. Nat. Prod. 2000, 63, 1705–1706. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, X.M.; Ji, N.Y.; Wang, B.G. Bromophenols from the marine red alga Polysiphonia urceolata with DPPH radical scavenging activity. J. Nat. Prod. 2008, 71, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Kim, S.R.; Oh, M.J.; Jung, S.J.; Kang, S.Y. In vitro antiviral activity of red alga, Polysiphonia morrowii extract and its bromophenols against fish pathogenic infectious hematopoietic necrosis virus and infectious pancreatic necrosis virus. J. Microbiol. 2011, 49, 102–106. [Google Scholar] [CrossRef]
- Fan, X.; Xu, N.J.; Shi, J.G. Bromophenols from the red alga Rhodomela confervoides. J. Nat. Prod. 2003, 66, 455–458. [Google Scholar] [CrossRef]
- Ryu, Y.S.; Fernando, P.D.S.M.; Kang, K.A.; Piao, M.J.; Zhen, A.X.; Kang, H.K.; Koh, Y.S.; Hyun, J.W. Marine compound 3-bromo-4,5-dihydroxybenzaldehyde protects skin cells against oxidative damage via the Nrf2/HO-1 pathway. Mar. Drugs 2019, 17, 234. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Heo, S.J.; Yang, H.W.; Ko, E.Y.; Jung, M.S.; Cha, S.H.; Ahn, G.; Jeon, Y.J.; Kim, K.N. Protective effect of 3-bromo-4,5-dihydroxybenzaldehyde from Polysiphonia morrowii harvey against hydrogen peroxide-induced oxidative stress in vitro and in vivo. J. Microbiol. Biotechnol. 2019, 29, 1193–1203. [Google Scholar] [CrossRef]
- Hyun, Y.J.; Piao, M.J.; Zhang, R.; Choi, Y.H.; Chae, S.; Hyun, J.W. Photo-protection by 3-bromo-4, 5-dihydroxybenzaldehyde against ultraviolet B-induced oxidative stress in human keratinocytes. Ecotoxicol. Environ. Saf. 2012, 83, 71–78. [Google Scholar] [CrossRef]
- Kim, K.; Hyun, Y.; Hewage, S.R.; Piao, M.; Kang, K.; Kang, H.; Koh, Y.; Ahn, M.; Hyun, J. 3-bromo-4,5-dihydroxybenzaldehyde enhances the level of reduced glutathione via the Nrf2-mediated pathway in human keratinocytes. Mar. Drugs 2017, 15, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, K.; Li, X.M.; Gloer, J.B.; Wang, B.G. New nitrogen-containing bromophenols from the marine red alga Rhodomela confervoides and their radical scavenging activity. Food. Chem. 2012, 135, 868–872. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.L.; Yin, L.Y.; Gao, L.J.; Gao, J.H.; Chen, J.H.; Li, J.X.; Song, F.H. Two new bromophenols with radical scavenging activity from marine red alga Symphyocladia latiuscula. Mar. Drugs 2013, 11, 842–847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsen, E.K.; Hansen, E.; Isaksson, J.; Andersen, J.H. Cellular antioxidant effect of four bromophenols from the red algae, Vertebrata lanosa. Mar. Drugs 2013, 11, 2769–2784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.Y.; Feng, X.; Ban, S.R.; Lin, W.H.; Li, Q.S. Synthesis and biological activity of halophenols as potent antioxidant and cytoprotective agents. Bioorg. Med. Chem. Lett. 2010, 20, 4132–4134. [Google Scholar] [CrossRef]
