Alternative and Efficient Extraction Methods for Marine-Derived Compounds
Abstract
:1. Introduction
2. Extraction of Compounds
2.1. Microwave-Assisted Extraction (MAE)
2.2. Ultrasound-Assisted Extraction (UAE)
2.3. Supercritical Fluid Extraction (SFE)
2.4. Pressurized Solvent Extraction (PSE)
2.5. Pulsed Electric Field-Assisted Extraction
2.6. Enzyme-Assisted Extraction
Enzyme | Composition and Source | Optimum pH | Optimum Temp. (°C) |
---|---|---|---|
Agarase [74,76] | β-Agarase from Alteromonas beaufortensis | 6.0 | 55 |
Alcalase [74,77,78,79] | α-Endoprotease from Bacillus licheniformis | 8.0 | 50 |
Alkaline protease [80,81] | Protease from Bacillus lincheniformis | 8.5 | 55 |
AMG [74,77,78,79] | exo-1,4-α-d-Glucosidase from Aspergillus niger | 4.5 | 60 |
Carrageenase [74,76] | κ-Carrageenase from Cytophaga drobachiensis | 6.8 | 45 |
Celluclast [74,77,78,79] | Cellulase from Trichoderma reesei | 4.5 | 50 |
Cellulase [74,76,81] | Cellulase from Trichoderma viride | 3.8 | 50 |
Flavourzyme [74,77,78,79] | Endoprotease and exopeptidase from Aspergillus oryzae | 7.0 | 50 |
Kojizyme [74,77,78,79] | Amino- and carboxylpeptidase from Aspergillus oryzae | 6.0 | 40 |
Neutrase [74,77,78,79] | Metallo-endoprotease from Bacillus amyloliquefaciens | 6.0 | 50 |
Neutral protease [80,81] | Protease from Bacillus subtilis | 7.0 | 50 |
Papain [80] | Protease from Carica papaya | 7.0 | 55 |
Protamex [74,77,78,79] | Protease from Bacillus sp. | 6.0 | 40 |
Snailase [81] | Complex of more than 30 enzymes, including cellulase, hemicellulase, galactase, proteolytic enzyme, pectinase and β-glucuronidase, from snail | 5.8 | 37 |
Termamyl [74,77,78,79] | Heat-stable α-amylase from Bacillus licheniformis | 6.0 | 60 |
Trypsin [80,81] | Protease from porcine pancreas | 8.0 | 37 |
Ultraflo [74,77,78,79] | Heat-stable multi-active β-glucanase from Humicola insolens | 7.0 | 60 |
Umamizyme [74,79] | Endo- and exopeptidase complex from Aspergillus oryzae | 7.0 | 50 |
Viscozyme [74,77,78,79] | Multi-enzyme complex (containing arabanase, cellulase, β-glucanase, hemicellulase and xylanase) from Aspergillus aculeatus | 4.5 | 50 |
Xylanase [74,76] | Xylanase from Disporotrichum dimorphosporum | 5.0 | 55 |
2.7. Smart Solvents: Switchable Solvents and Ionic Liquids
3. Most Common Marine Compounds Obtained by Alternative Extraction Processes
3.1. Terpenoids
3.1.1. Monoterpenes and Sesquiterpenes
3.1.2. Diterpenes
3.1.3. Carotenoids and Other Pigments
Species | Compounds | Biomass (g) | Solvent | Microwave Power (W) | F (MHz) | T (°C) | Time (min) | B:S Ratio (g/mL) a | Yield of Pigments at Best Extraction Conditions |
---|---|---|---|---|---|---|---|---|---|
Microalgae | |||||||||
Cylindrotheca closterium (Ehrenberg) Reimann & J.C.Lewin [114] | Fucoxanthin and chlorophyll a | 0.050 (dried) | Acetone | 25–100 50 § | 22 (VMAE b), 56 (MAE) MAE § | 3–15 5 § | 1:600 | Fucoxanthin (4.2 μg/mg dried biomass) Chlorophyll a (8.7 μg/mg dried biomass) | |
Dunaliella tertiolecta Butcher [114] | β,β-Carotene, chlorophyll a and chlorophyll b | 0.050 (dried) | Acetone | 25–100 50 § | 22 (VMAE b), 56 (MAE) MAE § | 3–15 5 § | 1:600 | β,β-Carotene (~1.2 μg/mg dried biomass) Chlorophyll a (~4.5 μg/mg dried biomass) Chlorophyll b (~1.4 μg/mg dried biomass) | |
Macroalgae | |||||||||
Laminaria japonica Areschoug [43] | Fucoxanthin | fresh | EtOH | 300 | 2450 | 60 | 10 | 1:15 | Fucoxanthin (0.05 μg/mg dried biomass) |
Sargassum fusiforme (Harvey) Setchell [43] | Fucoxanthin | 2 (dried) | EtOH | 300 | 2450 | 60 | 10 | 1:15 | Fucoxanthin (0.02 μg/mg dried biomass) |
Undaria pinnatifida (Harvey) Suringar [43] | Fucoxanthin | 2.0 (dried) | MeOH, EtOH, acetone, DMSO and hexane:EtOH, 1:1 EtOH § | 300–500 300 § | 2450 | 30–60 60§ | 5–15 10§ | 1:5–1:15 1:15§ | Fucoxanthin (1.1 μg/mg dried biomass) |
Species | Compounds | Biomass (g) | Solvent | Ultrasound Power (W) | F (kHz) | T (°C) | Time (min) | B:S Ratio (g/mL) a | Yield of Pigments at Best Extraction Conditions |
---|---|---|---|---|---|---|---|---|---|
Microalgae | |||||||||
Cylindrotheca closterium (Ehrenberg) Reimann & J. C. Lewin [114] | Fucoxanthin and chlorophyll a | 0.050 (dried) | Acetone | 4.3–12.2 12.2§ | 8.5 | 3–15 5 § | 1:600 | Fucoxanthin (4.5 μg/mg dried biomass) Chlorophyll a (5.0 μg/mg dried biomass) | |
Dunaliella salina (Dunal) Teodoresco [53,61] | Carotenoids and chlorophylls | 0.1 (dried) | MeOH, DMF b DMF § | 3 | 1:50 | Carotenoids (27.7 μg/mg dried biomass) Chlorophylls (3.1 μg/mg dried biomass) Car/Chl = 8.9 | |||
Dunaliella tertiolecta Butcher [114] | β,β-Carotene, chlorophyll a and chlorophyll b | 0.050 (dried) | Acetone | 4.3–12.2 12.2 § | 8.5 | 3–15 5 § | 1:600 | β,β-Carotene (~1.2 μg/mg dried biomass) Chlorophyll a (~4.8 μg/mg dried biomass) Chlorophyll b (~1.3 μg/mg dried biomass) | |
