Marine Cryptophytes Are Great Sources of EPA and DHA
Abstract
:1. Introduction
2. Results and Discussion
2.1. Growth and Biomass Production
2.2. Polyunsaturated Fatty Acids
2.3. Phytosterols
3. Materials and Methods
3.1. Growth Rate and Biomass Production
3.2. Lipid Extraction
3.3. Fatty Acid Transesterification and Analysis by GC-MS
3.4. Silylation of Sterols and Analysis by GC-MS
3.5. Statistics
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brown, M.R.; Jefferey, S.W.; Volkman, J.K.; Dunstan, G.A. Nutritional properties of microalgae for mariculture. Aquaculture 1997, 151, 315–331. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Lim, D.K.Y.; Timmins, M.; Vernen, F.; Li, Y.; Schenk, P.M. Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microb. Cell Fact. 2012, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.A.; Custódio, L.; Barreira, L.; Pereira, H.; Ben-Hamadou, R.; Varela, J.; Abu-Salah, K.M. Alternative Sources of n-3 Long-Chain Polyunsaturated Fatty Acids in Marine Microalgae. Mar. Drugs 2013, 11, 2259–2281. [Google Scholar] [CrossRef] [PubMed]
- Burdge, G.C.; Calder, P.C. Conversion of α-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581–597. [Google Scholar] [CrossRef] [PubMed]
- Hixson, S.M.; Sharma, B.; Kainz, M.J.; Wacker, A.; Arts, M.T. Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: A fundamental dichotomy between freshwater and terrestrial ecosystems. Environ. Rev. 2015, 23, 414–424. [Google Scholar] [CrossRef]
- Ryckebosch, E.; Muylaert, K.; Foubert, I. Optimization of an analytical procedure for extraction of lipids from microalgae. J. Am. Oil Chem. Soc. 2012, 89, 189–198. [Google Scholar] [CrossRef]
- Keen, H.; Payan, J.; Allawi, J.; Walker, J.; Jamal, G.A.; Weir, A.I.; Henderson, L.M.; Bissessar, E.A.; Watkins, P.J.; Sampson, M.; et al. Treatment of diabetic neuropathy with gamma-linolenic acid. The gamma-Linolenic Acid Multicenter Trial Group. Diabetes Care 1993, 16, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.; Östlund, S.; Fransson, G.; Kadesjö, B.; Gillberg, C. Omega-3/Omega-6 fatty acids for attention deficit hyperactivity disorder. J. Atten. Disord. 2009, 12, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.M.; Ma, D.W. Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis. 2009, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Molendi-Coste, O.; Legry, V.; Leclercq, I.A. Why and how meet n-3 PUFA dietary recommendations? Gastroenterol. Res. Pract. 2011, 2011, 364040. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients 2016, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Gester, H. Can adults adequately convert alpha-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 1998, 68, 159–173. [Google Scholar]
- Cuellar-Bermudez, S.P.; Aguillar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, estaxanthin and phycobiliproteins. Microb. Biotechnol. 2014, 8, 190–209. [Google Scholar] [CrossRef] [PubMed]