- Öztaskın, N.; Taslimi, P.; Maraş, A.; Gülcin, İ.; Göksu, S. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg. Chem. 2017, 74, 104–114. [Google Scholar] [CrossRef]
- Chen, M.; Shao, C.L.; Fu, X.M.; Xu, R.F.; Zheng, J.J.; Zhao, D.L.; She, Z.G.; Wang, C.Y. Bioactive indole alkaloids and phenyl ether derivatives from a marine-derived Aspergillus sp. Fungus. J. Nat. Prod. 2013, 76, 547–553. [Google Scholar] [CrossRef]
- Silver, L.L. Challenges of antibacterial discovery. Clin. Microbiol. Rev. 2011, 24, 71–109. [Google Scholar] [CrossRef] [Green Version]
- Gwynn, M.N.; Portnoy, A.; Rittenhouse, S.F.; Payne, D.J. Challenges of antibacterial discovery revisited. Ann. N. Y. Acad. Sci. 2010, 1213, 5–19. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Krishnamoorthy, P.; Dhamotharan, R. Isolation, identification of bromophenol compound and antibacterial activity of Kappaphycus sp. Int. J. Pharm. Biol. Sci. 2012, 3, 173–186. [Google Scholar]
- Liang, J.; Tang, Y.X.; Tang, X.Z.; Liang, H.J.; Gao, Y.M. Discovery of meta-amido bromophenols as new antitubercular agents. Chem. Pharm. Bull. 2019, 67, 372–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, N.J.; Han, S.C.; Kang, H.J.; Ko, G.; Yoo, E.S. Anti-inflammatory effect of 3-bromo-4,5-dihydroxybenzaldehyde, a component of Polysiphonia morrowii, in vivo and in vitro. Toxicol. Res. 2017, 33, 325–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, N.N.; Lou, H.H.; Gong, X.Y.; Fu, T.; Ni, S.M. Treatment with 3-bromo-4,5-dihydroxybenzaldehyde improves cardiac function by inhibiting macrophage infiltration in mice. Korean Circ. J. 2018, 48, 933–943. [Google Scholar] [CrossRef]
- Qin, S.G.; Tian, H.Y.; Wei, J.; Han, Z.H.; Zhang, M.J.; Hao, G.H.; Liu, X.; Pan, L.F. 3-bromo-4,5-dihydroxybenzaldehyde protects against myocardial ischemia and reperfusion injury through the Akt-PGC1α-Sirt3 pathway. Front. Pharmacol. 2018, 9, 722. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Feng, X.E.; Rong, C.R.; Hua, Z.L.; Guo, X.B.; Shan, L.Q.; Liang, H.X. Therapeutic effects of 5,2′-dibromo-2,4′,5′-trihydroxydiphenylmethanone (LM49) in an experimental rat model of acute pyelonephritis by immunomodulation and anti-inflammation. Int. Immunopharmacol. 2018, 62, 155–164. [Google Scholar]
- Yang, F.; Cai, H.H.; Feng, X.E.; Li, Q.S. A novel marine halophenol derivative attenuates lipopolysaccharide-induced inflammation in RAW264.7 cells via activating phosphoinositide 3-kinase/Akt pathway. Pharmacol. Rep. 2020, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.S.; Azizah, A.; Pamela, J.; Sukhi, S. Acetylcholinesterase inhibitors (AChEI′s) for the treatment of visual hallucinations in schizophrenia: A review of the literature. BMC Psychiatry 2010, 10, 1–3. [Google Scholar]