Nannochloropsis gaditana L. M. Lubián [60] | Carotenoids and chlorophyll a | 0.2 (dried) | MeOH | 10 | 1:25 | Carotenoids (0.8 μg/mg dried biomass) Chlorophyll a (18.5 μg/mg dried biomass) Car/Chl = 0.04 | |||
Nannochloropsis gaditana L. M. Lubián [61] | Carotenoids and chlorophyll a | 0.2 (dried) | MeOH, DMF DMF § | 10 | 1:25 | Carotenoids (6.9 μg/mg dried biomass) Chlorophyll a (41.5 μg/mg dried biomass) Car/Chl = 0.2 | |||
Phaeodactylum tricornutum Bohlin [115] | Fucoxanthin | 0.5 (dried) | EtOH c | 70 | 23 | 30 | 1:50 | Fucoxanthin (16.0 μg/mg dried biomass) | |
Synechococcus sp. [116] | Carotenoids and Chlorophyll a | 0.1 (dried) | MeOH | 10 | 1:50 | Carotenoids (1.4 μg/mg dried biomass) Chlorophyll a (4.1 μg/mg dried biomass) Car/Chl = 0.3 | |||
Synechococcus sp. [61] | Carotenoids and chlorophyll a | 0.1 (dried) | MeOH, DMF DMF § | 10 | 1:50 | Carotenoids (3.3 μg/mg dried biomass) Chlorophyll a (9.6 μg/mg dried biomass) Car/Chl = 0.3 | |||
Macroalgae | |||||||||
Laminaria japonica Areschoug [65] | Carotenoids and chlorophyll a | 0.5 (dried) | MeOH | 30 | 1:20 | Carotenoids (0.3 μg/mg dried biomass) Chlorophyll a (3.0 μg/mg dried biomass) Car/Chl = 0.1 | |||
Crustaceans | |||||||||
Penaeus brasiliensis Latreille + Penaeus paulensis Pérez Farfante [117] | Astaxanthin and β-criptoxanthin | 5.0 (dried) | EtOH d | 55 | 10 | 1:30 | Total carotenoids content (0.04 μg/mg extract) |
Species | Compounds | Biomass (g) | Co-Solvent | P (bar) | T (ºC) | Time (min) | CO2 Flow Rate (g/min) | Yield of Pigments at Best Extraction Conditions |
---|---|---|---|---|---|---|---|---|
Bacteria | ||||||||
Paracoccus zeaxanthinifaciens [100] | Zeaxanthin | 1.0 (dried) | Acetone, water, EtOH, MeOH, isopropyl alcohol MeOH § | 100–500 300 § | 40–80 40 § | 40–160 + 20 # 160 + 20 § | 0.36–1.79 0.90 § | Zeaxanthin (65% of recovery) |
Microalgae | ||||||||
Chlorococcum littorale M. Chihara, T. Nakayama & I. Inouye [118] | Violaxanthin, neoxanthin, antheraxanthin, lutein, zeaxanthin, β-carotene, chlorophylls | 0.7 (dried) | EtOH 10% a | 300 | 60 | 180 | 0.65 | Xantophylls (~0.6 μg/mg dried biomass) β-carotene (~0.2 μg/mg dried biomass) |
Dunaliella salina (Dunal) Teodoresco [62] | α-Carotene and β-carotene (13-cis, all-trans, 15-cis, 9-cis) | 1.0 (dried) | No | 182.7–437.3 437.3 § | 9.8–45.2 * 27.5 § | 10 + 90 # | α-Carotene (9.1 μg/mg extract) 13-cis-β-Carotene (4.2 μg/mg extract) All-trans-β-Carotene (12.4 μg/mg extract) 15-cis-β-Carotene (5.9 μg/mg extract) 9-cis-β-Carotene (15.0 μg/mg extract) | |
Dunaliella salina (Dunal) Teodoresco [53] | Carotenoids and chlorophylls | 0.1 (dried) | No | 100–500 300—Car § 500—Chl § | 40–60 60 § | 15 + 180# | 0.20 | Carotenoids (14.9 μg/mg dried biomass) Chlorophylls (0.4 μg/mg dried biomass) Car/Chl = 156.3 b |
Dunaliella salina (Dunal) Teodoresco [61,119] | Carotenoids and chlorophylls | 0.1 (dried) | EtOH 5% | 200–500 400 § | 40–60 60 § | 15 + 180# | 0.20 | Carotenoids (9.6 μg/mg dried biomass) Chlorophylls (0.7 μg/mg dried biomass) Car/Chl = 84.5 b |
Nannochloropsis sp. [120] | Violaxanthin/neoxanthin, astaxanthin, vaucheriaxanthin, lutein/zeaxanthin, canthaxanthin, β-carotene and chlorophyll a | 1.25 (dried) | EtOH 5%–20% or CO2 + EtOH 20% CO2 + EtOH 20% § | 125–300 300 § | 40, 60 40 § | ≈120–360 ~140 § | 0.35–0.62 0.62 § | Total pigments (1 μg/mg dried biomass) |
Nannochloropsis gaditana L. M. Lubián [60] | Carotenoids and chlorophyll a | 0.2 (dried) | No | 100–500 400 § | 40–60 60 § | 15 + 180# | 0.20 | Carotenoids (0.3 μg/mg dried biomass) Chlorophyll a (2.2 μg/mg dried biomass) Car/Chl = 1.4 c |
Nannochloropsis gaditana L. M. Lubián [61,119] | Carotenoids and chlorophyll a | 0.2 | EtOH 5% | 200–500 500 § | 40–60 60 § | 15 + 180 # | 0.20 | Carotenoids (2.9 μg/mg dried biomass) Chlorophyll a (0.4 μg/mg dried biomass) Car/Chl = 500 d |
Nannochloropsis oculata (Droop) D. J. Hibberd [121] | Zeaxanthin, fucoxanthin, neoxanthin, β-cryptoxanthin, lutein, α-carotene and β-carotene | 10 (dried) | EtOH, dichloromethane, toluene or soybean oil EtOH § | 250–350 350 § | 50 | 0.04 | Zeaxanthin (1.1 μg/mg dried biomass) | |
Synechococcus sp. [122] | Zeaxanthin, β-cryptoxanthin, echinenone, β-carotene and chlorophyll a | 0.1 (dried) | No | 200–500 500—total Car and zeaxanthin § 358—β-carotene § 454—β-cryptoxanthin § | 40–60 60—total Car and zeaxanthin § 50—β-carotene § 59—β-cryptoxanthin § | 240 | 0.20 | Total carotenoids (~2.8 μg/mg dried biomass) β-Carotene (~1.5 μg/mg dried biomass) β-Cryptoxanthin (~0.1 μg/mg dried biomass) Zeaxanthin (~0.6 μg/mg dried biomass) |
Synechococcus sp. [116] | Carotenoids and chlorophyll a | 0.1 (dried) | No | 100–500 300—Car § 500—Chl § | 40–60 50—Car § 60—Chl § | 15 + 180 # | 0.20 | Carotenoids (1.5 μg/mg dried biomass) Chlorophyll a (0.7 μg/mg dried biomass) Car/Chl = 101.3c |
