Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms
Abstract
:1. Introduction
2. Secondary Metabolites from Deep-Sea Derived Fungi
2.1. Antitumoral Secondary Metabolites
2.2. Antmicrobial Secondary Metabolites
2.2.1. Antibacterial Secondary Metabolites
2.2.2. Antifungal Secondary Metabolites
2.3. Secondary Metabolites with Other Bioactivities
3. Secondary Metabolites from Deep-Sea Derived Bacteria
3.1. Antitumoral Secondary Metabolites
3.2. Antimicrobial Secondary Metabolites
3.3. Other Bioactive Secondary Metabolites
4. Research Methods for Diversity of Secondary Metabolites from Deep-Sea Microorganisms
4.1. Isolation and Cultivation of Deep-Sea Microorganisms
4.1.1. Sample Pretreatment
4.1.2. Medium Selection and Improvement
4.2. Screening Methods of Deep-Sea Natural Products
4.2.1. In Vivo Screening Methods
4.2.2. Cell and Receptor/Enzyme Model Screening Methods
4.2.3. Virtual and Gene Screening Methods
4.3. Secondary Metabolite Discovery Based on Synthetic Biology
5. Conclusions and Perspective
Author Contributions
Funding
Conflicts of Interest
References
- Tortorella, E.; Tedesco, P.; Esposito, F.P.; January, G.G.; Fani, R.; Jaspars, M.; Pascale, D. Antibiotics from Deep-Sea Microorganisms: Current Discoveries and Perspectives. Mar. Drugs 2018, 16, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebbar, M.; Franzetti, B.; Girard, E.; Oger, P. Microbial diversity and adaptation to high hydrostatic pressure in deep-sea hydrothermal vents prokaryotes. Extremophiles 2015, 19, 721–740. [Google Scholar] [CrossRef] [PubMed]
- Skropeta, D.; Wei, L. Recent advances in deep-sea natural products. Nat. Prod. Rep. 2014, 31, 999–1025. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Mahé, S.; Rédou, V.; Le Calvez, T.; Vandenkoornhuyse, P.; Burgaud, G. Fungi in Deep-Sea Environments and Metagenomics. In The Ecological Genomics of Fungi; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 325–354. [Google Scholar]
- Sharma, S.; Fulke, A.B.; Chaubey, A. Bioprospection of marine actinomycetes: Recent advances, challenges and future perspectives. Acta Oceanol. Sin. 2019, 38, 1–17. [Google Scholar] [CrossRef]
- Bhatnagar, I.; Kim, S.-K. Immense Essence of Excellence: Marine Microbial Bioactive Compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okutani, K. Gliotoxin produced by a strain of Aspergillus isolated from marine mud. Nippon. Suisan Gakkaishi 1977, 43, 995–1000. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, Z.A.; Ma, Y.N.; Xue, Y.R.; Liu, C.H. Deep-Sea Fungi Could Be the New Arsenal for Bioactive Molecules. Mar. Drugs 2020, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Ibrar, M.; Ullah, M.W.; Manan, S.; Farooq, U.; Rafiq, M.; Hasan, F. Fungi from the extremes of life: An untapped treasure for bioactive compounds. Appl. Microbiol. Biotechnol. 2020, 104, 2777–2801. [Google Scholar] [CrossRef]
- Tang, X.; Liu, S.-Z.; Yan, X.; Tang, B.-W.; Fang, M.; Wang, X.; Wu, Z.; Qiu, Y.-K. Two New Cytotoxic Compounds from a Deep-Sea Penicillum citreonigrum XT20-134. Mar. Drugs 2019, 17, 509. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.-L.; Liu, H.; Chen, Y.; Tan, H.-B.; Guo, H.; Xu, L.-Q.; Li, S.-N.; Huang, Z.-L.; Li, H.; Gao, X.-X.; et al. Highly Substituted Benzophenone Aldehydes and Eremophilane Derivatives from the Deep-Sea Derived Fungus Phomopsis lithocarpus FS508. Mar. Drugs 2018, 16, 329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, C.; Ge, X.; Shah, M.; Zhou, L.; Yu, G.; Che, Q.; Zhang, G.; Peng, J.; Gu, Q.-Q.; Zhu, T.