- Wang, X.Y.; Sun, G.Q.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.Q.; Chu, X.K.; Yang, J.; Wang, H.; et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer′s disease progression. Cell. Res. 2019, 29, 787–803. [Google Scholar] [CrossRef]
- Paudel, P.; Park, S.E.; Seong, S.H.; Jung, H.A.; Choi, J.S. Bromophenols from Symphyocladia latiuscula target human monoamine oxidase and dopaminergic receptors for the management of neurodegenerative diseases. J. Agric. Food Chem. 2020, 68, 2426–2436. [Google Scholar] [CrossRef]
- Bayrak, Ç.; Taslimi, P.; Gülçin, İ.; Menzek, A. The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorg. Chem. 2017, 72, 359–366. [Google Scholar] [CrossRef]
- Bayrak, C.; Taslimi, P.; Karaman, H.S.; Gulcin, I.; Menzek, A. The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg. Chem. 2019, 85, 128–139. [Google Scholar] [CrossRef]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme. Inhib. Med. Chem. 2017, 32, 403–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paudel, P.; Wagle, A.; Seong, S.H.; Park, H.J.; Jung, H.A.; Choi, J.S. A new tyrosinase inhibitor from the red alga Symphyocladia latiuscula (Harvey) Yamada (Rhodomelaceae). Mar. Drugs 2019, 17, 295. [Google Scholar] [CrossRef] [Green Version]
- Supuran, C.T. Structure and function of carbonic anhydrases. Biochem. J. 2016, 473, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Balaydın, H.T.; Soyut, H.; Ekinci, D.; Göksu, S.; Beydemir, Ş.; Menzek, A.; Şahin, E. Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols including natural products. J. Enzyme. Inhib. Med. Chem. 2012, 27, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balaydın, H.T.; Şentürk, M.; Göksu, S.; Menzek, A. Synthesis and carbonic anhydrase inhibitory properties of novel bromophenols and their derivatives including natural products: Vidalol B. Eur. J. Med. Chem. 2012, 54, 423–428. [Google Scholar] [CrossRef]
- Mikami, D.; Kurihara, H.; Kim, S.M.; Takahashi, K. Red algal bromophenols as glucose 6-phosphate dehydrogenase inhibitors. Mar. Drugs 2013, 11, 4050–4057. [Google Scholar] [CrossRef] [Green Version]
- Mikami, D.; Kurihara, H.; Ono, M.; Kim, S.M.; Takahashi, K. Inhibition of algal bromophenols and their related phenols against glucose 6-phosphate dehydrogenase. Fitoterapia 2016, 108, 20–25. [Google Scholar] [CrossRef] [Green Version]
- Ji, K.; Choi, K.; Giesy, J.P.; Musarrat, J.; Takeda, S. Genotoxicity of several polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs, and their mechanisms of toxicity. Environ. Sci. Technol. 2011, 45, 5003–5008. [Google Scholar] [CrossRef]
- He, W.H.; He, P.; Wang, A.G.; Xia, T.; Chen, X.M. Effects of PBDE-47 on cytotoxicity and genotoxicity in human neuroblastoma cells in vitro. Mutat. Res. 2008, 649, 62–70. [Google Scholar] [CrossRef]
