Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of the Optimal Aqueous Two-Phase System
2.2. Purity and Homogeneity
2.3. Chemical Structures of the Purified Polysaccharides
2.4. Cell Proliferation and IL-2 Production
2.5. Cytotoxic Activity on HepG2 and Madin–Daby Canine Kidney (MDCK) Cell
3. Materials and Methods
3.1. Materials
3.2. Extraction of Polysaccharides from Oyster
3.3. Preparation of Aqueous Two-Phase Systems
3.4. Chemical Characterization
3.4.1. Monosaccharide Composition Analysis
3.4.2. Methylation Analysis
3.4.3. 1H and 13C NMR Test
3.5. Anti-Tumor Activities of Oyster Polysaccharide
3.5.1. Preparation of Spleen Lymphocytes
3.5.2. Cell Proliferation Assay
3.5.3. Measurement of IL-2
3.5.4. HepG2 and MDCK Cells Proliferation Assay
3.5.5. Phagocytic Assay
3.6. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Watanabe, M.; Fuda, H.; Okabe, H.; Joko, S.; Miura, Y.; Hui, S.-P.; Yimin; Hamaoka, N.; Miki, E.; Chiba, H. Oyster extracts attenuate pathological changes in non-alcoholic steatohepatitis (NASH) mouse model. J. Funct. Foods 2016, 20, 516–531. [Google Scholar] [CrossRef]
- Wang, Q.; Li, W.; He, Y.; Ren, D.; Kow, F.; Song, L.; Yu, X. Novel antioxidative peptides from the protein hydrolysate of oysters (Crassostrea talienwhanensis). Food Chem. 2014, 145, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.; Fuda, H.; Jin, S.; Sakurai, T.; Ohkawa, F.; Hui, S.-P.; Takeda, S.; Watanabe, T.; Koike, T.; Chiba, H. Isolation and characterization of a phenolic antioxidant from the pacific oyster (Crassostrea gigas). J. Agric. Food Chem. 2012, 60, 830–835. [Google Scholar] [CrossRef] [PubMed]
- Achour, A.; Lachgar, A.; Astgen, A.; Chams, V.; Bizzini, B.; Tapiero, H.; Zagury, D. Potentialization of IL-2 effects on immune cells by oyster extract (JCOE) in normal and HIV-infected individuals. Biomed. Pharmacother. 1997, 51, 427–429. [Google Scholar] [CrossRef]
- Cheng, J.Y.; Ng, L.T.; Lin, C.L.; Jan, T.R. Pacific oyster-derived polysaccharides enhance antigen-specific T helper (Th)1 immunity in vitro and in vivo. Immunopharmacol. Immunotoxicol. 2013, 35, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Kamitaka, R.; Takahashi, K.G.; Osada, M. Identification and characterization of multiple β-glucan binding proteins in the Pacific oyster, Crassostrea gigas. Dev. Comp. Immunol. 2010, 34, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Ma, H.; Tong, C.; Qu, M.; Jin, Q.; Li, W. Hepatoprotective effect of a polysaccharide from Crassostrea gigas on acute and chronic models of liver injury. Int. J. Biol. Macromol. 2015, 78, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Ding, J.; Li, H.; Xiang, J.; Wen, P.; Zhang, Q.; Yin, L.; Jiang, W.; Shen, C. Antihypertensive activity of polysaccharide from Crassostrea gigas. Int. J. Biol. Macromol. 2016, 83, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Huang, X. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas. Food Chem. 2017, 216, 243–246. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tao, N.; Wang, X.; Xiao, J.; Wang, M. Marine-derived bioactive compounds with anti-obesity effect: A review. J. Funct. Foods 2016, 21, 372–387. [Google Scholar] [CrossRef]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure–function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Cheong, K.-L.; Meng, L.-Z.; Chen, X.-Q.; Wang, L.-Y.; Wu, D.-T.; Zhao, J.; Li, S.-P. Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM01. J. Funct. Foods 2016, 25, 174–185. [Google Scholar] [CrossRef]
- Shin, M.-S.; Lee, H.; Hong, H.-D.; Shin, K.-S. Characterization of immunostimulatory pectic polysaccharide isolated from leaves of Diospyros kaki Thumb. (Persimmon). J. Funct. Foods 2016, 26, 319–329. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Lun, J. Aqueous two-phase countercurrent distribution for the separation of c-phycocyanin and allophycocyanin from Spirulina platensis. Food Bioprod. Process. 2012, 90, 111–117. [Google Scholar] [CrossRef]
- Liu, X.; Mu, T.; Sun, H.; Zhang, M.; Chen, J. Optimisation of aqueous two-phase extraction of anthocyanins from purple sweet potatoes by response surface methodology. Food Chem. 2013, 141, 3034–3041. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pei, Y.; Wang, H.; Fan, J.; Wang, J. Ionic liquid-based aqueous two-phase systems and their applications in green separation processes. TrAC Trends Anal. Chem. 2010, 29, 1336–1346. [Google Scholar] [CrossRef]
- Ao, G.; Khripin, C.Y.; Zheng, M. DNA-controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J. Am. Chem. Soc. 2014, 136, 10383–10392. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.K.; Streefland, M.; Wijffels, R.H.; Eppink, M.H.M. Extraction and stability of selected proteins in ionic liquid based aqueous two phase systems. Green Chem. 2014, 16, 2670–2679. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wu, X.; Yan, X. Effect of excluded-volume and hydrophobic interactions on the partition of proteins in aqueous micellar two-phase systems composed of polymer and nonionic surfactant. Fluid Phase Equilib. 2016, 429, 1–8. [Google Scholar] [CrossRef]
- Spyropoulos, F.; Portsch, A.; Norton, I.T. Effect of sucrose on the phase and flow behaviour of polysaccharide/protein aqueous two-phase systems. Food Hydrocoll. 2010, 24, 217–226. [Google Scholar] [CrossRef]
- Rajendran, V.; Puvendran, K.; Guru, B.R.; Jayaraman, G. Design of aqueous two-phase systems for purification of hyaluronic acid produced by metabolically engineered Lactococcus lactis. J. Sep. Sci. 2016, 39, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Xing, J.-M.; Li, F.-F. Purification of aloe polysaccharides by using aqueous two-phase extraction with desalination. Nat. Prod. Res. 2009, 23, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hu, X.; Han, J.; Ni, L.; Tang, X.; Hu, Y.; Chen, T. Integrated method of thermosensitive triblock copolymer–salt aqueous two phase extraction and dialysis membrane separation for purification of lycium barbarum polysaccharide. Food Chem. 2016, 194, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, L.; Yan, F.; Wu, X. Chain conformation of water-insoluble hyperbranched polysaccharide from fungus. Biomacromolecules 2007, 8, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, P.; Song, D.; Niu, H.; Shi, S.; Wang, S.; Duan, J. Structural characterization and biological activities of two α-glucans from Radix Paeoniae Alba. Glycoconj. J. 2016, 33, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Bittencourt, V.C.B.; Figueiredo, R.T.; Silva, R.B.D.; Mourãosá, D.S.; Fernandez, P.L.; Sassaki, G.L.; Mulloy, B.; Bozza, M.T.; Barretobergter, E. An α-glucan of Pseudallescheria boydii is involved in fungal phagocytosis and toll-like receptor activation. J. Biol. Chem. 2006, 281, 22614–22623. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liao, N.; Ye, X.; Hu, Y.; Wu, D.; Guo, X.; Zhong, J.; Wu, J.; Chen, S. Isolation and structural characterization of a novel antioxidant mannoglucan from a marine bubble snail, Bullacta exarata (Philippi). Mar. Drugs 2013, 11, 4464–4477. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, M.; Liu, J.; Gan, D.; Zeng, X. Extraction, preliminary characterization, antioxidant and anticancer activities in vitro of polysaccharides from Cyclina sinensis. Carbohydr. Polym. 2011, 84, 851–857. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, L.; Wang, K. Structural characterization and anti-inflammatory activity of two water-soluble polysaccharides from Bellamya purificata. Carbohydr. Polym. 2010, 81, 953–960. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, S.W.; Cheung, P.C.K.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food Sci. Technol. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Mayakrishnan, V.; Kannappan, P.; Abdullah, N.; Ahmed, A.B.A. Cardioprotective activity of polysaccharides derived from marine algae: An overview. Trends Food Sci. Technol. 2013, 30, 98–104. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Ciucanu, I.; Kerek, F. A simple and rapid method for the permethylation of carbohydrates. Carbohydr. Res. 1984, 131, 209–217. [Google Scholar] [CrossRef]
Composition (w/w) | Tie Line Length | Volume Ratio | Recovery of Polysaccharides (%) | Recovery of Protein (%) | |||
---|---|---|---|---|---|---|---|
Top Phase | Bottom Phase | Top Phase | Bottom Phase | ||||
PEG-1000 | AS a | ||||||
0.2270 | 0.1764 | 30 | 1.02 ± 0.01 | 5.71 ± 0.31 | 83.88 ± 0.19 | 14.68 ± 0.25 | 83.38 ± 0.31 |
0.2348 | 0.1796 | 35 | 1.06 ± 0.04 | 6.92 ± 0.17 | 73.25 ± 0.27 | 8.59 ± 0.07 | 77.76 ± 0.25 |
0.2432 | 0.1834 | 40 | 1.03 ± 0.01 | 8.16 ± 0.28 | 89.42 ± 0.33 | 11.83 ± 0.12 | 55.47 ± 0.33 |
0.2520 | 0.1876 | 45 | 1.04 ± 0.02 | 8.92 ± 0.10 | 71.84 ± 0.32 | 20.09 ± 0.12 | 72.23 ± 0.23 |
0.2613 | 0.1923 | 50 | 1.03 ± 0.02 | 8.61 ± 0.13 | 72.60 ± 0.21 | 18.67 ± 0.27 | 64.43 ± 0.29 |
PEG-2000 | AS | ||||||
0.1524 | 0.1153 | 30 | 1.06 ± 0.03 | 8.79 ± 0.22 | 69.61 ± 0.17 | 5.71 ± 0.22 | 83.88 ± 0.45 |
0.1697 | 0.1228 | 35 | 1.04 ± 0.04 | 6.25 ± 0.13 | 49.08 ± 0.23 | 6.92 ± 0.25 | 73.25 ± 0.33 |
