Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products
Abstract
:1. Introduction
2. Photo-Protective Compounds
2.1. Mycosporine and Mycosporine-Like Amino Acids
2.2. Carotenoids
2.3. Benzodiazepine Alkaloids
3. Anti-Aging Products
3.1. Exopolysaccharides
3.2. Fatty Acids
3.3. Antioxidant Compounds
4. Skin-Whitening Products
5. Additives and Other Active Ingredients of Cosmetic Products
5.1. Antimicrobial Compounds and Preservatives
5.2. Surfactants, Emulsifiers, Thickeners, Stabilizers and Moisturising
6. Conclusions and Future Perspectives
Acknowledgments
Author Contribution
Conflicts of Interest
References
- Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How Many Species Are There on Earth and in the Ocean? PLoS Biol. 2011, 9, e1001127-8. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C. New perspectives in benthic deep-sea microbial ecology. Front. Mar. Sci. 2015, 2. [Google Scholar] [CrossRef]
- Danovaro, R.; Snelgrove, P.V.R.; Tyler, P.A. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. (Amst.) 2014, 29, 465–475. [Google Scholar] [CrossRef] [PubMed]
- Panno, L.; Bruno, M.; Voyron, S.; Anastasi, A.; Gnavi, G.; Miserere, L.; Varese, G.C. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol. 2013, 30, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Raghukumar, S. Marine biotechnology: An approach based on components, levels and players. Indian J. Mar. Sci. 2011, 40, 609–619. [Google Scholar]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2016, 33, 382–431. [Google Scholar] [CrossRef] [PubMed]
- Imhoff, J.F.; Labes, A.; Wiese, J. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnol. Adv. 2011, 29, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Bhatnagar, I.; Kim, S.-K. Immense essence of excellence: Marine microbial bioactive compounds. Mar. Drugs 2010, 8, 2673–2701. [Google Scholar] [CrossRef] [PubMed]
- Barton, A.D.; Dutkiewicz, S.; Flierl, G.; Bragg, J. Patterns of diversity in marine phytoplankton. Science 2010, 327, 1509–1511. [Google Scholar] [CrossRef] [PubMed]
- Scheckenbach, F.; Hausmann, K.; Wylezich, C.; Weitere, M.; Arndt, H. Large-scale patterns in biodiversity of microbial eukaryotes from the abyssal sea floor. Proc. Natl. Acad. Sci. USA 2010, 107, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Manohar, C.S.; Raghukumar, C. Fungal diversity from various marine habitats deduced through culture-independent studies. FEMS Microbiol. Lett. 2013, 341, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Le Calvez, T.; Burgaud, G.; Mahe, S.; Barbier, G.; Vandenkoornhuyse, P. Fungal Diversity in Deep-Sea Hydrothermal Ecosystems. Appl. Environ. Microbiol. 2009, 75, 6415–6421. [Google Scholar] [CrossRef] [PubMed]
- Stal, L.J.; Cretoiu, M.S. The Marine Microbiome; Stal, L.J., Cretoiu, M.S., Eds.; Springer: Cham, Germany, 2016. [Google Scholar]
- Jin, L.; Quan, C.; Hou, X.; Fan, S. Potential Pharmacological Resources: Natural Bioactive Compounds from Marine-Derived Fungi. Mar. Drugs 2016, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Davidson, B.S. New dimensions in natural products research: Cultured marine microorganisms. Curr. Opin. Biotechnol. 1995, 6, 284–291. [Google Scholar] [CrossRef]
- Martins, A.; Vieira, H.; Gaspar, H.; Santos, S. Marketed Marine Natural Products in the Pharmaceutical and Cosmeceutical Industries: Tips for Success. Mar. Drugs 2014, 12, 1066–1101. [Google Scholar] [CrossRef] [PubMed]
- Rittié, L.; Fisher, G.J. UV-light-induced signal cascades and skin aging. Ageing Res. Rev. 2002, 1, 705–720. [Google Scholar] [CrossRef]
- Young, A.R.; Claveau, J.; Rossi, A.B. Ultraviolet radiation and the skin: Photobiology and sunscreen photoprotection. J. Am. Acad. Dermatol. 2017, 76, S100–S109. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Quiles, D.; Tovar-Sánchez, A. Are sunscreens a new environmental risk associated with coastal tourism? Environ. Int. 2015, 83, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Carreto, J.I.; Carignan, M.O. Mycosporine-Like Amino Acids: Relevant Secondary Metabolites. Chemical and Ecological Aspects. Mar. Drugs 2011, 9, 387–446. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Garcia-Pichel, F. Microbial Ultraviolet Sunscreens. Nat. Rev. Microbiol. 2011, 9, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Morabito, K.; Shapley, N.C.; Steeley, K.G.; Tripathi, A. Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection. Int. J. Cosmet. Sci. 2011, 33, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Danovaro, R.; Bongiorni, L.; Corinaldesi, C.; Giovannelli, D.; Damiani, E.; Astolfi, P.; Greci, L.; Pusceddu, A. Sunscreens Cause Coral Bleaching by Promoting Viral Infections. Environ. Health Perspect. 2008, 116, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Pallela, R.; Na-Young, Y.; Kim, S.K. Anti-photoaging and Photoprotective Compounds Derived from Marine Organisms. Mar. Drugs 2010, 8, 1189–1202. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Richa; Sinha, R.P.; Singh, S.P.; Häder, D.P. Photoprotective compounds from marine organisms. J. Ind. Microbiol. Biotechnol. 2010, 37, 537–558. [Google Scholar] [CrossRef] [PubMed]