- Wit, C.A.D. An overview of brominated flame retardants in the environment. Chemosphere 2002, 46, 583–624. [Google Scholar] [CrossRef]
- Suh, Y.W.; Buettner, G.R.; Venkataraman, S.; Treimer, S.E.; Robertson, L.W.; Ludewig, G. UVA/B-induced formation of free radicals from decabromodiphenyl ether. Environ. Sci. Technol. 2009, 43, 2581–2588. [Google Scholar] [CrossRef] [PubMed]
- Rowland, A.; Miners, J.O.; Mackenzie, P.I. The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. Int. J. Biochem. Cell. Biol. 2013, 45, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.G.; Wang, S.; Yang, K.; Liu, Y.Z.; Yang, K.; Chen, Y.; Fang, Z.Z. Inhibition of UDP-glucuronosyltransferases (UGTs) by bromophenols (BPs). Chemosphere 2020, 238, 124645. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.E.; Spanget Larsen, J. NMR and IR investigations of strong intramolecular hydrogen bonds. Molecules 2017, 22, 552. [Google Scholar] [CrossRef] [Green Version]
- Costa, P.J.; Nunes, R.; Vila Viçosa, D. Halogen bonding in halocarbon-protein complexes and computational tools for rational drug design. Expert. Opin. Drug. Discov. 2019, 14, 805–820. [Google Scholar] [CrossRef]
- Hauchecorne, D.; van der Veken, B.J.; Herrebout, W.A.; Hansen, P.E. A 19F NMR study of C–I⋯π halogen bonding. Chem. Phys. 2011, 381, 5–10. [Google Scholar] [CrossRef]
No. | IC50 (μM) and Cells | Names |
---|---|---|
1.1 | 13.9 (K562), µg/mL | Bis(2,3-dibromo-4,5-dihydroxybenzyl)ether [50] |
1.2 | 17.63 (Hela), 11.37 (RKO), 10.58 (HCT-116), 23.69 (U87), 8.7 (Bel7402), µg/mL, 3.6 (Human umbilical vein endothelial cells) | Bis-(2,3-dibromo-4,5-dihydroxy-phenyl)-methane [53] |
1.3 | 1.4 (K562), 4.8 (HeLa), 1.9 (MCF-7), 5.5 (MDB-MB-231), µg/mL | (1′R,5′S,6′S)-2-(3′,5′-dibromo-1′,6′-dihydroxy-4′-oxocyclohex-2′-enyl)acetonitrile [54] |
1.4 | 6.6 ± 0.82 (A549), 9.2 ± 0.84 (Bel7402), 13.2 ± 2.42 (HepG2), 9.1 ± 0.13 (HCT-116), 7.4 ± 0.22 (HeLa), µg/mL | (E)-3-(3-bromo-4,5-dimethoxybenzylidene-N-(4-bromophenyl)-2-oxoindoline-5-sulfonamide [55] |
1.5 | 14.4 ± 1.86 (A549), 12.3 ± 0.23 (Bel7402), 14.3 ± 0.86 (HepG2), 9.8 ± 0.55 (HCT-116), 8.3 ± 0.67 (HeLa), µg/mL | (E)-N-(4-bromophenyl)-3-(2,3-dibromo-4,5-dimethoxybenzylidene)-2-oxoindoline-5-sulfonamide [55] |
1.6 | 10.1 ± 0.72 (A549), 9.7 ± 2.35 (Bel7402), 11.2 ± 1.26 (HepG2), 8.6 ± 0.26 (HCT-116), 18 ± 0.13 (HeLa), µg/mL | (E)-3-(2,3-dibromo-4,5-dimethoxybenzylidene)-5-(morpholinosulfonyl)indolin-2-one [55] |
1.7 | 12.5 ± 0.19 (A549), 7.9 ± 0.26 (Bel7402), 25 ± 0.18 (HepG2), 6.1 ± 0.23 (HCT-116), 8.6 ± 0.14 (HeLa), µg/mL | (E)-N-(adamantan-1-yl)-3-(3-bromo-4,5-dimethoxybenzylidene)-2-oxoindoline-5-sulfonamide [55] |
1.8 | 12.5 ± 0.45 (A549), 12.5 ± 0.39 (Bel7402), 14.2 ± 0.77 (HepG2), 8.2 ± 0.54 (HCT-116), 9.3 ± 0.47 (HeLa), µg/mL | (E)-N-(adamantan-1-yl)-3-(2,3-dibromo-4,5-dimethoxybenzylidene)-2-oxoindoline-5-sulfonamide [55] |
