Verruculosins A–B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Elucidation of the New Compounds
2.2. Biological Activities of the Isolated Compounds
3. Experimental Section
3.1. General
3.2. Fungal Material
3.3. Fermentation
3.4. Extraction and Isolation
3.5. EGFR Activity Assay
3.6. CDC25B Activity Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Imhoff, J.F. Natural Products from Marine Fungi—Still an Underrepresented Resource. Mar. Drugs 2016, 14, 19. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical Research on the Bioactivity of New Marine Natural Products Discovered during the 28 Years from 1985 to 2012. Mar. Drugs 2015, 13, 202–221. [Google Scholar] [CrossRef] [PubMed]
- Pang, K.L.; Overy, D.P.; Jones, E.G.; Calado, M.D.L.; Burgaud, G.; Walker, A.K.; Johnson, J.A.; Kerr, R.G.; Cha, H.-J.; Bills, G.F. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research: Toward a new consensual definition. Fungal Biol. Rev. 2016, 30, 163–175. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Saleem, M.; Tejesvi, M.V.; Kajula, M.; Mattila, S.; Mehiri, M.; Turpeinen, A.; Pirttilä, A.M. Fungal phenalenones: Chemistry, biology, biosynthesis and phylogeny. Nat. Prod. Rep. 2014, 31, 628–645. [Google Scholar] [CrossRef] [PubMed]
- Kawai, K.; Nozawa, Y.; Ito, T.; Yamanaka, N. Effects of xanthomegnin and duclauxin on culture cells of murine leukemia and Ehrlich ascitic tumor. Res. Commun. Chem. Pathol. Pharmacol. 1982, 36, 429–438. [Google Scholar] [PubMed]
- Kawai, K.; Shiojiri, H.; Nakamaru, T.; Nozawa, Y.; Sugie, S.; Mori, H.; Kato, T.; Ogihara, Y. Cytotoxicity and genotoxicity of xenoclauxin and desacetyl duclauxin fromPenicillium Duclauxii (delacroix). Cell Biol. Toxicol. 1985, 1, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, M.; Okuyama, E. Isolation and structures of oxaphenalenone dimers from Talaromyces bacillosporus. Chem. Pharm. Bull. 1980, 28, 3649–3655. [Google Scholar] [CrossRef]
- Zang, Y.; Genta-Jouve, G.; Escargueil, A.E.; Larsen, A.K.; Guedon, L.; Nay, B.; Prado, S. Antimicrobial Oligophenalenone Dimers from the Soil Fungus Talaromyces stipitatus. J. Nat. Prod. 2016, 79, 2991–2996. [Google Scholar] [CrossRef] [Green Version]
- Dethoup, T.; Manoch, L.; Kijjoa, A.; Nascimento, M.S.J.; Puaparoj, P.; Silva, A.M.S.; Eaton, G.; Herz, W. Bacillisporins D and E, New Oxyphenalenone Dimers from Talaromyces bacillisporus. Planta Medica 2006, 72, 957–960. [Google Scholar] [CrossRef]
- Cao, P.; Yang, J.; Miao, C.P.; Yan, Y.; Ma, Y.T.; Li, X.N.; Zhao, L.X.; Huang, S.X. New Duclauxamide from Penicillium manginii YIM PH30375 and Structure Revision of the Duclauxin Family. Org. Lett. 2015, 17, 1146–1149. [Google Scholar] [CrossRef]
- Escargueil, A.; Mann, S.; Zang, Y.; Genta-Jouve, G.; Retailleau, P.; Nay, B.; Prado, S. Talaroketals A and B, unusual bis(oxaphenalenone) spiro and fused ketals from the soil fungus Talaromyces stipitatus ATCC 10500. Org. Biomol. Chem. 2016, 14, 2691–2697. [Google Scholar]
