Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Modelling the Extraction of Polysaccharides and Antioxidant Activity
0.0418 X3 X3 + 0.092 X1 X2 − 0.0961 X1 X3 + 0.070 X2 X3
X2 + 0.0402 X3 X3 − 0.097 X1 X2 − 0.0009 X1 X3 − 0.228 X2 X3
0.00428 X2 X2 − 0.000164 X3 X3 − 0.00103 X1 X2 − 0.00057 X1 X3 − 0.00055 X2 X3
0.00304 X3 X3 − 0.01076 X1 X2 + 0.00022 X1 X3 − 0.00124 X2 X3
2.2. Optimization of the Extraction of Polysaccharides and Antioxidant Activity
2.3. Application of Optimal UAE Conditions in other Brown Macroalgae
3. Materials and Methods
3.1. Macroalgal Biomass
3.2. Chemicals
3.3. Ultrasound-Assisted Extraction (UAE)
3.4. Composition of the Macroalgal Extracts
3.4.1. Fucose Determination
3.4.2. Total Glucan Determination
3.4.3. Antioxidant Activity
Ferric Reducing Antioxidant Power (FRAP)
1,1-Diphenyl-2-Picryl-Hydrazyl (DPPH) Radical Scavenging Activity
3.5. Experimental Design and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Garcia-Vaquero, M.; Hayes, M. Red and green macroalgae for fish and animal feed and human functional food development. Food Rev. Int. 2016, 32, 15–45. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Rajauria, G.; O’Doherty, J.; Sweeney, T. Polysaccharides from macroalgae: Recent advances, innovative technologies and challenges in extraction and purification. Food Res. Int. 2017, 99, 1011–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, T.; O’Doherty, J. Marine macroalgal extracts to maintain gut homeostasis in the weaning piglet. Domest. Anim. Endocrinol. 2016, 56, S84–S89. [Google Scholar] [CrossRef] [PubMed]
- Ale, M.; Meyer, A. Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013, 3, 8131–8141. [Google Scholar] [CrossRef]
- Senthilkumar, K.; Manivasagan, P.; Venkatesan, J.; Kim, S. Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int. J. Biol. Macromol. 2013, 60, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Rioux, L.; Turgeon, S.; Beaulieu, M. Structural characterization of laminaran and galactofucan extracted from the brown seaweed Saccharina longicruris. Phytochemistry 2010, 71, 1586–1595. [Google Scholar] [CrossRef] [PubMed]
- Kadam, S.; O’Donnell, C.; Rai, D.; Hossain, M.; Burgess, C.; Walsh, D.; Tiwari, B. Laminarin from irish brown seaweeds Ascophyllum nodosum and Laminaria hyperborea: Ultrasound assisted extraction, characterization and bioactivity. Mar. Drugs 2015, 13, 4270–4280. [Google Scholar] [CrossRef] [PubMed]
- Barba, F.; Grimi, N.; Vorobiev, E. New approaches for the use of non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng. Rev. 2015, 7, 45–62. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Muñoz, M. Ultrasound-assisted extraction of bioactive carbohydrates. In Water Extraction of Bioactive Compounds; Elsevier: Oxford, UK, 2018; pp. 317–331. [Google Scholar]
- Ojha, K.; Mason, T.; O’Donnell, C.; Kerry, J.; Tiwari, B. Ultrasound technology for food fermentation applications. Ultrason. Sonochem. 2017, 34, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Jiang, T.; He, J.; Barba, F.; Cravotto, G.; Koubaa, M. Ultrasound-assisted extraction, centrifugation and ultrafiltration: Multistage process for polyphenol recovery from purple sweet potatoes. Molecules 2016, 21, 1584. [Google Scholar] [CrossRef] [PubMed]
- Electrotechnologies, Microwaves, and Ultrasounds Combined with Binary Mixtures of Ethanol and Water to Extract Steviol Glycosides and Antioxidant Compounds from Stevia rebaudiana Leaves. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpp.13179 (accessed on 27 July 2018).