1.9 | 3.15 ± 0.43 (A549), 6.10 ± 0.78 (HepG2), 4.42 ± 0.72 (Bel7402), 5.74 ± 0.26 (HCT-116), 4.23 ± 0.32 (Caco2), µg/mL | (E)-3-(3-bromo-5-methoxy-4-(2-(piperidin-1-yl)ethoxy)benzylidene)-N-(4-bromophenyl)-2-oxoindoline-5-sulfonamide [56] |
1.10 | 4.29 ± 0.79 (A549) | 3-(4-(3-([1,4′-bipiperidin]-1′-yl)propoxy)-3-bromo-5-methoxybenzylidene)-N-(4-bromophenyl)-2-oxoindoline-5-sulfonamide [57] |
1.11 | 4.78 ± 0.56 (A549), 9.99 ± 1.81 (95D), 6.14 ± 0.60 (NCI-H460), µg/mL | 3-(3-bromo-5-methoxy-4-(3-(piperidin-1-yl)propoxy)benzylidene)-N-(4-bromophenyl)-2-oxoindoline-5-sulfonamide [58] |
1.12 | 2.39 ± 0.43 (SK-OV-3), 5.45 ± 1.03 (Bel7402), 4.60 ± 0.38 (HepG2) | 2-(2,3-dibromo-4,5-dimethoxybenzylidene)hydrazine-1-carbo-thioamide [59] |
1.13 | 1.89 ± 0.22 (HCC-1937) | (E)-4-(2-(2,3-dibromo-4,5-dimethoxybenzylidene)hydrazine-1-carbothioamido)benzoate [60] |
No. | MIC/IC50/EC50 and Microbe | Names |
---|---|---|
4.1 | MIC 25 µg/mL (a) | Methyl 4-{(2,5-dibromo-3,4-dihydroxybenzyl) [(2,3,6-tribromo-4,5-dihydroxybenzyl)carbamoyl]amino}butanoate [5] |
4.2 | MIC 12.5 µg/mL (a) | 2,5-dibromo-3,4-dihydroxy-6-(2,3,6-tribromo-4,5-dihydroxybenzyl)benzyl methyl ether [5] |
4.3 | MIC 10 µg/mL (a) | symphyocladin G [6] |
4.4 | MIC 37.5 µg/mL (a) | 2,3,6-tribromo-4,5-dihydroxybenzyl methyl sulphoxide [6] |
4.6 | MIC 0.556 µg/mL (b) | 2,4,6,2′,4′,6′-Hexabromodiorcinol [97] |
4.7 | IC50 31 µg/mL (c) | Bis-(2,3-dibromo-4,5-dihydroxybenzyl)-ether [51] |
4.8 | EC50 19.04 µM (IHNV) EC50 26 µM (IPNV) | 2, 3-bromo-4,5-dihydroxybenzyl methyl ether [86] |
4.9 | EC50 75 µM (IHNV) EC50 > 100 µM (IPNV) | 3-bromo-4,5-dihydroxybenzaldehyde [86] |
4.10 | MIC 12.5 µg/mL (d) | 4-bromo-3-hydroxy-N-phenylbenzamide [101] |
4.11 | MIC 12.5 µg/mL (d) | 5-(benzylamino)-2-bromophenol [101] |
4.12 | MIC 0.5 µg/mL (d) | N-(4-bromo-3-hydroxyphenyl)-4-(trif luoromethoxy)-benzamide [101] |
4.13 | MIC 0.25 µg/mL (d) | N-(4-bromo-3-hydroxyphenyl)-4-(trif luoromethyl)-benzamide [101] |
No. | IC50/Ki/EC50 | Names |
---|---|---|
6.1 | 7.31 ± 0.25 (a), 8.95 ± 2.18 (b), 5.16 ± 0.60 (c), 229.42 ± 12.05 (d), 204.94 ± 4.46 (e) | 2,3,6-tribromo-4,5-dihydroxybenzylalcohol [9,109] |
6.2 | 9.61 ± 0.35 (a), 14.41 ± 0.27 (b), 4.79 ± 0.82 (c), 140.01 ± 15.08 (d), 63.16 ± 0.4 (e) | 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether [9,109] |
6.3 | 2.66 ± 0.24 (a), 4.03 ± 0.15 (b), 2.32 ± 0.10 (c), 56.46 ± 2.48 (d), 89.31 ± 2.45 (e), 18.72 ± 2.80 (f) | Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether [9,109] |
6.4 | 32.38 ± 8.01 (a), 8.013 ± 3.06 (b), pM, Ki | (E)-4-(3-bromo-4,5-dihydroxyphenyl)but-3-en-2-one [110] |
6.5 | 24.38 ± 2.73 (a), 13.28 ± 0.07 (b), pM, Ki | (E)-4-(2-bromo-4,5-dihydroxyphenyl)but-3-en-2-one [110] |
6.6 | 19.02 ± 6.15 (a), 11.84 ± 3.47 (b), pM, Ki | (E)-4-(2,3-dibromo-4,5-dihydroxyphenyl)but-3-en-2-one [110] |