- Cerchia, C.; Nasso, R.; Mori, M.; Villa, S.; Gelain, A.; Capasso, A.; Aliotta, F.; Simonetti, M.; Rullo, R.; Masullo, M. Discovery of Novel Naphthylphenylketone and Naphthylphenylamine Derivatives as Cell Division Cycle 25B (CDC25B) Phosphatase Inhibitors: Design, Synthesis, Inhibition Mechanism and in Vitro Efficacy against Melanoma Cell Lines. J. Med. Chem. 2019, 62, 7089–7110. [Google Scholar] [CrossRef] [PubMed]
- Engel, J.; Becker, C.; Lategahn, J.; Keul, M.; Ketzer, J.; Mühlenberg, T.; Kollipara, L.; Schultz-Fademrecht, C.; Zahedi, R.P.; Bauer, S.; et al. Insight into the Inhibition of Drug-Resistant Mutants of the Receptor Tyrosine Kinase EGFR. Angew. Chem. Int. Ed. 2016, 55, 10909–10912. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, Y.; Tanaka, O.; Shibata, S. On the metabolites of penicillium duclauxi delacroix--III The reactions of duclauxin with ammonia and primary amines. The structures of desacetylduclauxin, neoclauxin, xenoclauxin and cryptoclauxin. Tetrahedron Lett. 1966, 7, 2867–2873. [Google Scholar] [CrossRef]
- Shibata, S.; Ogihara, Y.; Tokutake, N.; Tanaka, O. Duclauxin, a metabolite of penicillium duclauxi (delacroix). Tetrahedron Lett. 1965, 6, 1287–1288. [Google Scholar] [CrossRef]
- Dong, L.B.; Wu, Y.N.; Jiang, S.Z.; Wu, X.D.; He, J.; Yang, Y.R.; Zhao, Q.S. Isolation and Complete Structural Assignment of Lycopodium Alkaloid Cernupalhine A: Theoretical Prediction and Total Synthesis Validation. Org. Lett. 2014, 16, 2700–2703. [Google Scholar] [CrossRef] [PubMed]
- Rychnovsky, S.D. Predicting NMR Spectra by Computational Methods: Structure Revision of Hexacyclinol. Org. Lett. 2006, 8, 2895–2898. [Google Scholar] [CrossRef] [PubMed]
- Mohyeldin, M.M.; Akl, M.R.; Siddique, A.B.; Hassan, H.M.; El Sayed, K.A. The marine-derived pachycladin diterpenoids as novel inhibitors of wild-type and mutant EGFR. Biochem. Pharmacol. 2017, 126, 51–68. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.M.; Teuscher, F.; Li; Diesel, A.; Ebel, R.; Proksch, P.; Wang, B.G. Chaetopyranin, a Benzaldehyde Derivative, and Other Related Metabolites from Chaetomium globosum, an Endophytic Fungus Derived from the Marine Red AlgaPolysiphonia urceolata. J. Nat. Prod. 2006, 69, 1622–1625. [Google Scholar] [CrossRef]
- Tong, L.J.; Xie, H.; Peng, T.; Liu, X.F.; Xin, X.L.; Huang, X.; Chen, S.M.; Liu, H.Y.; Li, H.L.; Geng, M.Y.; et al. Establishment of platform for screening insulin-like growth factor-1 receptor inhibitors and evaluation of novel inhibitors. Acta Pharmacol. Sin. 2011, 32, 930–938. [Google Scholar] [CrossRef]
- Feng, X.; Wang, L.N.; Zhou, Y.Y.; Yu, H.P.; Shen, Q.; Zang, Y.; Zhou, Y.B.; Li, J.Y.; Zhang, H.X.; Li, J. Discovery and characterization of a novel inhibitor of CDC25B, LGH00045. Acta Pharmacol. Sin. 2008, 29, 1268–1274. [Google Scholar] [CrossRef] [PubMed]
No. | 1 | 2 | ||
---|---|---|---|---|
δH (J in Hz) | δC | δH (J in Hz) | δC | |
1 | 5.06, ddd (10.2, 6.0, 2.4) | 69.1, CH | 5.56, dd (3.6, 10.2) | 70.6, CH |