-J.; et al. New Glutamine-Containing Azaphilone Alkaloids from Deep-Sea-Derived Fungus Chaetomium globosum HDN151398. Mar. Drugs 2019, 17, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, S.; Xia, M.; Chen, M.; Liu, X.; Li, Z.; Xie, Y.; Shao, Z.; Zhang, G. Cytotoxic Polyketides Isolated from the Deep-Sea-Derived Fungus Penicillium chrysogenum MCCC 3A00292. Mar. Drugs 2019, 17, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, Y.; Liu, Z.; Guo, B.; Gao, X.; Liu, H.; Zhang, W. Cytotoxic Secondary Metabolites from a Sea-Derived Fungal Strain of Hypoxylon rubiginosum FS521. Chin. J. Org. Chem. 2020, 40, 1367. [Google Scholar] [CrossRef]
- Xing, C.; Xie, C.-L.; Xia, J.-M.; Liu, Q.; Lin, W.-X.; Ye, D.-Z.; Liu, G.; Yang, X. Penigrisacids A–D, Four New Sesquiterpenes from the Deep-Sea-Derived Penicillium griseofulvum. Mar. Drugs 2019, 17, 507. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Xia, J.-M.; Li, Z.; Yang, L.-H.; Yi, Z.-W.; Xie, C.-L.; Peng, G.; Luo, Z.-H.; Shao, Z.; Yang, X. Aphidicolin Chemistry of the Deep-Sea-Derived Fungus Botryotinia fuckeliana MCCC 3A00494. J. Nat. Prod. 2019, 82, 2307–2331. [Google Scholar] [CrossRef]
- Chen, S.C.; Liu, Z.M.; Tan, H.B.; Chen, Y.C.; Zhu, S.; Liu, H.X.; Zhang, W.M. Photeroids A and B, unique phenol–sesquiterpene meroterpenoids from the deep-sea-derived fungus Phomopsis tersa. Org. Biomol. Chem. 2020, 18, 642–645. [Google Scholar] [CrossRef]
- Bao, J.; Zhai, H.; Zhu, K.; Yu, J.-H.; Zhang, Y.; Wang, Y.-Y.; Jiang, C.-S.; Zhang, X.-Y.; Zhang, Y.; Zhang, H. Bioactive Pyridone Alkaloids from a Deep-Sea-Derived Fungus Arthrinium sp. UJNMF0008. Mar. Drugs 2018, 16, 174. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Huang, Z.-H.; Ma, X.; Qi, S. Unstable Tetramic Acid Derivatives from the Deep-Sea-Derived Fungus Cladosporium sphaerospermum EIODSF 008. Mar. Drugs 2018, 16, 448. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, X.; Wu, G.; Liu, C.; Lu, C.; Gu, Q.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Aniline-Tetramic Acids from the Deep-Sea-Derived Fungus Cladosporium sphaerospermum L3P3 Cultured with the HDAC Inhibitor SAHA. J. Nat. Prod. 2018, 81, 1651–1657. [Google Scholar] [CrossRef]
- Matsuo, H.; Nonaka, K.; Nagano, Y.; Yabuki, A.; Fujikura, K.; Takahashi, Y.; Ōmura, S.; Nakashima, T. New metabolites, sarcopodinols A and B, isolated from deep-sea derived fungal strain Sarcopodium sp. FKJ-0025. Biosci. Biotechnol. Biochem. 2018, 82, 1323–1326. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.; Yang, S.-Q.; Li, X.-M.; Li, X.-D.; Wang, B.-G.; Li, X. A new steroid with 7β,8β-epoxidation from the deep sea-derived fungus Aspergillus penicillioides SD-311. J. Asian Nat. Prod. Res. 2020, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-H.; Liang, X.; Qi, S. A new iron(III) chelator of coprogen-type siderophore from the deep-sea-derived fungus Mycosphaerella sp. SCSIO z059. Chin. J. Nat. Med. 2020, 18, 243–249. [Google Scholar] [CrossRef]
- Cheng, Z.; Xu, W.; Liu, L.; Li, S.; Yuan, W.; Luo, Z.; Zhang, J.; Cheng, Y.; Li, Q. Peniginsengins, B–E, New Farnesylcyclohexenones from the Deep Sea-Derived Fungus Penicillium sp. YPGA11. Mar. Drugs 2018, 16, 358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasanayaka, S.A.H.K.; Nong, X.-H.; Liang, X.; Liang, J.