6.7 | 45.72 ± 3.30 (a), nM, Ki | (4-bromo-2,5-dimethoxyphenyl) (phenyl)methanone [81] |
6.8 | 37.29 ± 0.25 (a), nM, Ki | (3-bromo-4-methoxyphenyl) (3,4-dimethoxyphenyl)methanone [81] |
6.9 | 14.23 ± 1.99 (a), nM, Ki | (3-bromo-4-methoxyphenyl) (2,3-dibromo-4-hydroxy-5-methoxyphenyl)methanone [81] |
6.10 | 21.96 ± 7.60 (a), nM, Ki | (2,3-dibromo-4-hydroxy-5-methoxyphenyl) (2,5-dibromo-4-methoxyphenyl)methanone [81] |
6.11 | 8.94 ± 0.73 (a), nM, Ki | (3-bromo-4-methoxyphenyl) (2,5-dibromo-4-methoxyphenyl)methanone [81] |
6.12 | 59.45 ± 14.97 (a), nM, Ki | (2,5-dibromo-4-methoxyphenyl) (phenyl)methanone [81] |
6.13 | 27.55 ± 9.73 (a), nM, Ki | (3-bromo-4-hydroxyphenyl) (3,4-dihydroxyphenyl)methanone [81] |
6.14 | 1.53 ± 0.23 (a), 0.93 ± 0.20 (b), nM, Ki | 3,4-dibromo-5-((methylsulfonyl)methyl)benzene-1,2-diol [111] |
6.15 | 0.84 ± 0.12 (a), 3.73 ± 1.03 (b), nM, Ki | 3,4,6-tribromo-5-((methylsulfonyl)methyl)benzene-1,2-diol [111] |
6.16 | 10.82 (a), 22.35 (b), nM | (2-bromo-4-hydroxyphenyl) (phenyl)methanone [96] |
6.17 | 13.07 (a), 30.13 (b), nM | (2-bromo-4-hydroxyphenyl)(4-hydroxyphenyl)methanone [96] |
6.18 | 159.6 ± 21.9 (a), nM, Ki | 2,4-dibromo-4-(2,3-dibromo-4,5-dimethoxyphenyl)-3-methylbutanoic acid [46] |
No. | Ki/IC50 (µM) | Names |
---|---|---|
7.2.1 | 86.4 (a), IC50 | 3,4,6-tribromo-5-(2,5-dibromo-3,4-dihydroxybenzyl)benzene-1,2-diol [115] |
7.2.2 | 38.29 (a), IC50 | 5,5′-methylene bis(3,4,6-tribromo-benzene-1,2-diol) [115] |
7.2.3 | 0.7 (a), IC50 | (2-bromo-3,4-dihydroxyphenyl) (2,3-dibromo-4,5-dihydroxyphenyl)methanone [115] |
7.2.4 | 1.13 (a), 1.84 (b), 12.24 (c), 3.41 (d) | 2-bromo-4,6-bis(2,3-dibromo-4,5-dihydroxybenzyl)benzene-1,3,5-triol [116] |
7.2.5 | 78.49 (a), 57.61 (b), 93.42 (c), 45.36 (d) | 4-bromo-2,6-bis(2,3-dibromo-4,5-dimethoxybenzyl)-3,5-dimethoxyphenol [116] |
7.2.6 | 0.56 (a), 1.08 (b), 1.67 (c), 0.59 (d) | 2(R)-2-(2,3,6-tribromo-4,5-dihydroxybenzyl)cyclohexanone [41] |
7.2.7 | 0.38 (a), 0.85 (b), 1.04 (c), 0.48 (d) | 1R(S),2R(S)-2-(3-bromo-4,5 dimethoxybenzyl)cyclohexanol [41] |
7.2.8 | 0.38 (a), 0.87 (b), 1.03 (c), 0.47 (d) | 1(R)S,2S(R)-2-(3-bromo-4,5-dimethoxybenzyl)cyclohexanol [41] |
7.2.9 | 0.41 (a), 0.93 (b), 1.12 (c), 0.51 (d) | 1R(S),2R(S)-2-(2,3-dibromo-4,5-dimethoxybenzyl)cyclohexanol [41] |
7.2.10 | 0.39 (a), 0.88 (b), 1.10 (c), 0.47 (d) | 1(R)S,2S(R)-2-(2,3-dibromo-4,5-dimethoxybenzyl)cyclohexanol [41] |
7.2.11 | 1.26 (a), 32.7 (c) | 3,4-dibromo-5-(2,3-dibromo-4,5-dihydroxybenzyl)-6-(ethoxymethyl)benzene-1,2-diol [39] |
7.2.12 | 0.65 (a), 13.7 (c) | (4,5-dihydroxy-2-methylphenyl) (3,4-dihydroxyphenyl)methanone [39] |
7.2.13 | 0.74 (a), 18.5 (c) | (3-bromo-4,5-dihydroxy-2-methylphenyl) (3,4-dihydroxyphenyl)methanone [39] |
7.2.14 | 0.83 (a), 22.6 (c) | (3-bromo-4,5-dihydroxy-2-methylphenyl) (2-bromo-4,5-dihydroxyphenyl)methanone [39] |