Synechococcus sp. [61,119] | Carotenoids and chlorophyll a | 0.1 (dried) | EtOH 5% | 200–500 300 § | 40–60 50—Car § 60—Chl § | 15 + 180 # | 0.20 | Carotenoids (1.9 μg/mg dried biomass) Chlorophyll a (2.2 μg/mg dried biomass) Car/Chl = 147.5e |
Macroalgae | ||||||||
Undaria pinnatifida (Harvey) Suringar [56] | Fucoxanthin | 5 (dried) | No | 200–400 400 § | 25–60 * 40 § | 180 | 0.16–2.32 2.32 § | Fucoxanthin (~ 1.2 μg/mg dried biomass) |
Undaria pinnatifida (Harvey) Suringar [123] | Fucoxanthin | 10 (dried) | EtOH | 80–300 200 § | 30–60 50 § | 60 | 28.17 | Fucoxanthin (7.5×10−6 μg/mg dried biomass) |
Undaria pinnatifida (Harvey) Suringar [69,70] | Fucoxanthin | 3 (dried) | EtOH 1.7%–17% 1.7%, 3.2% § | 100–400 400 § | 40–70 60 § | ~240 | 0.005 | Fucoxanthin (1.0 μg/mg dried biomass) |
Crustaceans | ||||||||
Callinectes sapidus Rathbun [124] | Astaxanthin | 10–25 (dried) 25 § | EtOH 10% | 295–345 340 § | 45–65 45 § | 3.4–4.8 f | Astaxanthin (0.012 μg/mg dried biomass) | |
Euphausia superba Dana [57] | Astaxanthin | 35 (dried) | No | 150–250 250 § | 35–45 45 § | 150 | 22 | Astaxanthin (0.09 μg/mg extract) |
Farfantepenaeus paulensis Latreille [126] | Astaxanthin | 7 (dried) | No | 200–400 370 § | 40–60 43 § | 20 + 200 # | 2.5 | Astaxanthin (0.02 μg/mg dried biomass) |
Farfantepenaeus paulensis Latreille [125] | Astaxanthin | 7 (dried) | EtOH 10% | 300 | 50 | 20 + 200 # | 2.50–5.00 5.00 § | Astaxanthin (0.03 μg/mg dried biomass) |
Litopenaeus vannamei Boone [127] | Astaxanthin and β-carotene | (dried) | EtOH 20% | 150–300, increment 50 bar/30 min | 40, 50 50 § | 120 | 20 | Astaxanthin (0.04 μg/mg dried biomass) β-Carotene (0.03 μg/mg dried biomass) |
Penaeus monodon Fabricius [128] | Astaxanthin, lutein and β-carotene | 5 (dried) | water, MeOH, EtOH, MeOH:water (1:1), EtOH:water (1:1), EtOH:water (0.7:0.3), MeOH:water (0.7:0.3) EtOH § | 200 | 60 | 15 + 120# | Astaxantin (0.01 μg/mg dried biomass) Lutein (0.0005 μg/mg dried biomass) β-Carotene (0.002 μg/mg dried biomass) |
Species | Compounds | Biomass (g) | Solvent | P (bar) | T (°C) | Time (min) | Flow Rate (g/min) | Yield of Pigments at Best Extraction Conditions |
---|---|---|---|---|---|---|---|---|
Microalgae | ||||||||
Dunaliella salina (Dunal) Teodoresco [129] | α-Carotene, 13-cis-β-carotene, all-trans-β-carotene, 15-cis-β-carotene, 9-cis-β-carotene | 2.0 (dried) | Hexane, EtOH, water EtOH § | 103.4 | 40–160 160 § | 5–30 30 § | static | α-Carotene (1.6 μg/mg extract) 13- cis-β-Carotene (2.0 μg/mg extract) all-trans-β-Carotene (6.6 μg/mg extract) 15-cis-β-Carotene (4.5 μg/mg extract) 9-cis-β-Carotene (9.5 μg/mg extract) |
Phaeodactylum tricornutum Bohlin [115] | Fucoxanthin | 0.5 (dried) | EtOH | 103.4 | 100 | 30 | static | Fucoxanthin (16.5 μg/mg dried biomass) |
Macroalgae | ||||||||
Eisenia bicyclis (Kjellman) Setchell [130] | Fucoxanthin | 2, 4 (fresh) 2§ | EtOH 50%, 100% EtOH 90% § | 68.95–172.37 103.4 § | 40, 100 110 § | 5, 15 5 § | static | Fucoxanthin (0.4 μg/mg) |
Laminaria japonica Areschoug [65] | Fucoxanthin, lutein, zeaxanthin, β-carotene and chlorophyll a | 0.5 (dried) | EtOH + co-solvent (R134a a, 2%–6%) EtOH + R134a, 4.73% § | 50–170 170§ | 30–60 51§ | 15 + 50 # | 10 | Carotenoids (0.2 μg/mg dried biomass) Chlorophylls (2.3 μg/mg dried biomass) Car/Chl =0.1 |
Undaria pinnatifida (Harvey) Suringar [132] | Fucoxanthin | 620, 800 (wet) | DME with or without 10% EtOH DME + EtOH 10% § | 40 | 60 | Fucoxanthin (0.06 μg/mg wet biomass) b | ||
Undaria pinnatifida (Harvey) Suringar [69,70] | Fucoxanthin | 4.4 (wet) | DME | 5.9 | 25 | <43 | ≈0.3 | Fucoxanthin (0.4 μg/mg dried biomass) |
Crustaceans | ||||||||
Euphausia pacifica Hansen [131] | Astaxanthin | 1.0c (dried) | R134a a | 30–150 100 § | 30–70 60 § | 10–50 30 § | 2–10 6 § | Astaxanthin (0.2 μg/mg dried biomass) |
3.2. Free and Bound Fatty Acids
Species | Compounds | Biomass (g) | Solvent | Microwave/Ultrasound Power (W) | F (MHz) | T (°C) | Time (min) | B:S Ratio (g/mL) a | Yield of Oil at Best Extraction Conditions |
---|---|---|---|---|---|---|---|---|---|
Microwave-assisted extraction | |||||||||
Dunaliella tertiolecta Butcher [153] | C16:0, C18:0, C18:1, C18:2, C18:3 | 0.2 (dried) | Chloroform/MeOH (2:1) | 280–560 490 § | 2–3.33 2.66 § | 1:100–1:150 1:100 § | Total oil extracted (57.0%) | ||
Nannochloropsis sp. [154] | C12:0, C13:0, C14:0, C14:1, C15:0, C16:0, C16:1, C17:0, C17:1, C18:0, C18:1, C18:2, C18:3 (2 isomers), C20:0, C20:1, C20:2, C20:3, C20:4, C20:5, C22:0, C22:1, C22:2, C22:6, C23:0, C24:0,C24:1 | 1 (dried = 3.3 wet) | Chloroform/EtOH (1:2), methyl soyate 20%, 40% in EtOH Methyl soyate 40% in EtOH § | 1200 | 2450 | 80–120 120 § | 15 | Total fatty acids (45.24%, dried weight) Total saturated fatty acids (~30%, dried weight) Total unsaturated fatty acids (~15%, dried weight) | |