-Q.; Amin, M.; Qi, S. New dibenzodioxocinone and pyran-3,5-dione derivatives from the deep-sea-derived fungus Penicillium canescens SCSIO z053. J. Asian Nat. Prod. Res. 2020, 22, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-D.; Yin, X.; Li, X.; Wang, B.; Li, X. Antimicrobial Sesquiterpenoid Derivatives and Monoterpenoids from the Deep-Sea Sediment-Derived Fungus Aspergillus versicolor SD-330. Mar. Drugs 2019, 17, 563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salendra, L.; Luo, X.; Lin, X.; Liao, S.; Wang, J.; Zhou, X.; Yang, B.; Liu, Y. Bioactive Novel Indole Alkaloids and Steroids from Deep Sea-Derived Fungus Aspergillus fumigatus SCSIO 41012. Molecules 2018, 23, 2379. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Mou, Q.; Xu, X.; Qianqian, M.; Leung, P.H.M. Synergistic antibacterial activity between penicillenols and antibiotics against methicillin-resistant Staphylococcus aureus. R. Soc. Open Sci. 2018, 5, 172466. [Google Scholar] [CrossRef] [Green Version]
- Pang, X.; Lin, X.; Zhou, X.; Yang, B.; Tian, X.; Wang, J.; Xu, S.; Liu, Y. New quinoline alkaloid and bisabolane-type sesquiterpenoid derivatives from the deep-sea-derived fungus Aspergillus sp. SCSIO06786. Fitoterapia 2020, 140, 104406. [Google Scholar] [CrossRef]
- Yu, G.; Sun, Z.; Peng, J.; Zhu, M.; Che, Q.; Zhang, G.; Zhu, T.; Gu, Q.; Li, D. Secondary Metabolites Produced by Combined Culture of Penicillium crustosum and a Xylaria sp. J. Nat. Prod. 2019, 82, 2013–2017. [Google Scholar] [CrossRef]
- Xiao, Z.E.; Lin, S.E.; Huang, X.S.; Xia, G.P.; Li, H.X.; Lu, Y.J.; She, Z.G. The mPtpB Enzyme Inhibitors Derived from the Mangrove Fungi of the South China Sea. Abstracts of Papers. In Proceedings of the Ninth National Conference on Marine Biotechnology and Innovative Drugs, ChiFeng, China, 6 August 2014. [Google Scholar]
- Liu, Z.; Wang, Q.; Li, S.; Cui, H.; Sun, Z.; Chen, D.; Lu, Y.-J.; Liu, H.; Zhang, W. Polypropionate Derivatives with Mycobacterium tuberculosis Protein Tyrosine Phosphatase B Inhibitory Activities from the Deep-Sea-Derived Fungus Aspergillus fischeri FS452. J. Nat. Prod. 2019, 82, 3440–3449. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-C.; Liu, Z.; Chen, Y.; Tan, H.-B.; Li, S.-N.; Liu, H.; Zhang, W.-M.; Zhu, S. Highly Substituted Phenol Derivatives with Nitric Oxide Inhibitory Activities from the Deep-Sea-Derived Fungus Trichobotrys effuse FS524. Mar. Drugs 2020, 18, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-S.; Kang, J.S.; Choi, B.-K.; Shin, H.J.; Lee, H.-S.; Lee, Y.-J.; Lee, J.; Shin, H.J. Phenazine Derivatives with Anti-Inflammatory Activity from the Deep-Sea Sediment-Derived Yeast-Like Fungus Cystobasidium laryngis IV17-028. Mar. Drugs 2019, 17, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niu, S.; Xie, C.-L.; Xia, J.-M.; Luo, Z.-H.; Shao, Z.; Yang, X. New anti-inflammatory guaianes from the Atlantic hydrotherm-derived fungus Graphostroma sp. MCCC 3A00421. Sci. Rep. 2018, 8, 530. [Google Scholar] [CrossRef] [Green Version]
- Niu, S.; Liu, Q.; Xia, J.-M.; Xie, C.-L.; Luo, Z.-H.; Shao, Z.; Liu, G.; Yang, X. Polyketides from the Deep-Sea-Derived Fungus Graphostroma sp. MCCC 3A00421 Showed Potent Antifood Allergic Activities. J. Agric. Food Chem. 2018, 66, 1369–1376. [Google Scholar] [CrossRef]
- Niu, S.; Xie, C.-L.; Xia, J.-M.; Liu, Q.-M.; Peng, G.; Liu, G.; Yang, X. Botryotins A−H, tetracyclic diterpenoids representing three carbon skeletons from a Deep-Sea-Derived. Org. Lett. 2019, 22, 580–583. [Google Scholar] [CrossRef]
- Bochner, B.S.; Rothenberg, M.E.; Boyce, J.A.; Finkelman, F. Advances in mechanisms of allergy and clinical immunology in 2012. J. Allergy Clin. Immunol. 2013, 131, 661–667. [Google Scholar] [CrossRef]