- Barba, F.J.; Grimi, N.; Vorobiev, E. Evaluating the potential of cell disruption technologies for green selective extraction of antioxidant compounds from Stevia rebaudiana bertoni leaves. J. Food Eng. 2015, 149, 222–228. [Google Scholar] [CrossRef]
- Garcia-Vaquero, M.; Lopez-Alonso, M.; Hayes, M. Assessment of the functional properties of protein extracted from the brown seaweed Himanthalia elongata (linnaeus) SF Gray. Food Res. Int. 2017, 99, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Hmelkov, A.; Zvyagintseva, T.; Shevchenko, N.; Rasin, A.; Ermakova, S. Ultrasound-assisted extraction of polysaccharides from brown alga Fucus evanescens. Structure and biological activity of the new fucoidan fractions. J. Appl. Phycol. 2018, 30, 2039–2046. [Google Scholar] [CrossRef]
- Ventura, S.; Nobre, B.; Ertekin, F.; Hayes, M.; Garcia-Vaquero, M.; Vieira, F.; Koc, M.; Gouveia, L.; Aires-Barros, M.; Palavra, A. Extraction of value-added compounds from microalgae. In Microalgae-Based Biofuels and Bioproducts; Elsevier: Duxford, UK, 2018; pp. 461–483. [Google Scholar]
- Ale, M.; Mikkelsen, J.; Meyer, A. Important determinants for fucoidan bioactivity: A critical review of structure-function relations and extraction methods for fucose-containing sulfated polysaccharides from brown seaweeds. Mar. Drugs 2011, 9, 2106–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, D.; Sousa, S.; Silva, A.; Amorim, M.; Pereira, L.; Rocha-Santos, T.; Gomes, A.; Duarte, A.; Freitas, A. Impact of enzyme-and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the central west coast of Portugal. J. Agric. Food Chem. 2015, 63, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Flórez-Fernández, N.; López-García, M.; González-Muñoz, M.; Vilariño, J.; Domínguez, H. Ultrasound-assisted extraction of fucoidan from Sargassum muticum. J. Appl. Phycol. 2017, 29, 1553–1561. [Google Scholar] [CrossRef]
- Kadam, S.; Tiwari, B.; Smyth, T.; O’Donnell, C. Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrason. Sonochem. 2015, 23, 308–316. [Google Scholar] [CrossRef] [PubMed]
- Reilly, P.; O’Doherty, J.; Pierce, K.; Callan, J.; O’Sullivan, J.; Sweeney, T. The effects of seaweed extract inclusion on gut morphology, selected intestinal microbiota, nutrient digestibility, volatile fatty acid concentrations and the immune status of the weaned pig. Animal 2008, 2, 1465–1473. [Google Scholar] [CrossRef] [PubMed]
- Ale, M.; Mikkelsen, J.; Meyer, A. Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp. J. Appl. Phycol. 2012, 24, 715–723. [Google Scholar] [CrossRef]
- Guo, X.; Shang, X.; Zhou, X.; Zhao, B.; Zhang, J. Ultrasound-assisted extraction of polysaccharides from Rhododendron aganniphum: Antioxidant activity and rheological properties. Ultrason. Sonochem. 2017, 38, 246–255. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Han, X.; Li, J. Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chem. 2011, 127, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Aguiló-Aguayo, I.; Walton, J.; Viñas, I.; Tiwari, B. Ultrasound assisted extraction of polysaccharides from mushroom by-products. LWT 2017, 77, 92–99. [Google Scholar] [CrossRef]
- Rajauria, G. Optimization and validation of reverse phase HPLC method for qualitative and quantitative assessment of polyphenols in seaweed. J. Pharm. Biomed. Anal. 2018, 148, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Rajauria, G.; Jaiswal, A.; Abu-Gannam, N.; Gupta, S. Antimicrobial, antioxidant and free radical-scavenging capacity of brown seaweed Himanthalia elongata from western coast of Ireland. J. Food Biochem. 2013, 37, 322–335. [Google Scholar] [CrossRef]