- Kogej, T.; Gostinčar, C.; Volkmann, M.; Gorbushina, A.A.; Gunde-Cimerman, N. Mycosporines in Extremophilic Fungi—Novel Complementary Osmolytes? Environ. Chem. 2006, 3, 105–106. [Google Scholar] [CrossRef]
- Miyamoto, K.T.; Komatsu, M.; Ikeda, H. Discovery of Gene Cluster for Mycosporine-Like Amino Acid Biosynthesis from Actinomycetales Microorganisms and Production of a Novel Mycosporine-Like Amino Acid by Heterologous Expression. Appl. Environ. Microbiol. 2014, 80, 5028–5036. [Google Scholar] [CrossRef] [PubMed]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine Carotenoids: Biological Functions and Commercial Applications. Mar. Drugs 2011, 9, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Mata-Gómez, L.C.; Montañez, J.C.; Méndez-Zavala, A.; Aguilar, C.N. Biotechnological production of carotenoids by yeasts: An overview. Microb. Cell Fact. 2014, 13, 12. [Google Scholar] [CrossRef] [PubMed]
- Sy, C.; Dangles, O.; Borel, P.; Caris-Veyrat, C. Interactions between Carotenoids from Marine Bacteria and Other Micronutrients: Impact on Stability and Antioxidant Activity. Mar. Drugs 2015, 13, 7020–7039. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K. Marine Cosmeceuticals: Trends and Prospects; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Ambati, R.R.; Phang, S.M.; Ravi, S.; Aswathanarayana, R.G. Astaxanthin: Sources, extraction, stability, biological activities and its commercial applications—A review. Mar. Drugs 2014, 12, 128–152. [Google Scholar] [CrossRef] [PubMed]
- Aasen, I.M.; Ertesvåg, H.; Heggeset, T.M.B.; Liu, B.; Brautaset, T.; Vadstein, O.; Ellingsen, T.E. Thraustochytrids as production organisms for docosahexaenoic acid (DHA), squalene, and carotenoids. Appl. Microbiol. Biotechnol. 2016, 100, 4309–4321. [Google Scholar] [CrossRef] [PubMed]
- Raghukumar, S. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids). Eur. J. Protistol. 2002, 38, 127–145. [Google Scholar] [CrossRef]
- Suen, Y.L.; Tang, H.; Huang, J.; Chen, F. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J. Agric. Food Chem. 2014, 62, 12392–12398. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Yang, X.; Kang, J.S.; Choi, H.D.M.; Son, B.W. Circumdatin I, a New Ultraviolet-A Protecting Benzodiazepine Alkaloid from a Marine Isolate of the Fungus Exophiala. J. Antibiot. 2008, 61, 40–42. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Anzelmo, G.; Nicolaus, B. Bacterial exopolysaccharides from extreme marine habitats: Production, characterization and biological activities. Mar. Drugs 2010, 8, 1779–1802. [Google Scholar] [CrossRef] [PubMed]
- Nwodo, U.; Green, E.; Okoh, A. Bacterial Exopolysaccharides: Functionality and Prospects. IJMS 2012, 13, 14002–14015. [Google Scholar] [CrossRef] [PubMed]
- Suresh Kumar, A.; Mody, K.; Jha, B. Bacterial exopolysaccharides—A perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Freitas, F.; Alves, V.D.; Reis, M.A.M. Advances in bacterial exopolysaccharides: From production to biotechnological applications. Trends Biotechnol. 2011, 29, 388–398. [Google Scholar] [CrossRef] [PubMed]
- Courtois, A.; Berthou, C.; Guézennec, J.; Boisset, C.; Bordron, A. Exopolysaccharides isolated from hydrothermal vent bacteria can modulate the complement system. PLoS ONE 2014, 9, e94965. [Google Scholar] [CrossRef] [PubMed]
- Cambon-Bonavita, M.-A.; Raguénès, G.; Jean, J.; Vincent, P.; Guezennec, J. A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent polychaete annelid. J. Appl. Microbiol. 2002, 93, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Colliec Jouault, S.; Chevolot, L.; Helley, D.; Ratiskol, J.; Bros, A.; Sinquin, C.; Roger, O.; Fischer, A.-M. Characterization, chemical modifications and in vitro anticoagulant propertiesof an exopolysaccharide produced by Alteromonas infernus. Biochim. Biophys. Acta (BBA) Gen. Subj. 2001, 1528, 141–151. [Google Scholar] [CrossRef]
- Donot, F.; Fontana, A.; Baccou, J.C.; Schorr-Galindo, S. Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohydr. Polym. 2012, 87, 951–962. [Google Scholar] [CrossRef]
- Hutchings, J.A.; Reynolds, J.D. Marine Fish Population Collapses: Consequences for Recovery and Extinction Risk. BioScience 2004, 54, 297–309. [Google Scholar] [CrossRef]
- Adarme-Vega, T.C.; Thomas-Hall, S.R.; Schenk, P.M. Towards sustainable sources for omega-3 fatty acids production. Curr. Opin. Biotechnol. 2014, 26, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Ratledge, C.; Wynn, J. Microbial Production of Oils and Fats. In Food Biotechnology, 2nd ed.; Food Science and Technology; CRC Press: Boca Raton, FL, USA, 2005; Volume 20051848. [Google Scholar]