Nannochloropsis sp. [155] | C14:0, C16:0, C18:0, C18:1ω9t, C18:1ω9c, C18:2ω6t, C18:2ω6c | 15 b | Isopropanol + hexane, MeOH + chloroform, MeOH + dichloromethane, MeOH:chloroform:water (25:12.5:5) + chloroform with 1.5% sodium sulfate MeOH + chloroform § | 500 | 65 | 5 + 5 | * | Total oil extracted (9%, v/w) | |
Tetraselmis sp. [155] | C14:0, C16:0, C18:0, C18:1ω9t, C18:1ω9c, C18:2ω6t, C18:2ω6c | 15 b | Isopropanol + hexane, MeOH + chloroform, MeOH + dichloromethane, MeOH:chloroform:water (25:12.5:5) + Chloroform with 1.5% sodium sulfate Isopropanol + hexane § | 500 | 65 | 5 + 5 | * | Total oil extracted (8%, v/w) | |
Ultrasound-assisted extraction | |||||||||
Dunaliella tertiolecta Butcher [153] | C16:0, C18:0, C18:1, C18:2, C18:3 | 0.2 (dried) | Chloroform/MeOH (2:1) | 320–400 370 § | 4–6 5 § | 1:100–1:150 1:125 § | Total oil extracted (45.94%) | ||
Nannochloropsis oculata (Droop) D. J. Hibberd [156] | C14:0, C16:0, C16:1ω7, C16:1ω9, C16:2ω6, C16:3ω3, C18:0, C18:1ω7, C18:1ω9, C18:2ω6, C18:3ω6, C20:4ω6, C20:5ω3 | 100 (fresh) (% dry weight content 5–30) % dry weight content 5 § | Solvent-free | 300–1000 1000 § | 35 | 5–30 30 § | Total oil extracted (0.21%) | ||
Tetraselmis suecica Kylin(Butch) [54] | C12:0, C14:0, C16:0, C16:1, C16:4,C18:0, C18:1, C18:2, C18:3 | 700 mL of wet culture (2 g/L) | Water | 500–1000 1000 § | Total fatty acid content (70 μg/mg dried biomass) |
Species | Compounds | Biomass (g) | Co-Solvent | P (Bar) | T (°C) | Time (min) | CO2 Flow Rate (g/min) | Yield of Oil at Best Extraction Conditions | |
---|---|---|---|---|---|---|---|---|---|
Microalgae | |||||||||
Chaetoceros muelleri Lemmermann [147] | C12:0, C14:0, C16:0, C16:1, C16:2, C16:3, C18:0, C18:1, C18:2, C18:3, C20:5ω3, C22:5ω3 | 1 (dried) + 0.2% EtOH | EtOH | 200–400 400 § | 40–80 40 § | 15 + 45 # | Total oil extracted (3.9%) | ||
Chlorococcum sp. [157] | C14:0, C16:0, C16:1, C16:1t, C16:2, C17:0, C18:0, C18:1, C18:2, C20:5 | 20 (dried) 8 (wet paste) 8 § | Two setps: first (100–300); second (300–500) | 60, 80 60 § | 120 | 0.7 | Total oil extracted (71 μg/mg wet biomass) | ||
Crypthecodinium cohnii (Seligo) Javornicky [142] | 12:0, 14:0, 16:0, 16:1, 18:0, 18:1ω9, 22:5ω3, 22:6ω3 | 30 (dried) | No | 200–300 300 § | 40, 50 50 § | 180 | 10 | Total oil extracted (86 μg/mg dried biomass) | |
Nannochloropsis sp. [158] | C14:0, C16:0, C18:0, C14:1, C16:1ω7, C18:1ω9, C18:2ω6, C18:3ω3, C20:4ω6, C20:5ω3,C22:5ω3, C22:6ω3 | 180 (dried) | No | 400–700 550 and 700 § | 40, 55 55 § | 360 | 166.7 | Total lipids (≈250 μg/mg dried biomass) | |
Nannochloropsis sp. [120] | C13:0, C14:0, C15:0, C16:0, C16:1, C17:1, C18:0, C18:1, C18:2, C18:3, C20:4, C20:5 | 1.25 (dried) | EtOH 5%–20% or CO2 + 20% EtOH CO2 + EtOH 20% § | 125–300 300 § | 40, 60 40 § | ≈120–360 ~140 § | 0.35–0.62 0.62 § | Total lipids (450 μg/mg dried biomass) | |
Nannochloropsis oculata (Droop) D. J. Hibberd [121] | C16:0, C16:1, C18:1, C18:2, C20:4, C20:5 | 10 (dried) | Ethanol or dichloromethane No co-solvent § | 350 | 50 | 0.02–0.04 0.04 § | Total lipids (441.2 μg/mg of extract) | ||
Nannochloropsis oculata (Droop) D. J. Hibberd [159] | C14:0 (2 isomers), C14:1ω5, C15:0 (3 isomers), C15:1ω8, C16:0 (2 isomers), C16:1ω7, C16:1ω5, C16:2ω6, C16:2ω4, C16:3ω6, C16:3ω3, C17:0 (3 isomers), C17:1, C18:0 (2 isomers), C18:1ω9, C18:1ω7, C18:1ω5, C18:2ω6, C18:2ω4, C18:3ω6, C18:3ω3, C18:4ω3, C19:0, C20:0, C20:1ω9, C20:1ω7 , C20:2ω6, C20:3ω6, C20:4ω6, C20:4ω3, C20:5ω3, C22:0, C22:6ω3 | 2–13 (dried) | No | 400 | 60 | 120 | 6.7–8.3 | Total oil extracted (300 μg/mg dried biomass) | |
Nannochloropsis oculata (Droop) D. J. Hibberd [160] | C14:0, C14:1ω5, C15:0 (3 isomers), C15:1ω8, C16:0 (2 isomers), C16:1ω7, C16:1ω5, C16:2ω6, C16:2ω4, C16:3ω6, C16:3ω3, C17:0 (3 isomers), C17:1, C18:0 (2 isomers), C18:1ω9, C18:1ω7, C18:1ω5, C18:2ω6, C18:2ω4, C18:3ω6, C18:3ω3, C18:4ω3, C19:0, C20:0, C20:1ω9, C20:1ω7 , C20:2ω6, C20:3ω6, C20:4ω6, C20:4ω3, C20:5ω3, C22:0, C22:6ω3 | 10 (dried) | 400 | 60 | 60–120 a 120 § | 8.3 | Total oil extracted mainly composed by triglycerides | ||
Nannochloropsis granulata B. Karlson & D. Potter [161] | C12:0, C14:0, C16:0, C16:1ω7, C18:0, C18:1ω7, C18:1ω9(c&t), C18:2ω6c, C20:4ω6, C20:5ω3 | 350 (dried) | No | 350–550 350 § | 50–90 70 § | 180–360 270 § | 100 | Total lipids (28.5 μg/mg dried biomass) Total fatty acids (18.23 μg/mg dried biomass) | |
Nannochloropsis salina D. J. Hibberd [140] | C14:0, C16:0, C16:1ω9, C16:1ω7c, C16:2ω6, C16:3ω3, C16:4ω3, C18:0, C18:1ω9, C18:2ω6, C18:3ω3, C18:4ω3, C18:5ω3, C20:5ω3 | 0.5 (dried) | EtOH 5% | 300 | 45 | 90 | 6.7 | Total oil extracted (304.0 μg/mg dried biomass) Total MUFA (33.9% of total lipids) Total PUFA (5.7% of total lipids) | |
Schizochytrium limacinum Honda et Yokochi [162] | C14:0, C15:0, C16:0, C18:0, C18:1, C18:2ω6, C20:5ω3, C22:6ω3 | 5 (dried) b | Ethanol | 150–400 350 § | 30–60 40 § | 30–180 | Total lipids (33.9%) Total C22:6ω3 (27.5%) | ||
Mollusca | |||||||||
