Next Article in Journal
Polyketides and Alkaloids from the Marine-Derived Fungus Dichotomomyces cejpii F31-1 and the Antiviral Activity of Scequinadoline A against Dengue Virus
Next Article in Special Issue
Characterization and Antioxidant and Angiotensin I-Converting Enzyme (ACE)-Inhibitory Activities of Gelatin Hydrolysates Prepared from Extrusion-Pretreated Milkfish (Chanos chanos) Scale
Previous Article in Journal
Harnessing Marine Biocatalytic Reservoirs for Green Chemistry Applications through Metagenomic Technologies
Open AccessArticle

Processing Optimization and Characterization of Angiotensin-Ι-Converting Enzyme Inhibitory Peptides from Lizardfish (Synodus macrops) Scale Gelatin

1
Marine Biological Resource Comprehensive Utilization Engineering Research Center of the State Oceanic Administration, the Third Institute of Oceanography of the State Oceanic Administration, Xiamen 361005, China
2
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
*
Author to whom correspondence should be addressed.
Mar. Drugs 2018, 16(7), 228; https://doi.org/10.3390/md16070228
Received: 21 May 2018 / Revised: 25 June 2018 / Accepted: 29 June 2018 / Published: 4 July 2018
Hypertension can cause coronary heart disease. Synthetic angiotensin-converting enzyme (ACE) inhibitors are effective antihypertensive drugs but often cause side effects. The aim of this study was to prepare potential ACE inhibitors from scales. Gelatin was extracted from lizardfish scales. Then, scale gelatin was enzymolyzed to prepare ACE inhibitory peptides using response surface methodology. Proteolytic conditions after optimization were as follows: pH 7.0, enzyme substrate ratio 3.2%, temperature 47 °C, and proteolysis lasting 2 h and 50 min. The experimental ACE inhibitory activity under optimal conditions was 86.0 ± 0.4%. Among the 118 peptides identified from gelatin hydrolysates, 87.3% were hydrophilic and 93.22% had a molecular weight <2000 Da. Gelatin peptides had high stability upon exposure to high temperature and pH as well as gastrointestinal tract enzymes. Gelatin peptides showed an antihypertensive effect in spontaneously hypertensive rats at a dosage of 2 g/kg in the long-term experiments. A new ACE inhibitory peptide was isolated from gelatin hydrolysates, and was identified as AGPPGSDGQPGAK with an IC50 value of 420 ± 20 μM. In this way, ACE inhibitory peptides derived from scale gelatin have the potential to be used as healthy ACE-inhibiting drug raw materials. View Full-Text
Keywords: gelatin hydrolysates; ACE inhibitory peptides; response surface methodology; lizardfish scales; nano LCMS/MS gelatin hydrolysates; ACE inhibitory peptides; response surface methodology; lizardfish scales; nano LCMS/MS
Show Figures

Graphical abstract

MDPI and ACS Style

Chen, J.; Liu, Y.; Wang, G.; Sun, S.; Liu, R.; Hong, B.; Gao, R.; Bai, K. Processing Optimization and Characterization of Angiotensin-Ι-Converting Enzyme Inhibitory Peptides from Lizardfish (Synodus macrops) Scale Gelatin. Mar. Drugs 2018, 16, 228.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map

1
Back to TopTop