3 | 169.5, C | 167.9, C | ||
3a | 101.2, C | 100.0, C | ||
3b | 134.6, C | 134.1, C | ||
4 | 161.9, C | 161.7, C | ||
5 | 6.55, s | 117.9, CH | 6.55, s | 118.0, CH |
6 | 149.0, C | 149.5, C | ||
6a | 117.5, C | 118.4, C | ||
7 | 87.0, C | 86.4, C | ||
8 | 3.59, d (2.4) | 56.9, CH | 3.73, s | 57.8, CH |
9 | 147.5, C | 150.9, C | ||
9a | 101.3, C | 103.9, C | ||
10 | 2.59, s | 21.2, CH3 | 2.59, s | 21.4, CH3 |
11 | α 2.46, q (6.0) β 1.63, t (12.0) | 36.3, CH2 | α 2.70, m β 2.93, m | 39.7, CH2 |
12 | 99.9, C | 173.0, C | ||
13 | 1.74, s | 28.3, CH3 | 3.65, s | 52.9, CH3 |
14 | 2.93, s | 51.1, CH3 | 2.91, s | 50.8, CH3 |
1′ | α 4.94, d (12.0) β 4.85, d (12.0) | 71.1, CH2 | α 5.00, d (12.0) β 4.84, d (12.0) | 71.2, CH2 |
3′ | 168.0, C | 167.7, C | ||
3′a | 104.3, C | 104.5, C | ||
3′b | 143.5, C | 143.5, C | ||
4′ | 164.4, C | 164.4, C | ||
5′ | 6.63, br.d | 120.8, CH | 6.62, s | 120.8, CH |
6′ | 151.8, C | 151.4, C | ||
6′a | 121.1, C | 121.1, C | ||
7′ | 190.9, C | 191.0, C | ||
8′ | 4.16, s | 67.9, CH | 4.15, s | 68.2, CH |
9′ | 5.17, s | 76.8, CH | 5.16, s | 76.7, CH |
9′a | 51.4, C | 52.0, C | ||
10′ | 2.06, s | 22.2, CH3 | 2.07, s | 22.1, CH3 |
4-OH | 10.82, s | 10.85, s | ||
4′-OH | 11.71, s | 11.63, s | ||
9-OH | ||||
OAc | 169.6, C | 169.7, C | ||
2.20, s | 21.0, CH3 | 2.21, s | 21.0, CH3 |
δcalc. (1R) | δcalc. (1S) | |||
---|---|---|---|---|
1H | 13C | 1H | 13C | |
MAE | 0.2396 | 3.1123 | 0.2565 | 3.2633 |
CMAE | 0.2225 | 1.9137 | 0.2559 | 2.1154 |
MaxErr | 0.594 | 7.678 | 0.861 | 9.162 |
CMaxErr | 1.100 | 5.337 | 1.132 | 4.394 |
r2 | 0.9937 | 0.9989 | 0.992 | 0.9987 |
DP4 | 99.90% | 98.10% | 0.10% | 1.90% |
DP4 * | 100.00% | 0.00% |
Comp. | Anti-EGFRIC 50 (µM) ± SD | Anti-CDC25BIC 50 (µM) ± SD |
---|---|---|
1 | 0.92 ± 0.25 | 0.38 ± 0.03 |
2 | 1.22 ± 0.53 | NT a |
3 | 4.41 ± 2.32 | 0.40 ± 0.02 |
4 | 0.95 ± 0.64 | 0.75 ± 0.18 |
5 | 0.24 ± 0.17 | 0.26 ± 0.06 |
Afatinib | 0.0005 ± 0.00002 | NT a |
Na3VO4 | NT a | 0.52 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yang, L.; Feng, L.; Hu, F.; Zhang, F.; Ren, J.; Qiu, Y.; Wang, Z. Verruculosins A–B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus. Mar. Drugs 2019, 17, 516. https://doi.org/10.3390/md17090516
Wang M, Yang L, Feng L, Hu F, Zhang F, Ren J, Qiu Y, Wang Z. Verruculosins A–B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus. Marine Drugs. 2019; 17(9):516. https://doi.org/10.3390/md17090516
Chicago/Turabian StyleWang, Minghui, Longhe Yang, Liubin Feng, Fan Hu, Fang Zhang, Jie Ren, Yan Qiu, and Zhaokai Wang. 2019. "Verruculosins A–B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus" Marine Drugs 17, no. 9: 516. https://doi.org/10.3390/md17090516
APA StyleWang, M., Yang, L., Feng, L., Hu, F., Zhang, F., Ren, J., Qiu, Y., & Wang, Z. (2019). Verruculosins A–B, New Oligophenalenone Dimers from the Soft Coral-Derived Fungus Talaromyces verruculosus. Marine Drugs, 17(9), 516. https://doi.org/10.3390/md17090516