- Armenta, R.E.; Valentine, M.C. Single-Cell Oils as a Source of Omega-3 Fatty Acids: An Overview of Recent Advances. J. Am. Oil Chem. Soc. 2012, 90, 167–182. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, G. Mechanisms of fatty acid synthesis in marine fungus-like protists. Appl. Microbiol. Biotechnol. 2015, 99, 8363–8375. [Google Scholar] [CrossRef] [PubMed]
- Sijtsma, L.; de Swaaf, M.E. Biotechnological production and applications of the ω-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 2004, 64, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Burja, A.M.; Radianingtyas, H.; Windust, A.; Barrow, C.J. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: Screening of strains and optimization of omega-3 production. Appl. Microbiol. Biotechnol. 2006, 72, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Cohen, Z.; Ratledge, C. Single Cell Oils, Microbial and Algal Oils; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Kot, A.M.; Błażejak, S.; Kurcz, A.; Gientka, I.; Kieliszek, M. Rhodotorula glutinis—Potential source of lipids, carotenoids, and enzymes for use in industries. Appl. Microbiol. Biotechnol. 2016, 100, 6103–6117. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Singh, D.; Barrow, C.J.; Puri, M. Exploring potential use of Australian thraustochytrids for the bioconversion of glycerol to omega-3 and carotenoids production. Biochem. Eng. J. 2013, 78, 11–17. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, S.; Lee, J.M.; Park, S.; Jung, W.; Kang, J.-S.; Joo, H.M.; Seo, K.-W.; Kang, S.-H. Moritella dasanensis sp. nov., a psychrophilic bacterium isolated from the Arctic ocean. Int. J. Syst. Evolut. Microbiol. 2008, 58, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Abd Elrazak, A.; Ward, A.C.; Glassey, J. Polyunsaturated fatty acid production by marine bacteria. Bioprocess Biosyst. Eng. 2013, 36, 1641–1652. [Google Scholar] [CrossRef] [PubMed]
- Wada, N.; Sakamoto, T.; Matsugo, S. Mycosporine-Like Amino Acids and Their Derivatives as Natural Antioxidants. Antioxidants 2015, 4, 603–646. [Google Scholar] [CrossRef] [PubMed]
- Suh, S.-S.; Hwang, J.; Park, M.; Seo, H.; Kim, H.-S.; Lee, J.; Moh, S.; Lee, T.-K. Anti-Inflammation Activities of Mycosporine-Like Amino Acids (MAAs) in Response to UV Radiation Suggest Potential Anti-Skin Aging Activity. Mar. Drugs 2014, 12, 5174–5187. [Google Scholar] [CrossRef] [PubMed]
- De la Coba, F.; Aguilera, A.J.; Lòpez, F.F.; De Málaga, U. Use of a Mycosporin-Type Amino Acid (Shinorine) as an Antioxidant. WIPO Patent WO2007026038 A3, 24 May 2007. [Google Scholar]
- Higuera-Ciapara, I.; Félix-Valenzuela, L.; Goycoolea, F.M. Astaxanthin: A review of its chemistry and applications. Crit. Rev. Food Sci. Nutr. 2006, 46, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Shindo, K.; Kikuta, K.; Suzuki, A.; Katsuta, A.; Kasai, H.; Yasumoto-Hirose, M.; Matsuo, Y.; Misawa, N.; Takaichi, S. Rare carotenoids, (3R)-saproxanthin and (3R,2′S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl. Microbiol. Biotechnol. 2007, 74, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Lateff, A.; König, G.M.; Fisch, K.M.; Höller, U.; Jones, P.G.; Wright, A.D. New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J. Nat. Prod. 2002, 65, 1605–1611. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.-M.; Xu, G.-M.; Li, C.-S.; Wang, B.-G. Antioxidant metabolites from marine alga-derived fungus Aspergillus wentii EN-48. Phytochem. Lett. 2014, 120–123. [Google Scholar] [CrossRef]
- Abdel-Lateff, A.; Fisch, K.M.; Wright, A.D.; König, G.M. A new antioxidant isobenzofuranone derivative from the algicolous marine fungus Epicoccum sp. Planta Med. 2003, 69, 831–834. [Google Scholar] [PubMed]
- Sun, C.; Wang, J.-W.; Fang, L.; Gao, X.-D.; Tan, R.X. Free radical scavenging and antioxidant activities of EPS2, an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci. 2004, 75, 1063–1073. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Kim, S.; Kang, J.S.; Choi, H.D.; Rho, J.R.; Son, B.W. Golmaenone, a New Diketopiperazine Alkaloid from the Marine-Derived Fungus Aspergillus sp. Chem. Pharm. Bull. 2004, 52, 375–376. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, X.; Kang, J.S.; Choi, H.D.; Son, B.W. New Radical Scavenging and Ultraviolet-A Protecting Prenylated Dioxopiperazine Alkaloid Related to Isoechinulin A from a Marine Isolate of the Fungus Aspergillus. J. Antibiot. 2004, 57, 337–340. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.T.; Lee, S.Y.; Jeong, J.H.; Jo, B.K.; Li, X.F.; Son, B.W. Screening of tyrosinase inhibiting activity from the marine-derived fungus. Pigment Cell Res. 2003, 16, 604. [Google Scholar] [CrossRef]