- Gabay, O.; Sanchez, C.; Salvat, C.; Chevy, F.; Breton, M.; Nourissat, G.; Wolf, C.; Jacques, C.; Berenbaum, F. Stigmasterol: A phytosterol with potential anti-osteoarthritic properties. Osteoarthr. Cartil. 2010, 18, 106–116. [Google Scholar] [CrossRef] [PubMed]
- Burg, V.K.; Grimm, H.S.; Rothhaar, T.L.; Grösgen, S.; Hundsdörfer, B.; Haupenthal, V.J.; Zimmer, V.C.; Mett, J.; Weingärtner, O.; Laufs, U.; et al. Plant sterols the better cholesterol in Alzheimer’s disease? A mechanistical study. J. Neurosci. 2013, 33, 16072–16087. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.J.; Li, J.G.; Qi, W.; Qiu, W.W.; Li, P.S.; Li, B.L.; Song, B.L. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 2011, 13, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Moghadasian, M.H.; Frohlich, J.J. Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: Clinical and experimental evidence. Am. J. Med. 1999, 107, 588–594. [Google Scholar] [CrossRef]
- Ma, X.-N.; Chen, T.-P.; Yang, B.; Liu, J.; Chen, F. Lipid Production from Nannochloropsis. Mar. Drugs 2016, 14, 61. [Google Scholar] [CrossRef] [PubMed]
- Nichols, P.D.; Petrie, J.; Singh, S. Long-Chain Omega-3 Oils—An Update on Sustainable Sources. Nutrients 2010, 2, 572–585. [Google Scholar] [CrossRef] [PubMed]
- Pulz, O.; Gross, W. Valuable products from biotechnology of microalgae. Appl. Microbiol. Biotechnol. 2004, 65, 635–648. [Google Scholar] [CrossRef] [PubMed]
- Doust, A.B.; Wilk, K.E.; Curmi, P.M.G.; Scholes, G.D. The photophysics of cryptophyte light-harvesting. J. Photochem. Photobiol. A 2006, 184, 1–17. [Google Scholar] [CrossRef]
- Seixas, P.; Coutinho, P.; Ferreira, M.; Otero, A. Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp. J. Exp. Mar. Biol. Ecol. 2009, 381, 1–9. [Google Scholar] [CrossRef]
- Taipale, S.J.; Vuorio, K.; Strandberg, U.; Kahilainen, K.K.; Järvinen, M.; Hiltunen, M.; Peltomaa, E.; Kankaala, P. Lake eutrophication and brownification downgrade availability and transfer of essential fatty acids for human consumption. Environ. Int. 2016, 96, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Peltomaa, E.T.; Aalto, S.L.; Vuorio, K.M.; Taipale, S.J. The importance of phytoplankton biomolecule availability for secondary production. Front. Ecol. Evol. 2017, 5, 128. [Google Scholar] [CrossRef]
- Renaud, S.M.; Thinh, L.-V.; Lambrinidis, G.; Parry, D.L. The gross chemical composition and fatty acid composition of 18 species of tropical Australian microalgae for possible use in mariculture. Aquaculture 1999, 170, 147–159. [Google Scholar] [CrossRef]
- Renaud, S.M.; Thinh, L.-V.; Lambrinidis, G.; Parry, D.L. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 2002, 211, 195–214. [Google Scholar] [CrossRef]
- Dunstan, G.A.; Brown, M.R.; Volkman, J.K. Cryptophyceae and Rhodophyceae; chemotaxonomy, phylogeny, and application. Phytochemistry 2005, 66, 2557–2570. [Google Scholar] [CrossRef] [PubMed]
- Butterwick, C.; Heaney, S.I.; Talling, J.F. Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw. Biol. 2004, 50, 291–300. [Google Scholar] [CrossRef]