Dosidicus gigas Orbigny [137] | C14:0, C16:0, C16:1, C18:0, C18:1ω9, C18:1ω7, C18:2ω6, C18:3ω6, C18:3ω3, C18:4ω3, C20:1ω9, C20:3ω6, C20:4ω6, C20:5ω3, C22:1ω11, C22:1ω9, C22:4ω6, C22:5ω3, C22:6ω3, C24:1 | 100 (dried) | No | 250 | 40 | 180 | 166.7 | Total oil extracted (~150 μg/mg dried biomass) Total fatty acids (691.0 μg/mg oil) Total ω3 fatty acids (284.0 μg/mg oil) Total ω6 fatty acids (29.0 μg/mg oil) | |
Patinopecten yessoensis Jay [163] | C13:0, C14:0, C16:0, C16:1ω7, C16:2ω6, C16:3ω3, C16:4ω3, C18:0, C18:1ω9, trans-C-18:1ω9, C18:2ω5, C18:2ω6, C18:4ω3, C20:1ω7, C20:1ω9, C20:5ω5, C22:6ω3 | 30 (dried) | No | 280 | 50 | 80 | 0.75 | Total oil extracted (185.6 μg/mg dried biomass) Total SFA (22.4% of total extract) Total MUFA (19.6% of total extract) Total PUFA (56.7% of total extract) EPA+DHA (39.4% of total extract) | |
Crustaceans | |||||||||
Farfantepenaeus paulensis Latreille [126] | C10:0, C12:0, C14:0, C15:0, C16:0, C16:1ω7, C17:0, C17:1, C18:0, C18:1ω9t, C18:1ω9, C18:2ω6, C18:2ω6t, C18:3 (two isomers), C18:4ω3, C20:0, C20:1ω11, C20:4ω6, C20:5ω3, C22:1ω9, C22:5ω3, C22:6ω3, C24:0 | 7 (dried) | No | 200–400 370 § | 40–60 57 § | 20 + 200 # | 2.5 | Total oil extracted (2.0%) Total PUFA (29.8% of total extract) Total ω3 fatty acids (18.3% of total extract) | |
Echinoderms | |||||||||
Strongylocentrotus nudus A. Agassiz [80] | C14:0, C14:1ω3, C15:0, C16:0, C16:1ω5, C16:1ω7, C16:1ω9, C18:0, C18:1ω7, trans-C18:1ω9, C18:1ω11, C18:2ω6, C18:2ω7, C18:3ω6, C19:1ω9, C20:0, C20:1ω7, C20:1ω9, C20:2ω6, C20:2ω7,10, C20:3ω3, C20:4ω3, C20:4ω6, C20:5ω3, C22:1ω9, C22:6ω3 | 30 (dried) | No | 280 | 50 | 80 | 0.59 | Total oil extracted (53.7%) Total SFA (28.1% of total extract) Total MUFA (29.1% of total extract) Total PUFA (33.3% of total extract) | |
Fishes | |||||||||
Hoplostethus atlanticus Collett [137] | C14:0, C16:0, C16:1, C18:0, C18:1ω9, C18:1ω7, C18:2ω6, C18:3ω6, C20:1ω9, C20:3ω6, C20:5ω3, C22:1ω11, C22:1ω9, C22:6ω3, C24:1 | 100 (dried) | No | 250 | 40 | 180 | 166.7 | Total oil extracted (~650 μg/mg dried biomass) Total fatty acids (388.0 μg/mg fish oil) Total ω3 fatty acids (8.0 μg/mg fish oil) Total ω6 fatty acids (11.0 μg/mg fish oil) | |
Fishes | |||||||||
Merluccius capensis Castelnau–Merluccius paradoxus Franca [137] | C14:0, C16:0, C16:1, C18:0, C18:1ω9, C18:1ω7, C18:2ω6, C18:3ω6, C18:3ω3, C18:4ω3, C20:1ω9, C20:3ω6, C20:4ω6, C20:5ω3, C22:1ω11, C22:1ω9, C22:4ω6, C22:5ω3, C22:6ω3, C24:1 | 100 (dried) | No | 250 | 40 | 180 | 166.7 | Total oil extracted (~150 μg/mg dried biomass) Total fatty acids (595.0 μg/mg fish oil) Total ω3 fatty acids (132.0 μg/mg fish oil) Total ω6 fatty acids (19.0 μg/mg fish oil) | |
Salmo salar L. [137] | C14:0, C16:0, C16:1, C18:0, C18:1ω9, C18:1ω7, C18:2ω6, C18:3ω6, C18:3ω3, C18:4ω3, C20:1ω9, C20:3ω6, C20:4ω6, C20:5ω3, C22:5ω3, C22:6ω3, C24:1 | 100 (dried) | No | 250 | 40 | 180 | 166.7 | Total oil extracted (~400 μg/mg dried biomass) Total fatty acids (789.0 μg/mg fish oil) Total ω3 fatty acids (100.0 μg/mg fish oil) Total ω6 fatty acids (108.0 μg/mg fish oil) |
Species | Compounds | Biomass (g) | Solvent | P (bar) | T (°C) | Time (min.) | Flow Rate (g/min) | Yield of Oil at Best Extraction Conditions |
---|---|---|---|---|---|---|---|---|
Nannochloropsis oculata (Droop) D. J. Hibberd [164] | C8:0, C10:0, C12:0, 14:0, C14:1, C15:0, C16:0, C16:1, C16:2, C16:3, C16:4, C17:0, C17:1, C18:0, C18:1, C18:2ω6, C18:3ω3, C18:3 ω6, C20:3ω6 C20:4ω6, C20:5ω3, C22:0, C22:1 | ~3–6 | Hexane, hexane/2-PrOH (2:1 v/v) and EtOH (96 v/v) with BHT (0.05 g/L) Hexane § | ~100–120 | 60 | 48 | static | Total PUFA (57.0 μg/mg biomass) Total C20:5ω3 (37.0 μg/mg biomass) |
Nannochloropsis salina D. J. Hibberd [165] | C12:0, C14:0, C16:0, C16:1, C18:0, C18:1ω9c, C18:2ω6c, C18:3ω6, C18:3ω3, C20:3ω6, C20:4ω6, C20:5ω3 | 3.30–11.70 (CH) a 10–30 (MWH) a CH: 7.5 § MWH: 25 § | water | 24.5 (CH) 21.5 (MWH) | 180–273 (CH) 168–220 (MWH) CH: 220 § MWH: 205 § | 9.89–35.11 (CH) 10–30 (MWH) CH: 25 § MWH: 25 § | static | Total oil extracted (~490 μg/mg dried biomass for CH and 300–400 μg/mg dried biomass dried weight for MWH) |
Phormidium sp. [166] | C16:0, C16:1ω7, C16:2, C18:0 | 2 (dried) | n-Hexane, n-hexane:EtOH (1:1), limonene, limonene:EtOH (1:1) Limonene:EtOH (1:1) § | 207 | 50–200 200 § | 15 | static | Total oil extracted (68.0 μg/mg dried biomass) |
Phormidium sp. [167] | C16:0, C16:1ω7 C18:2ω6 | 1 (dried) | Hexane, EtOH, water EtOH § | 103.4 | 50–200 200 § | 20 | static | Total oil extracted (409.0 μg/mg dried biomass) |
Species | Compounds | Biomass (g) | Solvent | Enzyme | T (°C) | Time (min) | Yield of Oil at Best Extraction Conditions |
---|---|---|---|---|---|---|---|
Mollusca | |||||||
Patinopecten yessoensis Jay [163] | C13:0, C14:0, C16:0, C16:1ω7, C16:2ω6, C18:1ω9, C18:2ω5, C18:2ω6, C18:4ω3, C20:1ω7, C20:1ω9, C20:5ω5, C22:6ω3 | 50 (dried) | Water (pH = 7); lipids recovered with hexane | papain | 50 | 240 | Total SFA (23.7% of total extract) Total MUFA (19.5% of total extract) Total PUFA (55.4% of total extract) |