- Li, X.; Jeong, J.H.; Lee, K.T.; Rho, J.R.; Choi, H.D.; Kang, J.S.; Son, B.W. Gamma-pyrone derivatives, kojic acid methyl ethers from a marine—Derived fungus Alternaria sp. Arch. Pharm. Res. 2003, 26, 532–534. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, X.; Kang, J.S.; Choi, H.D.; Son, B.W. A New α-Pyrone Derivative, 6-[(E)-Hept-1-enyl]-α-pyrone, with Tyrosinase Inhibitor Activity from a Marine Isolate of the Fungus Botrytis. ChemInform 2007, 38, 1–3. [Google Scholar] [CrossRef]
- Li, X.; Kim, M.K.; Lee, U.; Kim, S.-K.; Kang, J.S.; Choi, H.D.; Son, B.W. Myrothenones A and B, Cyclopentenone Derivatives with Tyrosinase Inhibitory Activity from the Marine-Derived Fungus Myrothecium sp. Chem. Pharm. Bull. 2005, 53, 453–455. [Google Scholar] [CrossRef] [PubMed]
- Deering, R.W.; Chen, J.; Sun, J.; Ma, H.; Dubert, J.; Barja, J.L.; Seeram, N.P.; Wang, H.; Rowley, D.C. N-acyl dehydrotyrosines, tyrosinase inhibitors from the marine bacterium Thalassotalea sp. PP2-459. J. Nat. Prod. 2016, 79, 447–450. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Yamada, K.; Minoura, K.; Miyamoto, K.; Usami, Y.; Kobayashi, T.; Hamada-Sato, N.; Imada, C.; Tsujibo, H. Purification and determination of the chemical structure of the tyrosinase inhibitor pro-duced by Trichoderma viride strain H1–7 from a marine environment. Biol. Pharm. Bull. 2008, 31, 1618–1620. [Google Scholar] [CrossRef] [PubMed]
- Baliña, L.M.; Graupe, K. The treatment of melasma. 20% azelaic acid versus 4% hydroquinone cream. Int. J. Dermatol. 1991, 30, 893–895. [Google Scholar] [CrossRef] [PubMed]
- Rendon, M.; Berneburg, M.; Arellano, I.; Picardo, M. Treatment of melasma. J. Am. Acad. Dermatol. 2006, 54, S272–S281. [Google Scholar] [CrossRef] [PubMed]
- Amend, A.S. From dandruff to deep-sea vents: Malassezia-like fungi are ecologically hyper-diverse. PLoS Pathog. 2014, 10, e1004277. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Wu, X.; Sun, M.; Li, M. Two Novel Tyrosinase Inhibitory Sesquiterpenes Induced by CuCl2 from a Marine-Derived Fungus Pestalotiopsis sp. Z233. Mar. Drugs 2013, 11, 2713–2721. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.Y.; Yoon, T.-J.; Lee, G.J. Whitening effects of marine pseudomonas extract. Ann. Dermatol. 2011, 23, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Younes, I.; Rinaudo, M. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [PubMed]
- Friedman, M.; Junja, V.K. Review of Antimicrobial and Antioxidative Activities of Chitosans in Food. J. Food Prot. 2016. [Google Scholar] [CrossRef]
- Peng, W.; Adachi, K.; Chen, C.; Kasai, H.; Kanoh, K.; Shizuri, Y.; Misawa, N. Discovery of a Marine Bacterium Producing 4-Hydroxybenzoate and Its Alkyl Esters, Parabens. App. Environ. Microbiol. 2006, 5556–5561. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.H.; Heh, R.S. Skin hydration effects, physico-chemical properties and vitamin E release ratio of vital moisture creams containing water-soluble chitosans. Int. J. Cosmet. Sci. 2000, 22, 349–360. [Google Scholar] [CrossRef]
- Ito, I.; Osaki, T.; Ifuku, S.; Saimoto, H.; Takamori, Y.; Kurozumi, S.; Imagawa, T.; Azuma, K.; Tsuka, T.; Okamoto, Y.; et al. Evaluation of the effects of chitin nanofibrils on skin function using skin models. Carbohydr. Polym. 2014, 101, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Kumirska, J.; Weinhold, M.X.; Thöming, J.; Stepnowski, P. Biomedical Activity of Chitin/Chitosan Based Materials—Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation. Polymers 2011, 3, 1875–1901. [Google Scholar] [CrossRef]
- Mourya, V.K.; Inamdar, N.N.; Tiwari, A. Carboxymethyl chitosan and its applications. Adv. Mater. Lett. 2010, 1, 11–33. [Google Scholar] [CrossRef]
- Gautier, S.; Xhauflaire-Uhoda, E.; Gonry, P.; Piérard, G.E. Chitin-glucan, a natural cell scaffold for skin moisturization and rejuvenation. Int. J. Cosmet. Sci. 2008, 30, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Senevirathne, M.; Ahn, C.-B.; Kim, S.-K.; Je, J.-Y. Cosmeceutical Applications of Chitosan and Its Derivatives. In Marine Cosmeceuticals: Trends and Prospects; Trends and Prospects; CRC Press: Boca Raton, FL, USA, 2011; pp. 169–178. [Google Scholar]