- Kunath, C.; Jakob, T.; Wilhelm, C. Different phycobilin antenna organisations affect the balance between light use and growth rate in the cyanobacterium Microcystis aeruginosa and in the cryptophyte Cryptomonas ovata. Photosynth. Res. 2012, 111, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Lewitus, A.J.; Caron, D.A. Relative effects of nitrogen or phosphorus depletion and light intensity on the pigmentation, chemical composition, and volume of Pyrenomonas salina (Cryptophyceae). Mar. Ecol. Prog. Ser. 1990, 61, 171–181. [Google Scholar] [CrossRef]
- Scholz, M.J.; Weiss, T.L.; Jinkerson, R.E.; Jing, J.; Roth, R.; Goodenough, U.; Posewitz, M.C.; Gerken, H.G. Ultrastructure and Composition of the Nannochloropsis gaditana Cell Wall. Eukaryot. Cell 2014, 13, 1450–1464. [Google Scholar] [CrossRef] [PubMed]
- Bolen, P.; van Dijk, R.; Sinninghe Damsté, J.P.; Rijpstra, W.I.C.; Buma, A.G.J. On the potential application of polar and temperate marine microalgae for EPA and DHA production. AMB Express 2013, 3, 26. [Google Scholar] [CrossRef] [PubMed]
- Huerliman, R.; de Nys, R.; Hiemann, K. Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol. Bioeng. 2010, 107, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Patil, V.; Källqvist, T.; Olsen, E.; Vogt, G.; Gislerød, H.R. Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquac. Int. 2007, 15, 1–9. [Google Scholar] [CrossRef]
- Krzeminska, I.; Pawlik-Skowronska, B.; Trzcinska, M.; Tys, J. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst. Eng. 2014, 37, 735–741. [Google Scholar] [CrossRef] [PubMed]
- Aboal, M.; González-Silvera, D.; Roldán, M.; Hernández-Mariné, M.; López-Jiménez, J.Á.; Whitton, B.A. The freshwater alga Chroothece richteriana (Rhodophyta) as a potential source of lipids. Food Chem. 2014, 162, 143–148. [Google Scholar] [CrossRef] [PubMed]
- James, M.J.; Ursin, V.M.; Cleland, L.G. Metabolism of stearidonic acid in human subjects: Comparison with the metabolism of other n-3 fatty acids. Am. J. Clin. Nutr. 2003, 5, 1140–1145. [Google Scholar]
- Deckelbaum, R.J.; Torrejon, C. The omega-3 fatty acid nutritional landscape: Health benefits and sources. J. Nutr. 2012, 142, 587S–591S. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Grieger, J.A.; Etherton, T.D. Dietary reference intake for DHA and EPA. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Pereira, R.B.; Valentão, P.; Andrade, P.B.; Sousa, C. Distinct fatty acid profile of ten brown macroalgae. Braz. J. Pharmacogn. 2013, 23, 608–613. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, Y.; Cao, X.; Xiang, L.; Qi, J. Sterols from Mytilidae Show Anti-Aging and Neuroprotective Effects via Anti-Oxidative Activity. Int. J. Mol. Sci. 2014, 15, 21660–21673. [Google Scholar] [CrossRef] [PubMed]
- Orcutt, D.M.; Patterson, G.W. Sterol, fatty acid and elemental composition of diatoms grown in chemically defined media. Comp. Biochem. Physiol. 1975, 50, 579–583. [Google Scholar] [CrossRef]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Taipale, S.J.; Hiltunen, M.; Vuorio, K.; Peltomaa, E. Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton. Front. Plant Sci. 2016, 7, 212. [Google Scholar] [CrossRef] [PubMed]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2012. [Google Scholar]