Echinoderms | |||||||
Strongylocentrotus nudus A. Agassiz [80] | C14:0, C14:1ω3, C15:0, C16:0, C16:1ω5, C16:1ω7, C16:1ω9, C18:0, C18:1ω7, t-C18:1ω9, C18:1ω11, C18:2ω6, C18:2ω7, C18:3ω6, C19:1ω9, C20:0, C20:1ω7, C20:1ω9, C20:2ω6, C20:2ω7,10, C20:3ω3, C20:3ω6, C20:4ω3, C20:4ω6, C20:5ω3, C22:1ω9, C22:6ω3 | 10 | Water (pH =7, 8 or 8.5); lipids recovered with hexane | Papain, neutral protease, alkaline protease, trypsin | 40, 50 or 55 | 180 | Total SFA (25.2%–26.4% of total extract) b Total MUFA (28.8%–30.4% of total extract) b Total PUFA (34.7%–37.4% of total extract) b |
Fishes | |||||||
Salmo salar L. [168] | C14:0, C14:1ω9, C15:0, C16:0, C16:1ω7, C16:1ω9, C16:3ω3, C16:4ω3, C17:0, C18:0, C18:1ω7, C18:1ω9, C18:1ω11, C18:2ω6, C18:3ω3, C18:4ω3, C20:0, C20:1ω7, C20:1ω9, C20:1ω11, C20:2ω6, C20:3ω6, C20:4ω3, C20:4ω6, C20:5ω3, C22:1ω9, C22:1ω11, C22:6ω3 | 200,000 | - (pH = 6.5) | Protamex | 55 and then 90 | 60 | Total SFA (24.6%–26.7% of total fraction) c Total MUFA (31.1%–36.8% of total fraction) c Total PUFA (35.0%–39.8% of total fraction) c |
Salmon heads [169] | C14:0, C16:0, C18:0, C16:1ω7, 18:1ω9, C20:1ω9, C18:2ω6, C20:4ω6, C18:3ω3, C18:4ω3, C20:4ω3, C20:5ω3, C22:5ω3, C22:6ω3 | 10000 | - (pH = 7 or 7.5); | Neutrase, alcalase, flavourzyme; Alcalase § PUFA concentration with lipase | 45, 50 or 55 | 120 | Total SFA (19.9%–20.2% of total fatty acids) d Total MUFA (33.3%–33.5% of total fatty acids) d Total PUFA (46.5% of total fatty acids) d |
3.3. Sterols
3.4. Miscellaneous
Advantages | Disadvantages | |
---|---|---|
MAE |
|
|
UAE |
|
|
SFE |
|
|
PSE |
|
|
PEF |
|
|
EAE |
|
|
SPS and SHS |
|
|
IL |
|
|
4. Conventional vs. Alternative Extraction Methods: Future Perspectives
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hu, G.-P.; Yuan, J.; Sun, L.; She, Z.-G.; Wu, J.-H.; Lan, X.-J.; Zhu, X.; Lin, Y.-C.; Chen, S.-P. Statistical research on marine natural products based on data obtained between 1985 and 2008. Mar. Drugs 2011, 9, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products: Metabolites of marine algae and herbivorous marine molluscs. Nat. Prod. Rep. 1984, 1, 251–280. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products: Metabolites of marine invertebrates. Nat. Prod. Rep. 1984, 1, 551–598. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1986, 3, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1987, 4, 539–576. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1988, 5, 613–663. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1990, 7, 269–309. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1991, 8, 97–147. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1992, 9, 323–364. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1993, 10, 497–539. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1994, 11, 355–394. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1995, 12, 223–269. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1996, 13, 75–125. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1997, 14, 259–302. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1998, 15, 113–158. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 1999, 16, 155–198. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2000, 17, 7–55. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2001, 18, 1R–49R. [Google Scholar] [CrossRef]
- Faulkner, D.J. Marine natural products. Nat. Prod. Rep. 2002, 19, 1–49. [Google Scholar] [PubMed]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2003, 20, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2004, 21, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2005, 22, 15–61. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2006, 23, 26–78. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2007, 24, 31–86. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2008, 25, 35–94. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Hu, W.-P.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2009, 26, 170–244. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2010, 27, 165–237. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Munro, M.H.G.; Northcote, P.T.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2011, 28, 196–268. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2012, 29, 144–222. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2013, 30, 237–323. [Google Scholar] [CrossRef] [PubMed]
- Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2014, 31, 160–258. [Google Scholar] [CrossRef] [PubMed]
- Rostagno, M.A.; Villares, A.; Guillamón, E.; García-Lafuente, A.; Martínez, J.A. Sample preparation for the analysis of isoflavones from soybeans and soy foods. J. Chromatogr. A 2009, 1216, 2–29. [Google Scholar] [CrossRef] [PubMed]