- Kay, A.B. Overview of ‘Allergy and allergic diseases: With a view to the future’. Br. Med Bull. 2000, 56, 843–864. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Mageed, W.M.; Milne, B.F.; Wagner, M.; Schumacher, M.; Sandor, P.; Pathom-Aree, W.; Goodfellow, M.; Bull, A.T.; Horikoshi, K.; Ebel, R.; et al. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org. Biomol. Chem. 2010, 8, 2352–2362. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yang, T.; Ren, X.; Liu, J.; Song, Y.; Sun, A.; Ma, J.; Wang, B.; Zhang, Y.; Huang, C.; et al. Cytotoxic Angucycline Class Glycosides from the Deep Sea Actinomycete Streptomyces lusitanus SCSIO LR32. J. Nat. Prod. 2012, 75, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, X.; Niu, S.; Zhang, W.; Chen, Y.-C.; Zhang, H.; Yang, X.; Zhang, W.; Li, W.; Zhang, S.; et al. Pseudonocardians A–C, New Diazaanthraquinone Derivatives from a Deap-Sea Actinomycete Pseudonocardia sp. SCSIO 01299. Mar. Drugs 2011, 9, 1428–1439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Iwata, F.; Yamada, S.; Kawahara, H.; Katayama, M. Usabamycins A-C: New anthramycin-typeanalogues from a marine-derived actinomycete. Bioorganic Med. Chem. Lett. 2011, 21, 7099–7101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; et al. Spiroindimicins A–D: New Bisindole Alkaloids from a Deep-Sea-Derived Actinomycete. Org. Lett. 2012, 14, 3364–3367. [Google Scholar] [CrossRef] [PubMed]
- Bérdy, J. Bioactive Microbial Metabolites. J. Antibiot. 2005, 58, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, C.-L.; Niu, S.; Xia, J.-M.; Peng, K.; Zhang, G.-Y.; Yang, X.-W. Saccharopolytide A, a new cyclic tetrapeptide with rare 4-hydroxy-proline moieties from the deep-sea derived actinomycete Saccharopolyspora cebuensis MCCC 1A09850. Nat. Prod. Res. 2017, 32, 1627–1631. [Google Scholar] [CrossRef]
- Yang, T.; Yamada, K.; Zhou, T.; Harunari, E.; Igarashi, Y.; Terahara, T.; Kobayashi, T.; Imada, C. Akazamicin, a cytotoxic aromatic polyketide from marine-derived Nonomuraea sp. J. Antibiot. 2019, 72, 202–209. [Google Scholar] [CrossRef]
- Wang, C.; Cui, T.X.; Wang, D.Y.; Zhu, W.M. Trienomycin J, a new ansamycin from deep-sea derived bacterium Ochrobactrum sp. Chin. Tradit. Herb. Drugs 2019, 23, 5661–5665. [Google Scholar]
- Fan, Y.; Wang, C.; Wang, L.; Chairoungdua, A.; Piyachaturawat, P.; Fu, P.; Zhu, W. New Ansamycins from the Deep-Sea-Derived Bacterium Ochrobactrum sp. OUCMDZ-2164. Mar. Drugs 2018, 16, 282. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-López, F.J.; Alcalde, E.; Sarmiento-Vizcaíno, A.; Díaz, C.; Cautain, B.; García, L.A.; Blanco, G.; Reyes, F. New 3-Hydroxyquinaldic Acid Derivatives from Cultures of the Marine Derived Actinomycete Streptomyces cyaneofuscatus M-157. Mar. Drugs 2018, 16, 371. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Ma, J.; Li, Q.; Ju, J. Identification of the Anti-Infective Aborycin Biosynthetic Gene Cluster from Deep-Sea-Derived Streptomyces sp. SCSIO ZS0098 Enables Production in a Heterologous Host. Mar. Drugs 2019, 17, 127. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.-J.; Wei, X.; He, J.; Sun, C.; Ju, J.; Ma, J. Characterization of the Noncanonical Regulatory and Transporter Genes in Atratumycin Biosynthesis and Production in a Heterologous Host. Mar. Drugs 2019, 17, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín, J.; Martín, J.; Sarmiento-Vizcaíno, A.; De La Cruz, M.; García, L.A.; Blanco, G.; Reyes, F. Anthracimycin B, a Potent Antibiotic against Gram-Positive Bacteria Isolated from Cultures of the Deep-Sea Actinomycete Streptomyces cyaneofuscatus M-169. Mar. Drugs 2018, 16, 406. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Nepal, K.K.; Chen, J.; Harmody, D.; Zhu, H.; McCarthy, P.J.; Wright, A.E.; Wang, G. Nocardiopsistins A-C: New angucyclines with anti-MRSA activity isolated from a marine sponge-derived Nocardiopsis sp. HB-J378. Synth. Syst. Biotechnol. 2018, 3, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Han, J.; Lin, R.; Polyak, S.W.; Song, F. Two New Piperazine-Triones from a Marine-Derived Streptomycetes sp. Strain SMS636. Mar. Drugs 2019, 17, 186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.S. Research on the Active Secondary Metabolites of Three Marine Microorganisms Based on Different Fermentation Methods. Master’s Thesis, Zhejiang University, Hangzhou, China, 2019. [Google Scholar]
- Pang, K.L.; Overy, P.D.; Jones, E.B.G.; da Luz Calado, M.; Burgaud, G.; Walker, K.A.; Johnson, A.J.; Kerr, G.R.; Cha, H.J.; Gerald, F.B. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol. Rev. 2016, 30, 163–175. [Google Scholar] [CrossRef]
- Jones, E.G. Are there more marine fungi to be described? Bot. Mar. 2011, 54, 343–354. [Google Scholar] [CrossRef]
- Jones, E.B.G.; Pang, K.L. Marine Fungi and Fungal-Like Organisms; De Gruyter: Berlin, Germany, 2012; pp. 1–13. [Google Scholar]
- Jones, E.G.; Suetrong, S.; Sakayaroj, J.; Bahkali, A.H.; Abdel-Wahab, M.A.; Boekhout, T.; Pang, K.-L. Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 2015, 73, 1–72. [Google Scholar] [CrossRef]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Seong, C.N.; Choi, J.H.; Baik, K.S. An improved selective isolation of rare Actinomycetes from forest soil. J. Microbiol. 2001, 39, 17–23. [Google Scholar]
- Wang, H.Y.; Liu, J.; Zhao, S.J. Study on the isolation of marine actinomycetes in the sediments of Nanji Island. Mar. Sci. 2010, 34, 48–51. [Google Scholar]
- Wang, F.; Xu, X.X.; Qu, Z.; Wang, C.; Lin, H.P.; Xie, Q.Y.; Ruan, J.S.; Sun, M.; Hong, K. Nonomuraea wenchangensis sp.nov. isolated from mangrove rthizosphere soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 1304–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, L.J.; Zhang, L.M.; Ruan, J.S.; Huang, Y. Micromonospora rhizosphaerae sp. nov. isolated from mangrove rhizosphere soil. Int. J. Syst. Evol. Microbiol. 2011, 61, 320–324. [Google Scholar]
- Lin, L.; Tan, Y.; Chen, F.F.; Zhou, H.X.; Wang, Y.G.; He, W.Q.; Wang, Y. Diversity of cultivable actinomycetes in sediments of Laohutan, Bohai Sea, Dalian. Acta Microbiol. Sin. 2011, 51, 262–269. [Google Scholar]
- Xi, L.J.; Zhang, L.M.; Ruan, J.S.; Huang, Y. Nonomuraea maritima sp. nov., isolated from coastal sediment. Int. J. Syst. Evol. Microbiol. 2011, 61, 2740–2744. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, J.; Zhu, W.Y.; He, J.; Tian, X.P.; Xie, Q.; Zhang, S.; Li, W.J. Nocardiopsis coralliicola sp. nov., isolated from the gorgonian coral, Menella praelonga. Int. J. Syst. Evol. Microbiol. 2012, 62, 1653–1658. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, L.A.; Stach, J.E.M.; Pathom-Aree, W.; Ward, A.C.; Bull, A.T.; Goodfellow, M. Diversity of cultivable actinobacteria in geographically widespread marine sediments. Antonie van Leeuwenhoek 2005, 87, 11–18. [Google Scholar] [CrossRef]
- Ding, Y.B.; Cai, C.J.; Mu, Y.L.; Shan, Y.Q.; Lu, X.H.; Jiang, Q. The effect of microwave treatment on the separation of alkali and halophilic marine actinomycetes. Bull. Microbiol. 2012, 39, 407–414. [Google Scholar]
- He, G.Y.; Xu, W.; Guo, S.S.; Liu, W.H.; Luo, Z.H. Study on the cultivable fungal diversity and denitrification ability of deep-sea sediments in Yapu Trench. J. Appl. Oceanogr. 2018, 37, 230–238. [Google Scholar]