0.1870 | 0.1306 | 40 | 1.02 ± 0.01 | 5.93 ± 0.05 | 29.50 ± 0.39 | 8.16 ± 0.09 | 89.42 ± 0.37 |
0.2045 | 0.1389 | 45 | 1.03 ± 0.02 | 5.55 ± 0.09 | 37.84 ± 0.26 | 3.92 ± 0.01 | 81.84 ± 0.31 |
0.2221 | 0.1477 | 50 | 1.02 ± 0.02 | 9.67 ± 0.14 | 36.02 ± 0.31 | 2.61 ± 0.01 | 72.60 ± 0.47 |
PEG-4000 | AS | ||||||
0.1721 | 0.1102 | 30 | 1.03 ± 0.02 | 14.68 ± 0.17 | 83.38 ± 0.39 | 12.74 ± 0.01 | 52.64 ± 0.31 |
0.1841 | 0.1167 | 35 | 1.06 ± 0.04 | 8.59 ± 0.16 | 77.76 ± 0.43 | 12.77 ± 0.05 | 67.35 ± 0.22 |
0.1966 | 0.1238 | 40 | 1.05 ± 0.04 | 18.20 ± 0.08 | 73.46 ± 0.32 | 8.24 ± 0.01 | 52.86 ± 0.30 |
0.2102 | 0.1319 | 45 | 1.02 ± 0.02 | 30.09 ± 0.23 | 62.23 ± 0.28 | 36.26 ± 0.13 | 15.59 ± 0.27 |
0.2238 | 0.1404 | 50 | 1.05 ± 0.02 | 38.67 ± 0.32 | 54.43 ± 0.19 | 35.62 ± 0.16 | 10.44 ± 0.04 |
Ethanol | AS | ||||||
0.1770 | 0.2729 | 35 | 1.05 ± 0.03 | 12.12 ± 0.11 | 67.02 ± 0.33 | 25.01 ± 0.11 | 18.13 ± 0.29 |
0.1844 | 0.2749 | 40 | 1.02 ± 0.01 | 13.47 ± 0.18 | 65.35 ± 0.21 | 23.92 ± 0.34 | 21.28 ± 0.17 |
0.1930 | 0.2776 | 45 | 1.04 ± 0.01 | 12.24 ± 0.09 | 52.86 ± 0.44 | 44.69 ± 0.31 | 21.91 ± 0.13 |
0.2030 | 0.2811 | 50 | 1.04 ± 0.02 | 26.26 ± 0.37 | 45.59 ± 0.23 | 45.13 ± 0.42 | 22.08 ± 0.22 |
0.2120 | 0.2845 | 55 | 1.03 ± 0.03 | 25.62 ± 0.27 | 37.44 ± 0.23 | 45.62 ± 0.37 | 26.05 ± 0.21 |
Residues | Chemical Shifts 1H/13C (ppm) | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6(a) | 6(b) | |
A α-Glcp-(1→ | 5.43 | 3.74 | 3.74 | 3.79 | 3.74 | 3.94 | 3.86 |
100.4 | 71.7 | 73.5 | 73.2 | 72.4 | 61 | ||
B α-(1→4)-Glcp | 5.43 | 3.64 | 3.7 | 3.69 | 3.91 | 3.94 | 3.86 |
100.4 | 71.9 | 73.6 | 78 | 71.8 | 61 | ||
C α-(1→3,4)-Glcp | 5.43 | 3.68 | 4.03 | 3.73 | 3.71 | 3.94 | 3.86 |
100.4 | 72.3 | 73.8 | 77.9 | 72.1 | 61 |
Sample | IL-2 (pg/mL) | SI (%) |
---|---|---|
Blank | 167.09 ± 3.92 | — |
Con A | 239.46 ± 3.28 | 43.31 ± 2.73 |
OP-1 | 439.80 ± 2.72 ** | 149.87 ± 0.18 ** |
Concentration | HepG2 Cells | MDCK Cells | ||
---|---|---|---|---|
μg/mL | 5-Fu | OP-1 | 5-Fu | OP-1 |
25 | 50.72 ± 0.71 | 39.70 ± 3.18 | 42.65 ± 1.31 | −6.05 ± 0.96 |
50 | 46.20 ± 2.61 | −4.50 ± 1.13 | ||
100 | 47.23 ± 2.03 | −9.78 ± 4.00 | ||
150 | 52.24 ± 1.16 | −14.01 ± 0.30 * | ||
200 | 55.82 ± 2.03 | −15.48 ± 6.65 ** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheong, K.-L.; Xia, L.-X.; Liu, Y. Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System. Mar. Drugs 2017, 15, 338. https://doi.org/10.3390/md15110338
Cheong K-L, Xia L-X, Liu Y. Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System. Marine Drugs. 2017; 15(11):338. https://doi.org/10.3390/md15110338
Chicago/Turabian StyleCheong, Kit-Leong, Li-Xuan Xia, and Yang Liu. 2017. "Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System" Marine Drugs 15, no. 11: 338. https://doi.org/10.3390/md15110338
APA StyleCheong, K. -L., Xia, L. -X., & Liu, Y. (2017). Isolation and Characterization of Polysaccharides from Oysters (Crassostrea gigas) with Anti-Tumor Activities Using an Aqueous Two-Phase System. Marine Drugs, 15(11), 338. https://doi.org/10.3390/md15110338