- Luthria, D.L. Significance of sample preparation in developing analytical methodologies for accurate estimation of bioactive compounds in functional foods. J. Sci. Food Agric. 2006, 86, 2266–2272. [Google Scholar] [CrossRef]
- Romanik, G.; Gilgenast, E.; Przyjazny, A.; Kamiński, M. Techniques of preparing plant material for chromatographic separation and analysis. J. Biochem. Biophys. Methods 2007, 70, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Hickey, A.J.; Ganderton, D. Solid-liquid extraction. In Pharmaceutical Process Engineering, 2nd ed.; CRC Press; Taylor and Francis Group: London, UK, 2009; pp. 87–91. [Google Scholar]
- Heng, M.Y.; Tan, S.N.; Yong, J.W.H.; Ong, E.S. Emerging green technologies for the chemical standardization of botanicals and herbal preparations. Trends Anal. Chem. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Veggi, P.C.; Martinez, J.; Meireles, M.A.A. Fundamentals of microwave extraction. In Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice; Food Engineering Series 4; Chemat, F., Cravotto, G., Eds.; Springer: New York, NY, USA, 2013; pp. 15–52. [Google Scholar]
- Sticher, O. Natural product isolation. Nat. Prod. Rep. 2008, 25, 517–554. [Google Scholar] [CrossRef] [PubMed]
- Bucar, F.; Wube, A.; Schmid, M. Natural product isolation—How to get from biological material to pure compounds. Nat. Prod. Rep. 2013, 30, 525–545. [Google Scholar] [CrossRef] [PubMed]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, G.; Zhao, G.; Hu, X. Optimization of microwave-assisted extraction of astaxanthin from Haematococcus pluvialis by response surface methodology and antioxidant activities of the extracts. Sep. Sci. Technol. 2009, 44, 243–262. [Google Scholar] [CrossRef]
- Kaufmann, B.; Christen, P. Recent extraction techniques for natural products: Microwave-assisted extraction and pressurised solvent extraction. Phytochem. Anal. 2002, 13, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Si, X.; Yuan, Z.; Xu, X.; Li, G. Isolation of fucoxanthin from edible brown algae by microwave-assisted extraction coupled with high-speed countercurrent chromatography. J. Sep. Sci. 2012, 35, 2313–2317. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, S.; Allen, J.D.; Kanitkar, A.; Boldor, D. Oil extraction from Scenedesmus obliquus using a continuous microwave system—Design, optimization, and quality characterization. Bioresour. Technol. 2011, 102, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.L.; Choi, S.J.; Chun, J.K.; Moon, T.W. Extraction yield of soluble protein and microstructure of soybean affected by microwave heating. J. Food Process. Preserv. 2006, 30, 407–419. [Google Scholar] [CrossRef]
- Wang, L. Advances in extraction of plant products in nutraceutical processing. In Handbook of Nutraceuticals Volume II Scale-Up, Processing and Automation; Pathak, Y., Ed.; CRC Press: Boca Raton, FL, USA, 2011; pp. 15–52. [Google Scholar]
- Popper, Z.A.; Michel, G.; Hervé, C.; Domozych, D.S.; Willats, W.G.T.; Tuohy, M.G.; Kloareg, B.; Stengel, D.B. Evolution and diversity of plant cell walls: From algae to flowering plants. Ann. Rev. Plant Biol. 2011, 62, 567–590. [Google Scholar] [CrossRef]
- Morrissey, J.; Sumich, J. Introduction to the Biology of Marine Life, 10th ed.; Jones & Battlett: Sudbury, MA, USA, 2012. [Google Scholar]
- Zou, T.-B.; Jia, Q.; Li, H.-W.; Wang, C.-X.; Wu, H.-F. Response surface methodology for ultrasound-assisted extraction of astaxanthin from Haematococcus pluvialis. Mar. Drugs 2013, 11, 1644–1655. [Google Scholar] [CrossRef] [PubMed]
- Vardanega, R.; Santos, D.T.; Meireles, M.A.A. Intensification of bioactive compounds extraction from medicinal plants using ultrasonic irradiation. Pharmacogn. Rev. 2014, 8, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Picó, Y. Ultrasound-assisted extraction for food and environmental samples. Trends Anal. Chem. 2013, 43, 84–99. [Google Scholar] [CrossRef]
- Kong, W.; Liu, N.; Zhang, J.; Yang, Q.; Hua, S.; Song, H.; Xia, C. Optimization of ultrasound-assisted extraction parameters of chlorophyll from Chlorella vulgaris residue after lipid separation using response surface methodology. J. Food Sci. Technol. 2014, 51, 2006–2013. [Google Scholar] [CrossRef] [PubMed]
- Macías-Sánchez, M.D.; Mantell, C.; Rodríguez, M.; Martínez de la Ossa, E.; Lubián, L.M.; Montero, O. Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 2009, 77, 948–952. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R.; Ang, W.M.R.; Chen, X.; Voigtmann, M.; Lau, R. Lipid releasing characteristics of microalgae species through continuous ultrasonication. Bioresour. Technol. 2014, 158, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Plaza, M.; Santoyo, S.; Jaime, L.; Avalo, B.; Cifuentes, A.; Reglero, G.; García-Blairsy Reina, G.; Señoráns, F.J.; Ibáñez, E. Comprehensive characterization of the functional activities of pressurized liquid and ultrasound-assisted extracts from Chlorella vulgaris. LWT Food Sci. Technol. 2012, 46, 245–253. [Google Scholar] [CrossRef]