7.2.15 | 0.92 (a), 28.5 (c) | (2-bromo-4,5-dihydroxyphenyl) (4,5-dihydroxy-2- methylphenyl)methanone [39] |
7.2.16 | 9.24 (a), 7.87 (c), | (4-bromo-2, 5-dihydroxyphenyl) (3, 4-dihydroxyphenyl)methanone [96] |
7.2.17 | 5.97 (a), 8.15 (c), | (4-bromo-2, 5-dihydroxyphenyl) (3, 4, 5-trihydroxyphenyl)methanone [96] |
7.2.18 | 6.93 (a), 8.45 (c), | (2-bromo-4-hydroxyphenyl) (phenyl)methanone [96] |
7.2.19 | 6.18 (a), 6.79 (c), | (2-bromo-4-hydroxyphenyl) (4-hydroxyphenyl)methanone [96] |
7.2.20 | 5.58 (a), 7.61 (c), | (2-bromo-4-methoxyphenyl) (phenyl)methanone [96] |
7.2.21 | 6.07 (a), 7.51 (c), | (2-bromo-4-methoxyphenyl) (4-methoxyphenyl)methanone [96] |
7.2.22 | 8.4 ± 2.3 (c), 48.3 ± 1.3 (a), nM | (1R*,2R*,3R*)-ethyl 2-(2-bromo-4,5-dimethoxyphenyl)-3-methylcyclopropane-1-carboxylate [46] |
7.2.23 | 10.7 ± 2.9 (c), nM | (1S*,2R*,3R*)-ethyl 2-(2,6-dibromo-3,4-dimethoxyphenyl)-3-methylcyclopropanecarboxylate [46] |
7.2.24 | 7.8 ± 0.9 (c), nM | (1S*,2R*,3R*)-ethyl 2-methyl-3-(2,3,6-tribromo-4,5-dimethoxyphenyl)cyclopropanecarboxylate [46] |
7.2.25 | 43.1 ± 1.7 (a), nM | (1R*,2R*,3R*)-2-(2-Bromo-4,5-dimethoxyphenyl)-3-methylcyclopropane-1-carboxylic acid [46] |
No. | IC50 (μM) | Names |
---|---|---|
7.3.1 | 76.6 ± 0.1 (a) | 3,5-dibromo-4-hydroxybenzaldehyde [117] |
7.3.2 | 4.01 ± 0.3 (a), | 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(hydroxymethyl)benzyl)benzene-1,2-diol [117] |
7.3.3 | 0.85 ± 0.1 (a) | Bis(2,3-dibromo-4,5-dihydroxybenzyl)ether [117] |
7.3.4 | 321 ± 18 (a) | 3,4-dibromo-5-(butoxymethyl)benzene-1,2-diol [118] |
7.3.5 | 0.97 ± 0.1 (a) | Bis-(2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether) [118] |
7.3.6 | 0.85 ± 0.1 (a) | 5,5’-(oxybis(methylene))bis(3,4-dibromobenzene-1,2-diol) [118] |
7.3.7 | 0.47 ± 0.03 (a) | 5,5’-methylenebis(3,4-dibromobenzene-1,2-diol) [118] |
7.3.8 | 0.53 ± 0.18 (a) | 3,4-dibromo-5-(2-bromo-3,4-dihydroxy-6-(methoxymethyl)benzyl)benzene-1,2-diol [118] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Dong, S.; Erik Hansen, P.; Stagos, D.; Lin, X.; Liu, M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Mar. Drugs 2020, 18, 411. https://doi.org/10.3390/md18080411
Dong H, Dong S, Erik Hansen P, Stagos D, Lin X, Liu M. Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Marine Drugs. 2020; 18(8):411. https://doi.org/10.3390/md18080411
Chicago/Turabian StyleDong, Hui, Songtao Dong, Poul Erik Hansen, Dimitrios Stagos, Xiukun Lin, and Ming Liu. 2020. "Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications" Marine Drugs 18, no. 8: 411. https://doi.org/10.3390/md18080411
APA StyleDong, H., Dong, S., Erik Hansen, P., Stagos, D., Lin, X., & Liu, M. (2020). Progress of Bromophenols in Marine Algae from 2011 to 2020: Structure, Bioactivities, and Applications. Marine Drugs, 18(8), 411. https://doi.org/10.3390/md18080411