Species | Code in Culture Collection | Max. Growth Rate * | Dry Weight (mg L−1 Day−1) ° |
---|---|---|---|
Chroomonas mesostigmatica | CCMP/NCMA 1168 | 0.65 (0.03) abc | 3.40 |
Guillardia theta | CCMP/NCMA 2712 | 0.66 (0.04) a | 0.56 |
Hemiselmis sp. | NRC5 | 0.70 (0.01) abcd | 0.28 |
Proteomonas sulcata | CCMP/NCMA 704 | 0.65 (0.01) abcd | 1.47 |
Rhodomonas salina | CCMP/NCMA 757 | 0.51 (0.01) bcde | 2.79 |
Storeatula major | SM or G | 0.48 (0.03) bcde | 3.23 |
Teleaulax acuta | SCCAP K-1486 | 0.34 (0.01) f | 1.05 |
Teleaulax amphioxeia | GCEP01 | 0.55 (0.03) ab | 2.05 |
Species | Total ω-3 µg FA in Mg DW | ω-3% of All FAs | ALA µg FA in Mg DW | ALA% of ω-3 FAs | SDA µg FA in Mg DW | SDA% of ω-3 FAs | EPA µg FA in Mg DW | EPA% of ω-3 FAs | DHA µg FA in Mg DW | DHA% of ω-3 FAs | EPA/DHA Ratio | EPA + DHA% of All FA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Chroomonas mesostigmatica | 45.5 abcd | 71.1 c | 13.5 a | 60.3 | 21.7 a | 17.4 | 9.3 a | 20.5 d | 0.8 b | 1.7 g | 11.6 a | 15.8 c |
Guillardia theta | 47.8 ac | 65.4 b | 19.7 a | 56.7 | 19.5 ab | 25.4 | 7.1 ab | 14.9 a | 1.4 b | 3.0 e | 5.1 b | 11.7 d |
Hemiselmis sp. | 58.8 † | 70.1 † | 26.2 † | 53.2 | 16.8 † | 20.5 | 12.5 † | 21.2 f | 3.0 † | 5.1 † | 4.2 † | 18.5 b |
Proteomonas sulcata | 48.2 bc | 80.3 a | 16.4 a | 58.5 | 19.4 ab | 16.2 | 6.1 ab | 12.7 e | 6.1 a | 12.6 b | 1 c | 20.4 b |
Rhodomonas salina | 33.7 abd | 64.2 b | 8.6 b | 48.8 | 15.4 b | 22.8 | 5.8 b | 17.2 g | 3.8 c | 11.2 c | 0.5 d | 18.2 bc |
Storeatula major | 51.4 abc | 81.1 a | 21.5 d | 41.9 | 24.3 a | 32.1 | 8.2 ab | 16.0 g | 5.2 ac | 10.0 d | 1.6 c | 21.1 b |
Teleaulax acuta | 25.3 d | 79.6 a | 3.7 c | 46.2 | 11.3 c | 13.4 | 6.6 ab | 26.0 c | 3.6 c | 14.3 a | 1.8 c | 32.1 a |
Teleaulax amphioxeia | 36.0 abcd | 79.6 a | 7.0 b | 43.3 | 15.8 b | 20.5 | 8.5 ab | 23.6 b | 4.6 ac | 12.7 b | 1.8 c | 28.9 a |
Nannochloropsis spp. (eustigmatophyte) * | 7.7–30.8 [34] | 23.4–28 [2] | <0.06 [34] | 26.7 [2] | ||||||||
Nitzschia spp. (diatom) * | 3–9.2 [26] | |||||||||||
Skeletonema spp. (diatom) * | 16.3–17.6 [26] | |||||||||||
Isochrysis spp. (prymnesiophyte) * | 30.4–48.1 [26,34] | |||||||||||
Tetraselmis sp. (chlorophyte) * | 8.4–31.3 [34] | |||||||||||
Dunaliella salina (chlorophyte) * | 21.4 [2] | |||||||||||
Chroothece richteriana (rhodophyte) * | 29.4 [37] | 15.9 [37] |
Species | ALA µg L−1 Day−1 | SDA µg L−1 Day−1 | EPA µg L−1 Day−1 | DHA µg L−1 Day−1 | ω-3 µg L−1 Day−1 | LA µg L−1 Day−1 | ARA µg L−1 Day−1 | DPA µg L−1 Day−1 | ω-6 µg L−1 Day−1 | Sterols µg L−1 Day−1 |
---|---|---|---|---|---|---|---|---|---|---|
Chroomonas mesostigmatica | 45.93 a | 73.83 a | 31.64 a | 2.72 c | 154.81 a | 7.83 b | 0.34 b | 0.34 b | 28.92 b | 4.36 a |
Guillardia theta | 11.00 b | 10.89 c | 3.96 e | 0.78 d | 26.69 c | 1.84 c | - | 1.17 a | 3.13 c | 0.37 c |