- Kim, K.-S.; Bak, S.-S. Hair Biology and Care Product Ingredients from Marine Organisms. In Marine Cosmeceuticals: Trends and Prospects; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Satpute, S.K.; Banat, I.M.; Dhakephalkar, P.K.; Banpurkar, A.G.; Chopade, B.A. Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol. Adv. 2010, 28, 436–450. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.P.; Singh, S.P.; Häder, D.-P. Database on mycosporines and mycosporine-like amino acids (MAAs) in fungi, cyanobacteria, macroalgae, phytoplankton and animals. J. Photochem. Photobiol. B Biol. 2007, 89, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Shick, J.M.; Dunlap, W.C. Mycosporine-Like Amino Acids and Related Gadusols: Biosynthesis, Accumulation, and UV-Protective Functions in Aquatic Organisms. Annu. Rev. Physiol. 2002, 64, 223–262. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, M.; Gorbushina, A.A. A broadly applicable method for extraction and characterization of mycosporines and mycosporine-like amino acids of terrestrial, marine and freshwater origin. FEMS Microbiol. Lett. 2006, 255, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Libkind, D.; Pérez, P.; Sommaruga, R.; Diéguez, M.D.C.; Ferraro, M.; Brizzio, S.; Zagarese, H.; Broock, M.V. Constitutive and UV-inducible synthesis of photoprotective compounds (carotenoids and mycosporines) by freshwater yeasts. Photochem. Photobiol. Sci. 2004, 3, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Volkmann, M.; Whitehead, K.; Rütters, H.; Rullkötter, J.; Gorbushina, A.A. Mycosporine-glutamicol-glucoside: A natural UV-absorbing secondary metabolite of rock-inhabiting microcolonial fungi. Rapid Commun. Mass Spectrom. 2003, 17, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Řezanka, T.; Temina, M.; Tolstikov, A.G.; Dembitsky, V.M. Natural microbial UV radiation filters—Mycosporine-like amino acids. Folia Microbiol. 2004, 49, 339–352. [Google Scholar] [CrossRef]
- Suh, H.-J.; Lee, H.-W.; Jung, J. Mycosporine glycine protects biological systems against photodynamic damage by quenching singlet oxygen with a high efficiency. Photochem. Photobiol. 2003, 78, 109–113. [Google Scholar] [CrossRef]
- Conde, F.R.; Churio, M.S.; Previtali, C.M. The photoprotector mechanism of mycosporine-like amino acids. Excited-state properties and photostability of porphyra-334 in aqueous solution. J. Photochem. Photobiol. B Biol. 2000, 56, 139–144. [Google Scholar] [CrossRef]
- Torres, A.; Hochberg, M.; Pergament, I.; Smoum, R.; Niddam, V.; Dembitsky, V.M.; Temina, M.; Dor, I.; Lev, O.; Srebnik, M.; et al. A new UV-B absorbing mycosporine with photo protective activity from the lichenized ascomycete Collema cristatum. FEBS J. 2004, 271, 780–784. [Google Scholar] [CrossRef]
- Whitehead, K.; Hedges, J.I. Photodegradation and photosensitization of mycosporine-like amino acids. J. Photochem. Photobiol. B Biol. 2005, 80, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Oren, A.; Gunde-Cimerman, N. Mycosporines and mycosporine-like amino acids: UV protectants or multipurpose secondary metabolites? FEMS Microbiol. Lett. 2007, 269, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, K.H.M.; Guaratini, T.; Barros, M.P.; Falcão, V.R.; Tonon, A.P.; Lopes, N.P.; Campos, S.; Torres, M.A.; Souza, A.O.; Colepicolo, P.; et al. Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2007, 146, 60–78. [Google Scholar] [CrossRef] [PubMed]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. (Eds.) Carotenoids; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Kirti, K.; Amita, S.; Priti, S.; Mukesh Kumar, A.; Jyoti, S. Colorful World of Microbes: Carotenoids and Their Applications. Adv. Biol. 2014, 2014, 1–13. [Google Scholar] [CrossRef]
- Junghans, A.; Sies, H.; Stahl, W. Macular Pigments Lutein and Zeaxanthin as Blue Light Filters Studied in Liposomes. Arch. Biochem. Biophys. 2001, 391, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, K. Function of marine carotenoids. Forum Nutr. 2009, 61, 136–146. [Google Scholar] [PubMed]
- Maoka, T. Carotenoids in Marine Animals. Mar. Drugs 2011, 9, 278–293. [Google Scholar] [CrossRef] [PubMed]
- Bumbak, F.; Cook, S.; Zachleder, V.; Hauser, S.; Kovar, K. Best practices in heterotrophic high-cell-density microalgal processes: Achievements, potential and possible limitations. Appl. Microbiol. Biotechnol. 2011, 91, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Ziboh, V.A.; Miller, C.C.; Cho, Y. Metabolism of polyunsaturated fatty acids by skin epidermal enzymes: Generation of antiinflammatory and antiproliferative metabolites. Am. J. Clin. Nutr. 2000, 71, 361S–366S. [Google Scholar] [PubMed]
- McCusker, M.M.; Grant-Kels, J.M. Healing fats of the skin: The structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin. Dermatol. 2010, 28, 440–451. [Google Scholar] [CrossRef] [PubMed]
- Covington, M.B. Omega-3 fatty acids. Am. Fam. Physician 2004, 70, 133–140. [Google Scholar] [PubMed]
- Raghukumar, C. Marine fungal biotechnology: An ecological perspective. Fungal Divers. 2008, 31, 19–35. [Google Scholar]
- Alvarez-Rivera, G.; Llompart, M.; Garcia-Jares, C.; Lores, M. Identification of unwanted photoproducts of cosmetic preservatives in personal care products under ultraviolet-light using solid-phase microextraction and micro-matrix solid-phase dispersion. J. Chromatogr. A 2015, 1390, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, C.; Galley, E.; Council, N.E.R. Personal Care Compositions. Patent WO0239974, 23 May 2002. [Google Scholar]