- Chen, R.W.; Wang, K.X.; He, Y.Q.; Tian, X.P.; Long, L.J. Diversity of culturable bacteria in a deep-sea sediment sample from the South China Sea. Biol. Resour. 2018, 40, 321–333. [Google Scholar]
- Wang, B.; Deng, J.; Gao, Y.; Zhu, L.; He, R.; Xu, Y. The screening toolbox of bioactive substances from natural products: A review. Fitoterapia 2011, 82, 1141–1151. [Google Scholar] [CrossRef]
- Bu, L.N. Screening and Evaluation of Active Ingredients of Natural Products Based On in vitro Cell Model Screening. Master’s Thesis, Lanzhou University, Lanzhou, China, 2013. [Google Scholar]
- Xu, X.N.; Cui, H.T.; Chen, L.Y.; Su, C.; Bai, F.W.; Zhao, X.Q. Screening of marine actinomycetes with anti-complement activity and isolation of their active substances. J. Appl. Environ. Biol. 2018, 24, 1295–1300. [Google Scholar]
- Ou, H.L.; Li, L.J. Research progress of renin angiotensin system in newly emerging respiratory infectious diseases. Mod. Pract. Med. 2019, 1, 1–3. [Google Scholar]
- Deng, Y.F.; Aluko, R.E.; Jin, Q.; Zhang, Y.; Yuan, L.J. Inhibitory activities of baicalin against renin and angiotensin-converting enzyme. Pharm. Biol. 2011, 50, 401–406. [Google Scholar] [CrossRef] [PubMed]
- Yibo, L. Designing natural product-like virtual libraries using deep molecule generative models. J. Chin. Pharm. Sci. 2018, 27, 451–459. [Google Scholar] [CrossRef]
- Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 2003, 7, 285–295. [Google Scholar] [CrossRef]
- Evans, B.S.; Robinson, S.J.; Kelleher, N.L. Surveys of non-ribosomal peptide and polyketide assembly lines in fungi and prospects for their analysisin vitro and in vivo. Fungal Genet. Biol. 2011, 48, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.L.; Fang, Z.K.; Chen, M.H.; Peng, F.; Jiang, H.; Lian, Y.Y. Gene screening of macrolide-producing bacteria and research on their metabolites. Nat. Prod. Res. Dev. 2017, 29, 1895–1899. [Google Scholar]
- Rédou, V.; Navarri, M.; Meslet-Cladière, L.; Barbier, G.; Burgaud, G. Species Richness and Adaptation of Marine Fungi from Deep-Subseafloor Sediments. Appl. Environ. Microbiol. 2015, 81, 3571–3583. [Google Scholar] [CrossRef] [Green Version]
- Culp, E.J.; Yim, G.; Waglechner, N.; Wang, W.; Pawlowski, A.C.; Wright, G.D. Hidden antibiotics in actinomycetes can be identified by inactivation of gene clusters for common antibiotics. Nat. Biotechnol. 2019, 37, 1149–1154. [Google Scholar] [CrossRef]
- Roux, I.; Woodcraft, C.; Hu, J.; Wolters, R.; Gilchrist, C.L.M.; Chooi, Y.-H. CRISPR-Mediated Activation of Biosynthetic Gene Clusters for Bioactive Molecule Discovery in Filamentous Fungi. ACS Synth. Biol. 2020, 9, 1843–1854. [Google Scholar] [CrossRef]
Bioactivity | Fungal Species | Structural Class | Number | Depth (m) | Region | Source | Reference |
---|---|---|---|---|---|---|---|
antiallergic | Botryotinia fuckeliana | diterpenoid | 79 | 5572 | Western Pacific Ocean | sea water | [38] |
antibacterial | Aspergillus penicillioides | steroid | 32, 33 | 2038 | South China Sea | sediment | [23] |
antibacterial | Mycosphaerella sp. SCSIO z059 | iron (III) chelator | 34 | 1330 | Okinawa Trough | sediment | [24] |
antibacterial | Mycosphaerella sp. SCSIO z059 | dimerum acid | 35 | 1330 | Okinawa Trough | sediment | [24] |
antibacterial | Penicillium sp. YPGA11 | polyketide | 36–38 | 4500 | West Pacific | sea water | [25] |
antibacterial | Penicillium canescens SCSIO z053. | polyketide | 39, 40 | 1387 | Okinawa Trough | sediment | [26] |
antibacterial | Aspergillus versicolor | sesquiterpene | 41–44 | 1487 | South China Sea | sediment | [27] |