Hemiselmis sp. | 7.28 † | 4.66 † | 3.47 † | 0.83 † | 16.34 † | 0.72 † | - | - | 1.14 † | 0.43 † |
Proteomonas sulcata | 24.08 c | 28.49 b | 8.96 c | 8.96 b | 70.77 b | 1.03 cd | 0.44 b | 0.59 ab | 2.50 c | 1.04 bc |
Rhodomonas salina | 23.95 c | 42.89 b | 16.16 b | 10.58 b | 93.87 b | 15.32 a | 4.46 a | 0.84 a | 26.74 b | 2.73 b |
Storeatula major | 44.26 a | 78.50 a | 26.49 ab | 16.8 a | 166.04 a | 5.49 b | 0.65 b | - | 43.29 a | 3.10 ab |
Teleaulax acuta | 3.89 d | 11.87 c | 6.93 d | 3.78 c | 26.57 c | 0.11 d | - | - | 0.21 d | 0.37 c |
Teleaulax amphioxeia | 14.35 bc | 32.39 b | 17.43 b | 9.43 b | 73.8 b | 1.85 c | - | - | 2.05 c | 0.92 c |
Species | Total ω-6 µg FA in mg DW | ω-6% of All FA | ω-6% of DW | ω-6/ω-3 Ratio | LA µg FA in mg DW | LA% of ω-6 FAs | ARA µg FA in mg DW | ARA% of ω-6 FAs | DPA µg FA in mg DW | DPA% of ω-6 FAs |
---|---|---|---|---|---|---|---|---|---|---|
Chroomonas mesostigmatica | 8.5 d | 13.3 b | 0.9 b | 1:5 e | 2.3 b | 26.8 g | 0.06 a | 0.7 f | 0.1 d | 70.4 a |
Guillardia theta | 5.6 b | 7.7 c | 0.6 c | 1:9 d | 3.3 c | 58.4 c | 0.03 c | 0.5 f | 2.1 a | 36.8 b |
Hemiselmis sp. | 4.1 † | 4.9 † | 0.4 † | 1:14 † | 2.6 † | 62.8 † | 0.02 † | 0.4 † | 1.5 † | 35.3 † |
Proteomonas sulcata | 1.7 a | 2.9 e | 0.2 d | 1:28 c | 0.7 a | 43.6 e | 0.31 b | 18.2 a | 0.4 b | 24.0 c |
Rhodomonas salina | 10.4 e | 19.8 a | 1.0 a | 1:3 e | 5.5 d | 53.1 d | 1.62 d | 15.5 b | 0.3 b | 2.4 d |
Storeatula major | 2.2 a | 3.5 d | 0.2 d | 1:23 c | 1.7 b | 77.3 b | 0.22 ab | 9.9 c | 0.03 d | 1.5 d |
Teleaulax acuta | 0.2 c | 0.7 g | 0.02 e | 1:126 a | 0.1 a | 34.9 f | 0.01 c | 4.9 d | 0.01 d | 0.01 e |
Teleaulax amphioxeia | 1.0 a | 2.3 f | 0.1 d | 1:36 b | 0.9 a | 89.6 a | 0.03 c | 3 e | 0.01 d | 0.01 e |
Species | Crinosterol µg ste in mg DW | Brassicasterol µg ste in mg DW | Stigmasterol µg ste in mg DW | Sum of Sterols µg ste in mg DW |
---|---|---|---|---|
Chroomonas mesostigmatica | 0.93 a | 0.02 c | 0.33 a | 1.28 a |
Guillardia theta | nd | 0.31 b | 0.36 a | 0.67 c |
Hemiselmis sp. | 0.43 † | 1.11 † | nd | 1.54 † |
Proteomonas sulcata | nd | 0.71 a | nd | 0.71 bc |
Rhodomonas salina | 0.14 c | 0.84 a | nd | 0.98 ab |
Storeatula major | 0.24 c | 0.72 a | nd | 0.96 ab |
Teleaulax acuta | nd | 0.35 b | nd | 0.35 e |
Teleaulax amphioxeia | 0.45 b | nd | nd | 0.45 d |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peltomaa, E.; Johnson, M.D.; Taipale, S.J. Marine Cryptophytes Are Great Sources of EPA and DHA. Mar. Drugs 2018, 16, 3. https://doi.org/10.3390/md16010003
Peltomaa E, Johnson MD, Taipale SJ. Marine Cryptophytes Are Great Sources of EPA and DHA. Marine Drugs. 2018; 16(1):3. https://doi.org/10.3390/md16010003
Chicago/Turabian StylePeltomaa, Elina, Matthew D. Johnson, and Sami J. Taipale. 2018. "Marine Cryptophytes Are Great Sources of EPA and DHA" Marine Drugs 16, no. 1: 3. https://doi.org/10.3390/md16010003
APA StylePeltomaa, E., Johnson, M. D., & Taipale, S. J. (2018). Marine Cryptophytes Are Great Sources of EPA and DHA. Marine Drugs, 16(1), 3. https://doi.org/10.3390/md16010003