- Gammone, M.; Riccioni, G.; D’Orazio, N. Marine Carotenoids against Oxidative Stress: Effects on Human Health. Mar. Drugs 2015, 13, 6226–6246. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.-P.; Peng, J.; Yin, K.; Wang, J.-H. Potential health-promoting effects of astaxanthin: A high-value carotenoid mostly from microalgae. Mol. Nutr. Food Res. 2011, 55, 150–165. [Google Scholar] [CrossRef] [PubMed]
- Shindo, K.; Misawa, N. New and Rare Carotenoids Isolated from Marine Bacteria and Their Antioxidant Activities. Mar. Drugs 2014, 12, 1690–1698. [Google Scholar] [CrossRef] [PubMed]
- Pillaiyar, T.; Manickam, M.; Namasivayam, V. Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2017, 31, 403–425. [Google Scholar] [CrossRef] [PubMed]
- Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin Whitening Cosmetics: Feedback and Challenges in the Development of Natural Skin Lighteners. Cosmetics 2016, 3, 36. [Google Scholar] [CrossRef]
- Hunter, M. The Persistent Problem of Colorism: Skin Tone, Status, and Inequality. Sociol. Compass 2007, 1, 237–254. [Google Scholar] [CrossRef]
- Yun, E.J.; Lee, S.; Kim, J.H.; Kim, B.B.; Kim, H.T.; Lee, S.H.; Pelton, J.G.; Kang, N.J.; Choi, I.-G.; Kim, K.H. Enzymatic production of 3,6-anhydro-l-galactose from agarose and its purification and in vitro skin whitening and anti-inflammatory activities. Appl. Microbiol. Biotechnol. 2012, 97, 2961–2970. [Google Scholar] [CrossRef] [PubMed]
- Cristaudo, A.; D’Ilio, S.; Gallinella, B.; Mosca, A.; Majorani, C.; Violante, N.; Senofonte, O.; Morrone, A.; Petrucci, F. Use of potentially harmful skin-lightening products among immigrant women in Rome, Italy: A pilot study. Dermatology (Basel) 2013, 226, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Rana, J.; Diwakar, G.; Qiang, H.; Li, T.; Scholten, J.; Llc, A.B.G.I. Topical Composition and Method for Skin Lightening. U.S. Patent WO2013169634 A2, 14 November 2013. [Google Scholar]
- Chang, T.-S. An updated review of tyrosinase inhibitors. IJMS 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed]
- Balboa, E.M.; Conde, E.; Soto, M.L.; Pérez-Armada, L.; Domínguez, H. Cosmetics from Marine Sources. In Springer Handbook of Marine Biotechnology; Kim, S.-K., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1015–1042. [Google Scholar]
- Hong, J.-H.; Jang, S.; Heo, Y.; Min, M.; Lee, H.; Lee, Y.; Lee, H.; Kim, J.-J. Investigation of Marine-Derived Fungal Diversity and Their Exploitable Biological Activities. Mar. Drugs 2015, 13, 4137–4155. [Google Scholar] [CrossRef] [PubMed]
- Fitton, A.; Goa, K.L. Azelaic acid. A review of its pharmacological properties and therapeutic efficacy in acne and hyperpigmentary skin disorders. Drugs 1991, 41, 780–798. [Google Scholar] [CrossRef] [PubMed]
- Tharanathan, R.N.; Kittur, F.S. Chitin—The Undisputed Biomolecule of Great Potential. Crit. Rev. Food Sci. Nutr. 2003, 43, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Farka, V. Fungal cell walls: Their structure, biosynthesis and biotechnological aspects. Acta Biotechnol. 1990, 10, 225–238. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J. Fungal Cell Wall; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Nadarajah, K.; Kader, J.; Mazmira, M.; Paul, D.C. Production of Chitosan by Fungi. Pak. J. Biol. Sci. 2001, 4, 263–265. [Google Scholar]
- Ruocco, N.; Costantini, S.; Guariniello, S.; Costantini, M. Polysaccharides from the Marine Environment with Pharmacological, Cosmeceutical and Nutraceutical Potential. Molecules 2016, 21, 551. [Google Scholar] [CrossRef] [PubMed]
- Sudarshan, N.R.; Hoover, D.G.; Knorr, D. Antibacterial action of chitosan. Food Biotechnol. 1992, 6, 257–272. [Google Scholar] [CrossRef]
- Choi, B.-K.; Kim, K.-Y.; Yoo, Y.-J.; Oh, S.-J.; Choi, J.-H.; Kim, C.-Y. In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitans and Streptococcus mutans. Int. J. Antimicrob. Agents 2001, 18, 553–557. [Google Scholar] [CrossRef]
- Eaton, P.; Fernandes, J.C.; Pereira, E.; Pintado, M.E.; Xavier Malcata, F. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 2008, 108, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.-K.; Huang, M.-Y.; Jiang, Y.-Y. Selective permeabilities of chitosan-acetic acid complex membrane and chitosan-polymer complex membranes for oxygen and carbon dioxide. Polym. Bull. 1988, 20, 83–88. [Google Scholar] [CrossRef]
- Ghormade, V.; Pathan, E.K.; Deshpande, M.V. Can fungi compete with marine sources for chitosan production? Int. J. Biol. Macromol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mohsen, A.M.; Jancar, J.; Massoud, D.; Fohlerova, Z.; Elhadidy, H.; Spotz, Z.; Hebeish, A. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. 2016, 510, 86–99. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Gumus, C.E. Natural emulsifiers—Biosurfactants, phospholipids, biopolymers, and colloidal particles: Molecular and physicochemical basis of functional performance. Adv. Colloid Interface Sci. 2016, 234, 3–26. [Google Scholar] [CrossRef] [PubMed]