- Dang, T.; Van Vuong, Q.; Schreider, M.; Bowyer, M.; Van Altena, I.; Scarlett, C. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant activities of the alga Hormosira banksii using response surface methodology. J. Appl. Phycol. 2017, 29, 3161–3173. [Google Scholar] [CrossRef]
- Fletcher, H.; Biller, P.; Ross, A.; Adams, J. The seasonal variation of fucoidan within three species of brown macroalgae. Algal Res. 2017, 22, 79–86. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Dische, Z.; Shettles, L. A specific color reaction of methylpentoses and a spectrophotometric micromethod for their determination. J. Biol. Chem. 1948, 175, 595–603. [Google Scholar] [PubMed]
- Benzie, I.; Strain, J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Bolanos de la Torre, A.; Henderson, T.; Nigam, P.; Owusu-Apenten, R. A universally calibrated microplate ferric reducing antioxidant power (FRAP) assay for foods and applications to Manuka honey. Food Chem. 2015, 174, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Nicklisch, S.; Waite, J. Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins. MethodsX 2014, 1, 233–238. [Google Scholar] [CrossRef] [PubMed]
Run Order | Extraction Variables | Experimental Responses γ | |||||
---|---|---|---|---|---|---|---|
Temperature (°C) | Time (min) | Amplitude (%) | Fucose (mg/100 g ds) | Total Glucans (mg/100 g ds) | FRAP (µM Trolox/mg fde) | DPPH (%) | |
1 | 80 | 30 | 70 | 1257.7 ± 9.7 | 866.5 ± 64.0 | 11.9 ± 0.5 | 6.6 ± 1.5 |
2 | 60 | 20 | 70 | 1108.3 ± 16.0 | 858.5 ± 60.1 | 14.9 ± 0.9 | 9.8 ± 0.7 |
3 | 40 | 10 | 70 | 904.5 ± 13.6 | 864.1 ± 49.9 | 14.6 ± 0.5 | 8.0 ± 1.7 |
4 | 60 | 20 | 70 | 908.0 ± 12.6 | 842.9 ± 55.3 | 11.2 ± 0.2 | 10.8 ± 2.8 |
5 | 40 | 20 | 40 | 900.6 ± 28.5 | 927.3 ± 57.4 | 15.3 ± 1.1 | 15.1 ± 1.4 |
6 | 60 | 20 | 70 | 995.4 ± 23.8 | 887.5 ± 64.5 | 12.3 ± 0.3 | 14.8 ± 1.9 |
7 | 40 | 20 | 100 | 1112.9 ± 14.8 | 942.2 ± 53.4 | 14.2 ± 1.0 | 14.0 ± 1.0 |
8 | 60 | 10 | 40 | 1033.6 ± 16.5 | 917.6 ± 65.5 | 14.7 ± 0.7 | 14.3 ± 1.4 |
9 | 40 | 30 | 70 | 965.1 ± 14.6 | 903.3 ± 52.4 | 13.5 ± 0.7 | 10.9 ± 1.0 |
10 | 60 | 10 | 100 | 959.1 ± 35.3 | 1014.4 ± 37.0 | 13.9 ± 0.9 | 12.3 ± 1.3 |
11 | 60 | 30 | 100 | 1151.6 ± 13.7 | 928.6 ± 100.8 | 12.1 ± 0.3 | 11.4 ± 0.8 |
12 | 60 | 20 | 70 | 998.5 ± 16.4 | 921.0 ± 48.2 | 13.7 ± 0.5 | 10.7 ± 1.9 |
13 | 80 | 20 | 40 | 1170.2 ± 21.4 | 882.2 ± 98.2 | 12.3 ± 0.2 | 13.5 ± 1.6 |
14 | 80 | 20 | 100 | 1147.3 ± 9.3 | 857.6 ± 74.1 | 9.8 ± 0.4 | 13.0 ± 1.0 |
15 | 60 | 20 | 70 | 1021.7 ± 21.1 | 774. 9 ± 71.2 | 14.4 ± 0.8 | 14.8 ± 1.1 |
16 | 60 | 30 | 40 | 1010.7 ± 3.2 | 841.2 ± 38.1 | 13.6 ± 0.2 | 14.9 ± 0.8 |
17 | 80 | 10 | 70 | 1161.5 ± 19.4 | 881.1 ± 49.4 | 13.8 ± 0.5 | 12.3 ± 1.5 |
Coefficient | Response Variables | |||
---|---|---|---|---|
Fucose | Total Glucans | FRAP | DPPH | |
Linear | 6.01 * | 1.95 | 3.74 a | 0.72 |
Quadratic | 1.82 | 1.29 | 0.2 | 3.98 a |
Cross product | 0.89 | 1.39 | 0.13 | 1.66 |
Lack of fit (p) | 0.61 | 0.39 | 0.73 | 0.89 |
Total model | 2.91 a | 1.55 | 1.36 | 2.12 |
RSME | 78.42 | 69.95 | 1.36 | 1.96 |
CV | 7.39 | 9.11 | 10.21 | 16.11 |
R2 | 0.79 | 0.67 | 0.64 | 0.73 |
Coefficients Ϸ | Response Variables γ | |||
---|---|---|---|---|
Fucose | Total Glucans | FRAP | DPPH | |
β0 | 1276.83 a | 591.22 | 14.28 | 1.13 |