antibacterial | Aspergillus fumigatus | alkaloid | 45, 46 | 3614 | India Ocean | sediment | [28] |
antibacterial | Penicillium biourgeianum | alkaloid | 47 | 2226 | South China Sea | sediment | [29] |
antibacterial | Arthrinium sp. UJNMF0008 | alkaloid | 25, 48–51 | 3858 | South China Sea | sediment | [19] |
antibacterial | Aspergillus sp. SCSIO06786 | phenol | 52–56 | 4762 | India Ocean | sediment | [30] |
antibacterial | Penicillium crustosum * | phenol | 55–58 | 526 | Prydz Bay | sediment | [31] |
antifood allergic | Graphostroma sp. MCCC 3A00421 | polyketide | 76–78 | 2721 | Atlantic | hydrothermal sulfide | [37] |
antifungal | Aspergillus fumigatus | alkaloid | 63 | 3614 | India Ocean | sediment | [28] |
anti-inflammatory | Trichobotrys effuse | polyketide | 64, 65 | 1428 | South China Sea | sediment | [34] |
anti-inflammatory | Graphostroma sp. MCCC 3A00421 | sesquiterpenoid | 66–69 | 2721 | Atlantic | hydrothermal sulfide | [35] |
anti-inflammatory | Cystobasidium laryngis | alkaloid | 70–75 | 4317 | India Ocean | sediment | [36] |
antituberculosis | Aspergillus fischeri | polyketide | 60–63 | 3000 | India Ocean | sediment | [33] |
cytotoxic | Penicillum citreonigrum | polyketide | 1, 2 | 2910 | Southeast India Ocean | sediment | [11] |
cytotoxic | Phomopsis lithocarpus | polyketide | 3, 4 | 3606 | India Ocean | sediment | [12] |
cytotoxic | Chaetomium globosum | polyketide | 5, 6 | 2476 | South China Sea | sediment | [13] |
cytotoxic | Penicillium chrysogenum | polyketide | 7–15 | 2076 | South Atlantic Ocean | sediment | [14] |
cytotoxic | Hypoxylon rubiginosum | polyketide | 16–19 | 4188 | South China Sea | sediment | [15] |
cytotoxic | Penicillium griseofulvum | sesquiterpene | 20 | 1420 | India Ocean | sediment | [16] |
cytotoxic | Botryotinia fuckeliana | diterpene | 21 | 5572 | West Pacific | sea water | [17] |
cytotoxic | Phomopsis tersa | meroterpenoid | 22, 23 | 3000 | India Ocean | sediment | [18] |
cytotoxic | Chaetomium globosum | alkaloid | 24 | 2476 | South China Sea | sediment | [13] |
cytotoxic | Arthrinium sp. UJNMF0008 | alkaloid | 25 | 3858 | South China Sea | sediment | [19] |
cytotoxic | Cladosporium sphaerospermum | alkaloid | 26 | 4571 | East India Ocean | sediment | [20] |
cytotoxic | Cladosporium sphaerospermum | alkaloid | 27–29 | 6562 | Mariana Trench | sediment | [21] |
cytotoxic | Sarcopodium sp. FKJ-0025 | phenol | 30, 31 | 200 | Kagoshima coast | sediment | [22] |
Bioactivity | Bacterial Species | STRUCTRUAL CLASS | Number | Depth (m) | Region | Source | Reference |
---|---|---|---|---|---|---|---|
anti-allergic effect | Saccharopolyspora cebuensis | polyketide | 98 | 2875 | Atlantic | sediment | [47] |
cytotoxic | Saccharopolyspora cebuensis | polyketide | 80 | 2875 | Atlantic | sediment | [47] |
cytotoxic | Nonomuraea sp. AKA32 | polyketide | 81–83 | 800 | Sagami Bay | sea water | [48] |
cytotoxic | Ochrobactrum sp. OUCMDZ-2164 | polyketide | 84 | 2000 | South China Sea | sea water | [49] |
cytotoxic | Ochrobactrum sp. OUCMDZ-2164 | polyketide | 85 | 2000 | South China Sea | sea water | [50] |
cytotoxic | Streptomyces cyaneofuscatus | alkaloid | 86, 87 | 2000 | Biscay Bay | solitary coral | [51] |
antibacterial | Streptomyces sp. SCSIO ZS0098 | peptide | 88 | 3000 | South China Sea | sediment | [52] |
antibacterial | Streptomyces atratus | peptide | 89 | 3536 | South China Sea | sediment | [53] |
antibacterial | Streptomyces cyaneofuscatus | polyketide | 90, 91 | 1500 | Avilés submarine Canyon | gorgonian coral | [54] |
antibacterial | Nocardiopsis sp. HB-J378 | polyketide | 92–94 | —— | —— | Theonella sp. | [55] |