Main Categories | Bioactive Compounds | Action | Source Microorganisms | Habitat | References |
---|---|---|---|---|---|
Photoprotective Compounds | |||||
Mycosporine | Mycosporine–glutaminol–glucoside and mycosporine–glutamicol–glucoside | UV screening | Marine fungi Phaeotheca triangularis, Trimmatostroma salinum, Hortaea werneckii, Aureobasidium pullulans and Cryptococcus liquefaciens | Hypersaline water and polar glacial ice | [26] |
Mycosporine—like amino acids | Shinorine, porphyra- 334 and novel MAA (mycosporine-glycine-alanine) | UV screening | Marine bacteria Pseudonocardia sp. strain P1, Micrococcus p. AK-334, Actinosynnema mirum DSM 43827 | Oceans, coastal systems,deep-sea, hypersaline, Arctic and Antarctic waters and others | [27] |
Carotenoids | β-carotene, astaxanthin, zeaxanthin, cantaxanthin, phoenicoxanthin and echinenone | Skin photo-protection and inhibition of adverse processes induced or mediated by solar UV radiation | Marine bacteria genera Paracoccus and Agrobacterium; marine fungi genera Rhodotorula, Phaffia, Xanthophyllomyces | Marine coastal systems | [28,29,30,31,32] |
Thraustochytrids, such as Thraustochytrium strains ONC-T18 and CHN-1, Thraustochytriidae sp. AS4-A1 (Ulkenia sp.) and Aurantiochytrium sp. KH105 | Seawater and sediments from tropical and temperate to polar ecosystems, in particular organically enriched systems (e.g., estuaries, leaves of mangrove forests) | [33,34,35] | |||
Benzodiazepine alkaloids | circumdatins I, C, G | UV-A screening activity | Marine fungus of the genus Exophiala | Isolated from the surface of the marine sponge Halichondria panicea | [36] |
Anti-Aging Products | |||||
Polysaccharides | EPS | Emulsifying, thickening, absorption and gel formation and anti-wrinkles | Marine fungi and bacteria such as Agrobacterium sp., Alcaligenes faecalis, Xanthomonas campestris, Bacillus sp., Zymonas mobilis, Eduarsiella tarda and Aureobasidium pullulans, Alteromonas macleodii , Pseudoalteromonas sp. | Different marine environments, including extreme ecosystems. Pseudoalteromonas sp. isolated from antarctic waters | [16,37,38,39,40,41,42,43,44] |
HE 800 | Structurally analogous to hyaluronic acid | Vibrio diabolicus | Deep-sea hydrotermal vents | [41] | |
PUFAs | DHA, EPA and omega-3 fatty acids | Soft tissue repair, skin nourishment and stimulation of collagen production | Marine fungi (i.e., Trichoderma sp., Rhodotorula mucilaginosa AMCQ8A), bacteria (i.e., Moritella dasanensis, Vibrio sp., Pseudomonas sp. Shewanella sp. and Colwellia sp.) and thraustochytrids (in particular Schizochytrium, Aurantiochytrium and Ulkenia) | Thraustochytrids isolated from seawater and sediments from tropical and temperate to polar ecosystems, in particular organically enriched systems (e.g., estuaries, leaves of mangrove forests); bacteria and fungi isolated from coastal to deep-sea habitats | [33,45,46,47,48,49,50,51,52,53,54,55,56] |
Antioxidant Compounds | |||||
MAAs | Antioxidant activity, scavenging activity of superoxide anions and inhibition of lipid peroxidation | Marine fungi and bacteria | Coastal and open-ocean systems, deep-sea, hypersaline, Arctic and Antarctic ecosystems and others | [26,27,57,58,59] | |
Carotenoids | Astaxanthin | Antioxidant activity | Marine fungi bacteria and thraustochytrids | Coastal and open-ocean systems, deep-sea, hypersaline, Arctic and Antarctic ecosystems and others | [32,60] |
Saproxanthin and myxol | Reinforce biological membranes, decreasing permeability to oxygen and enhancing protection against oxidation | Marine bacteria family Flavobacteriaceae | Antartic marine habitats | [61] | |
Phenols | Hydroquinone derivatives (e.g., wentiquinone, ethyl 4-(3,4-dihydroxybenzamido)-butanoate) | anti-oxidant activity | Marine fungi Acremonium sp. and Aspergillus wentii N48 | Coastal systems, isolated from brown algae | [62,63] |
Isobenzofuranone derivative | 4,5,6-trihydroxy-7-methylphthalide | Radical scavenging activity | Marine fungus, Epicoccum sp. | Coastal systems, isolated from brown algae Fucus vesiculosus | [64] |
Exopolysaccharides | EPS2 | Radical scavenging activity | Marine fungus Keissleriella sp. YS 4108 | Marine sediments | [65] |
Diketopiperazine alkaloids | Golmaenone and related alkaloids | Radical scavenging activity and UV-A screening function | Marine fungus Aspergillus sp. | Isolated from the surface of the marine red alga Lomentaria catenata | [66] |
Dioxopiperazine alkaloids | Dihydroxyisoechinulin A and related echinulin | Radical scavenging activity and UV-A screening function | Marine fungus Aspergillus sp. | Isolated from the surface of the marine red alga Lomentaria catenata | [67] |