(570.50) | (506.71) | (9.88) | (14.27) | |
Linear | ||||
β1 | −13.11 | 8.06 | 0.08 | 0.49 |
(13.03) | (11.57) | (0.23) | (0.33) | |
β2 | −9.19 | −1.98 | −0.14 | 1.38 * |
(21.53) | (19.12) | (0.71) | (0.54) | |
β3 | −0.37 | −0.21 | 0.04 | −0.44 a |
(7.64) | (6.79) | (0.75) | (0.19) | |
Quadratic | ||||
β11 | 0.20 a | −0.067 | −0.0006 | −0.002 |
(0.09) | (0.085) | (0.002) | (0.002) | |
β22 | 0.024 | 0.5 | 0.004 | −0.02 |
(0.38) | (0.34) | (0.007) | (0.01) | |
β33 | 0.042 | 0.04 | −0.0002 | 0.003 * |
(0.04) | (0.038) | (0.0007) | (0.001) | |
Cross product | ||||
β12 | 0.092 | −0.097 | −0.001 | −0.01 a |
(0.2) | (0.17) | (0.004) | (0.005) | |
β23 | 0.07 | −0.23 a | −0.0005 | −0.001 |
(0.13) | (0.12) | (0.002) | (0.003) | |
β13 | −0.1 | −0.001 | −0.0006 | 0.0002 |
(0.065) | (0.058) | (0.001) | (0.002) |
Optimum Conditions | Targeted Compounds-Bioactivities γ | Parameters of Extraction | Predicted Values (95% CI) a | Experimental Response (Mean ± SEM) b | ||
---|---|---|---|---|---|---|
Temperature (°C) | Time (min) | Amplitude (%) | ||||
Condition 1 | Fucose | 80 | 30 | 40 | Fucose (1061.5–1494.4) | Fucose (1147.6 ± 8.4) |
Condition 2 | Total glucans | 52.5 | 10 | 100 | Total glucans (809.6–1105.5) | Total glucans (1065.6 ± 5.8) |
Condition 3 | FRAP DPPH | 40 | 30 | 40 | FRAP (10.8–18.3) DPPH (10.3–21.1) | FRAP (10.3 ± 0.8) DPPH (11.5 ± 0.8) |
Condition 4 | Fucose Total glucans FRAP DPPH | 76 | 10 | 100 | Fucose (922.2–1312.5) Total glucans (746.5–1093.2) FRAP (9.1–15.8) DPPH (9.1–18.8) | Fucose (1060.7 ± 70.6) Total glucans (968.6 ± 13.3) FRAP (8.7 ± 0.5) DPPH (11.0 ± 0.2) |
Optimum Conditions | Targeted Compounds-Bioactivities γ | Brown Macroalgae Species | |
---|---|---|---|
L. hyperborea | A. nodosum | ||
Condition 1 | Fucose | Fucose (865.6 ± 72.9) | Fucose (2268.9 ± 178.7) |
Condition 2 | Total glucans | Total glucans (10,818.9 ± 22.4) | Total glucans (1127.6 ± 16.1) |
Condition 3 | FRAP DPPH | FRAP (10.2 ± 0.1) DPPH (33.3 ± 0.4) | FRAP (160.4 ± 5.1) DPPH (87.0 ± 1.2) |
Condition 4 | Fucose Total glucans FRAP DPPH | Fucose (839.0 ± 53.9) Total glucans (9530.9 ± 68.2) FRAP (11.0 ± 0.1) DPPH (44.2 ± 1.1) | Fucose (1169.3 ± 150.6) Total glucans (766.3 ± 11.8) FRAP (104.3 ± 2.4) DPPH (85.7 ± 0.7) |
Independent Variables | Symbols | Coded Levels | ||
---|---|---|---|---|
−1 | 0 | +1 | ||
Temperature (°C) | X1 | 40 | 60 | 80 |
Time (min) | X2 | 10 | 20 | 30 |
Amplitude (%) | X3 | 40 | 70 | 100 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Vaquero, M.; Rajauria, G.; Tiwari, B.; Sweeney, T.; O’Doherty, J. Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction. Mar. Drugs 2018, 16, 257. https://doi.org/10.3390/md16080257
Garcia-Vaquero M, Rajauria G, Tiwari B, Sweeney T, O’Doherty J. Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction. Marine Drugs. 2018; 16(8):257. https://doi.org/10.3390/md16080257
Chicago/Turabian StyleGarcia-Vaquero, Marco, Gaurav Rajauria, Brijesh Tiwari, Torres Sweeney, and John O’Doherty. 2018. "Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction" Marine Drugs 16, no. 8: 257. https://doi.org/10.3390/md16080257
APA StyleGarcia-Vaquero, M., Rajauria, G., Tiwari, B., Sweeney, T., & O’Doherty, J. (2018). Extraction and Yield Optimisation of Fucose, Glucans and Associated Antioxidant Activities from Laminaria digitata by Applying Response Surface Methodology to High Intensity Ultrasound-Assisted Extraction. Marine Drugs, 16(8), 257. https://doi.org/10.3390/md16080257