antibacterial | Streptomycetes sp. strain SMS636. | alkaloid | 95, 96 | 3000 | South China Sea | sediment | [56] |
anti-BCG | Streptomycetes sp. strain SMS636. | alkaloid | 96 | 3000 | South China Sea | sediment | [56] |
inhibit the cell damage | Alcanivorax sp. SHA4 | alkaloid | 97 | 5180 | West Atlantic | sediment | [57] |
Type of Medium | Name of Medium | Composition of Medium |
---|---|---|
marine agar medium (MA) | MA; BD Difco™ | ① marine bacteria medium2216E |
MAB | ② 50%MA medium | |
MAE | ③ 20%MA medium | |
MAJ | ④ 10%MA medium | |
Actinomycete Isolation Agar (AIA) | AIA; BD Difco™ | ① selective medium for actinomycetes |
AIAB | ② 50%AIA medium | |
AIAE | ③ 20%AIA medium | |
natural ingredient medium | acid microbial medium (AM) | ① MgSO4 7 H2O 0.50 g, (NH4)2SO4 0.40 g, K2HPO4 0.20 g, KCl 0.10 g, FeSO4·7H2O 0.01 g, yeast extract 0.25 g |
Maltose-Yeast-Peptone Medium (MYP) | ② maltose extract 5.0 g, yeast extract 5.0 g, peptone 5.0 g, NaCl 3.0 g | |
nutrient medium® | ③ peptone 10.0 g, yeast extract 5.0 g, maltose extract 5.0 g, casein amino acid 5.0 g, beef extract 2.0 g, glycerin 2.0 g, Tween 80 50.0 mg, MgSO4·7H2O 1.0 g | |
R2AB; BD Difco™ | ④ 50%R2A medium | |
R2AJ | ⑤ 5%R2A medium | |
starch medium | MA starch medium (MAS) | ① MA, 1% (m/V) soluble starch |
50%MA starch medium (MABS) | ② MAB, 1% (m/V) soluble starch | |
20%MA starch medium (MAES) | ③ MAE, 1% (m/V) soluble starch | |
10%MA starch medium (MAJS) | ④ MAJ, 1% (m/V) soluble starch | |
5%MA starch medium (MATS) | ⑤ 5% MA, 1% (m/V) soluble starch | |
high-salinity medium | high-salinity AIA medium (AIAS) | ① AIA 10.0 g, NaCl 100.0 g, crude salt extract5.0 g, SrCl2 2.0 g |
high-salinity beef extract medium (BFSM) | ② beef extract 2.0 g, CaCO3 1.0 g, crude salt extract 5.0 g, Na2MoO4 5.0 g, soluble starch 2.0 g, NaCl 100.0 g | |
high-salinity casein medium (CAAM) | ③ casein hydrolysate 1.0 g, KCl 2.0 g, MgSO4·7H2O 2.0 g, NaCl 100.0 g, crude salt extract 10.0 g, gluconate 1.0 g; trisodium citrate1.0 g, yeast extract 1.0 g, KMnO4 2.0 g (sterilize alone) | |
high-salinity iron-containing medium (YJSF) | ④ MA 15.0 g, CaCO3 5.0 g, NaCl 100.0 g, FeCl2 0.5 g (filter sterilization), FeSO4 0.5 g (filter sterilization) | |
other medium | SN | ① NaNO3 0.75 g, K2HPO4 0.0159 g, EDTA-2Na 0.0056 g, Na2CO3 0.0104 g, 50% sea water, Vitamin B12 0.001 g(filter sterilization), cyano trace metal solution 1 × 10−6 sterilize alone (acetic acid 6.25 g, ammonium ferric citrate 6.0 g, MnCl2·4H2O 1.4 g, Na2MoO4·2H2O 0.39 g, Co(NO3) 2·6H2O 0.025 g, ZnSO3·7H2O 0.222 g) |
ZANT | ② NaHCO3 2.0 g, NaH2PO4·2H2O 0.05 g, NaNO3 0.5 g, CaCl2 0.02 g, MgSO4·7H2O 0.05 g, KCl 0.1 g, A5 solution 1 × 10−6(H3BO3 2.86 g, MnCl·4H2O 1.80 g, ZnSO4·7H2O 0.22 g, Na2MoO4·2H2O 0.3 g, CuSO4·5H2O 0.08 g) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.-N.; Meng, L.-H.; Wang, B.-G. Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Mar. Drugs 2020, 18, 614. https://doi.org/10.3390/md18120614
Wang Y-N, Meng L-H, Wang B-G. Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Marine Drugs. 2020; 18(12):614. https://doi.org/10.3390/md18120614
Chicago/Turabian StyleWang, Ya-Nan, Ling-Hong Meng, and Bin-Gui Wang. 2020. "Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms" Marine Drugs 18, no. 12: 614. https://doi.org/10.3390/md18120614
APA StyleWang, Y. -N., Meng, L. -H., & Wang, B. -G. (2020). Progress in Research on Bioactive Secondary Metabolites from Deep-Sea Derived Microorganisms. Marine Drugs, 18(12), 614. https://doi.org/10.3390/md18120614