Next Article in Journal
Marine-Derived Penicillium Species as Producers of Cytotoxic Metabolites
Next Article in Special Issue
Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System
Previous Article in Journal
Growth, Toxin Production and Allelopathic Effects of Pseudo-nitzschia multiseries under Iron-Enriched Conditions
Previous Article in Special Issue
Correction: Zhang, G.; Cheng, G.; Jia, P.; Jiao, S.; Feng, C.; Hu, T.; Liu, H.; Du, Y. The Positive Correlation of the Enhanced Immune Response to PCV2 Subunit Vaccine by Conjugation of Chitosan Oligosaccharide with the Deacetylation Degree. Marine Drugs 2017, 15, 236
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Mar. Drugs 2017, 15(10), 328; https://doi.org/10.3390/md15100328

Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles

1
Universidad CES-Grupo de Investigación en Ciencias Farmacéuticas (ICIF-CES), Programa de Química Farmacéutica, Facultad de Ciencias y Biotecnología, Universidad CES, 050021 Medellin, Antioquia, Colombia
2
Universidad EIA-Grupo de Investigación en Ingeniería Biomédica EIA-CES (GIBEC), Departamento de Ingeniería Biomédica, Las Palmas Campus, Universidad EIA and Universidad CES, 055420 Envigado, Antioquia, Colombia
*
Author to whom correspondence should be addressed.
Received: 4 August 2017 / Revised: 30 August 2017 / Accepted: 17 October 2017 / Published: 24 October 2017
(This article belongs to the Special Issue Marine Oligosaccharides and Polysaccharides)
Full-Text   |   PDF [4648 KB, uploaded 24 October 2017]   |  

Abstract

Aloe vera is a perennial plant employed for medical, pharmaceutical and cosmetic purposes that is rich in amino acids, enzymes, vitamins and polysaccharides, which are responsible for its therapeutic properties. Incorporating these properties into a biopolymer film obtained from alginate and chitosan allowed the development of a novel wound dressing with antibacterial capacity and healing effects to integrate the antibacterial capacity of silver nanoparticles with the healing and emollient properties of Aloe vera gel. Three alginate-chitosan matrices were obtained through blending methods using different proportions of alginate, chitosan, the Aloe vera (AV) gel and silver nanoparticles (AgNps), which were incorporated into the polymeric system through immersion methods. Physical, chemical and antibacterial characteristics were evaluated in each matrix. Interaction between alginate and chitosan was identified using the Fourier transform infrared spectroscopy technique (FTIR), porosity was studied using scanning electron microscopy (SEM), swelling degree was calculated by difference in weight, Aloe vera gel release capacity was estimated by applying a drug model (Peppas) and finally antibacterial capacity was evaluated against S. Aureus and P. aeruginosa. Results show that alginate-chitosan (A (1:3 Chit 1/Alg 1); B (1:3 Chit 1.5/Alg 1) and C (3:1 Chit 1/Alg 1/B12)) matrices with Aloe vera (AV) gel and silver nanoparticles (AgNps) described here displayed antibacterial properties and absorption and Aloe vera release capacity making it a potential wound dressing for minor injuries. View Full-Text
Keywords: alginate; chitosan; Aloe vera; wound dressing alginate; chitosan; Aloe vera; wound dressing
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Gómez Chabala, L.F.; Cuartas, C.E.E.; López, M.E.L. Release Behavior and Antibacterial Activity of Chitosan/Alginate Blends with Aloe vera and Silver Nanoparticles. Mar. Drugs 2017, 15, 328.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Mar. Drugs EISSN 1660-3397 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top