Skin Whitening Products | |||||
Pyrone | 5-Hydroxy-2-(hydroxymethyl)-4H-pyran-4-one (kojic acid) and derivates (kojic acid dimethyl ether and kojic acid monomethyl ether) | Inhibition of tyrosinase | Marine fungi (i.e., Aspergillus, Penicillium and Alternaria species) | Different marine ecosystems. Alternaria sp. isolated from marine green algae | [68,69] |
α-Pyrone derivate (6-[(E)-Hept-1-enyl]-α-pyrone) | Inhibition of tyrosinase | Marine fungus Botrytis sp. | Isolated from the surface of the marine red alga Hyalosiphonia caespitose | [70] | |
Phomaligol A | Inhibition of tyrosinase | Marine fungus Alternaria sp. | Isolated from marine green algae | [69] | |
6-n-pentyl-α-pyrone and myrothenone A | Inhibition of tyrosinase | Marine-derivated fungus, genus Myrothecium | Isolated from the surface of the marine green algae Entemorpha compressa | [71] | |
N-acyl dehydrotyrosine derivatives | Thalassotalic acids A, B and C | Inhibition of tyrosinase | Marine Gram-negative bacterium, Thalassotalea sp. PP2-459 | Isolated from a marine bivalve | [72] |
Compound similar to the structure of homothallin II | Inhibition of tyrosinase | Marine fungus T. viridae strain H1-7 | Isolated from marine sediments | [73] | |
Seven different compounds | Inhibition of melanin | Marine fungus T. viridae strain H1-7 | Isolated from marine sediments | [73] | |
Dicarboxylic acid | 1,7-heptanedicarboxylic acid (azelaic acid) | Inhibition of tyrosinase | Marine fungus Malasseziales | Almost every habitat in the marine environment | [74,75,76] |
Sesquiterpenes | 1β,5α,6α,14-tetraacetoxy-9α-benzoyloxy-7β H-eudesman-2β, 11-diol and 4α,5α-diacetoxy-9α-benzoyloxy-7βH-eudesman-1β, 2β,11, 14-tetraol | Inhibition of tyrosinase | Marine fungus Pestalotiopsis sp. Z233. | Isolated from algae Sargassum horneri | [77] |
Alkyl halides | Methylene chloride | Inhibition of tyrosinase | Marine bacteria genus Pseudomonas | Marine sediments | [78] |
Anthraquinones | Chrysophanol | Inhibition of tyrosinase | Marine fungus, Microsporum sp. | Isolated from the red alga Lomentaria catenata | US patent 20140056834A1 |
Carotenoids | Astaxanthin | Depigmentation properties | Marine bacteria and fungi | Seawater, sediments and marine organisms | [32] |
Antimicrobial Products | |||||
Polysaccharides | Chitin, chitosan and their derivatives | Antimicrobial activity | Marine fungi such as zygomycetes, chytridiomycetes, ascomycetes, basidiomycetes | Coastal and open-ocean systems, deep-sea, hypersaline, Arctic and Antarctic ecosystems and others | [79,80] |
Carotenoids | Astaxanthin | Antimicrobial activity, anti-wrinkle and anti-acne effects | Marine bacteria, fungi and thraustochytrids | Coastal and open-ocean systems, deep-sea, hypersaline, Arctic and Antarctic ecosystems and others | [32] |
Parabens | 4-hydroxybenzoate alkyl esters | Preventing the growth of yeasts, molds and gram-positive bacteria | The marine bacterial strain, A4B-17, genus Microbulbifer | Isolated from an ascidian | [81] |
Surfactants, Emulsifiers, Thickeners, Stabilizers and Moistourising | |||||
Polysaccharides | Chitin, chitosan and their derivatives | Moisturising, emulsifying, anti-microbial and adhesive properties, water resistance and absorption promoters | Marine fungi such as zygomycetes, chytridiomycetes, ascomycetes, basidiomycetes | Coastal and open-ocean systems, deep-sea, hypersaline, Arctic and Antarctic ecosystems and others | [82,83,84,85,86,87,88] |
Protein polysaccharide complexes, glycolipids, lipopeptides | Dissolving the active compound in other ingredients, emulsifying, skin moisturising and delivery system. | Marine fungi and bacteria such as Actinobacter, Pseudomonas, Myroides, Streptomyces, Yarrowia, Rhodotorula, Bacillus, Azotobacter, Corynebacterium | Coastal and open-ocean systems, deep-sea, hypersaline, Arctic and Antarctic ecosystems and others | [89] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corinaldesi, C.; Barone, G.; Marcellini, F.; Dell’Anno, A.; Danovaro, R. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Mar. Drugs 2017, 15, 118. https://doi.org/10.3390/md15040118
Corinaldesi C, Barone G, Marcellini F, Dell’Anno A, Danovaro R. Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs. 2017; 15(4):118. https://doi.org/10.3390/md15040118
Chicago/Turabian StyleCorinaldesi, Cinzia, Giulio Barone, Francesca Marcellini, Antonio Dell’Anno, and Roberto Danovaro. 2017. "Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products" Marine Drugs 15, no. 4: 118. https://doi.org/10.3390/md15040118
APA StyleCorinaldesi, C., Barone, G., Marcellini, F., Dell’Anno, A., & Danovaro, R. (2017). Marine Microbial-Derived Molecules and Their Potential Use in Cosmeceutical and Cosmetic Products. Marine Drugs, 15(4), 118. https://doi.org/10.3390/md15040118