- Quitain, A.T.; Kai, T.; Sasaki, M.; Goto, M. Supercritical carbon dioxide extraction of fucoxanthin from Undaria pinnatifida. J. Agric. Food Chem. 2013, 61, 5792–5797. [Google Scholar] [CrossRef] [PubMed]
- Ali-Nehari, A.; Kim, S.-B.; Lee, Y.-B.; Lee, H.-Y.; Chun, B.-S. Characterization of oil including astaxanthin extracted from krill (Euphausia superba) using supercritical carbon dioxide and organic solvent as comparative method. Korean J. Chem. Eng. 2012, 29, 329–336. [Google Scholar] [CrossRef]
- Careri, M.; Furlattini, L.; Mangia, A.; Musci, M.; Anklam, E.; Theobald, A.; von Holst, C. Supercritical fluid extraction for liquid chromatographic determination of carotenoids in Spirulina pacifica algae: A chemometric approach. J. Chromatogr. A 2001, 912, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Mendes, R.L.; Nobre, B.P.; Cardoso, M.T.; Pereira, A.P.; Palavra, A.F. Supercritical carbon dioxide extraction of compounds with pharmaceutical importance from microalgae. Inorg. Chim. Acta 2003, 356, 328–334. [Google Scholar] [CrossRef]
- Macı́as-Sánchez, M.D.; Mantell, C.; Rodrı́guez, M.; Martı́nez de la Ossa, E.; Lubián, L.M.; Montero, O. Supercritical fluid extraction of carotenoids and chlorophyll a from Nannochloropsis gaditana. J. Food Eng. 2005, 66, 245–251. [Google Scholar] [CrossRef]
- Macías-Sánchez, M.D.; Mantell Serrano, C.; Rodríguez Rodríguez, M.; Martínez de la Ossa, E.; Lubián, L.M.; Montero, O. Extraction of carotenoids and chlorophyll from microalgae with supercritical carbon dioxide and ethanol as cosolvent. J. Sep. Sci. 2008, 31, 1352–1362. [Google Scholar] [CrossRef] [PubMed]
- Jaime, L.; Mendiola, J.A.; Ibáñez, E.; Martin-Álvarez, P.J.; Cifuentes, A.; Reglero, G.; Señoráns, F.J. β-Carotene isomer composition of sub- and supercritical carbon dioxide extracts. Antioxidant activity measurement. J. Agric. Food Chem. 2007, 55, 10585–10590. [Google Scholar] [CrossRef] [PubMed]
- Liley, P.E.; Thomson, G.H.; Friend, D.G.; Daubert, T.E.; Buck, E. Physical and Chemical Data. In Perry’s Chemical Engineers’ Handbook, 7th ed.; Perry, R.H., Green, D.W., Maloney, J.O., Eds.; McGrawHill: New York, NY, USA, 1999; Section 2. [Google Scholar]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of novel extraction technologies for bioactives from marine algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Feng, X.; Han, Y.; Xue, C. Optimization of subcritical fluid extraction of carotenoids and chlorophyll a from Laminaria japonica Aresch by response surface methodology. J. Sci. Food Agric. 2014, 94, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Castro-Puyana, M.; Mendiola, J.A.; Ibañez, E. Compressed fluids for the extraction of bioactive compounds. Trends Anal. Chem. 2013, 43, 67–83. [Google Scholar] [CrossRef]
- Li, P.; Makino, H. Liquefied dimethyl ether: An energy-saving, green extraction solvent. In Alternative Solvents for Natural Products Extraction; Chemat, F., Abert, V.M., Eds.; Springer: Berlin Heidelberg, Germany, 2014; pp. 91–106. [Google Scholar]
- Kanda, H.; Li, P. Simple extraction method of green crude from natural blue-green microalgae by dimethyl ether. Fuel 2011, 90, 1264–1266. [Google Scholar] [CrossRef]
- Kanda, H.; Kamo, Y.; Machmudah, S.; Wahyudiono, E.Y.; Goto, M. Extraction of fucoxanthin from raw macroalgae excluding drying and cell wall disruption by liquefied dimethyl ether. Mar. Drugs 2014, 12, 2383–2396. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Kanda, H.; Wahyudiono, E.Y.; Machmudah, S. Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J. Supercrit. Fluids 2015, 96, 245–251. [Google Scholar] [CrossRef]
- Kandušer, M.; Miklavčič, D. Electroporation in biological cell and tissue: An overview. In Electrotechnologies for Extraction from Food Plants and Biomaterials; Vorobiev, E., Lebovka, N., Eds.; Springer Science + Business Media, LLC: New York, NY, USA, 2008; pp. 1–37. [Google Scholar]
- Siemer, C.; Toepfl, S.; Heinz, V. Mass transport improvement by PEF—Applications in the area of extraction and distillation. In Distillation—Advances from Modeling to Applications; Zereshki, S., Ed.; InTech: Rijeka, Croatia, 2012; pp. 211–232. [Google Scholar]
- Zbinden, M.D.A.; Sturm, B.S.M.; Nord, R.D.; Carey, W.J.; Moore, D.; Shinogle, H.; Stagg-Williams, S.M. Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae. Biotechnol. Bioeng. 2013, 110, 1605–1615. [Google Scholar] [CrossRef] [PubMed]
- Wijesinghe, W.A.J.P.; Jeon, Y.-J. Enzyme-assistant extraction (EAE) of bioactive components: A useful approach for recovery of industrially important metabolites from seaweeds: A review. Fitoterapia 2012, 83, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-C.; Lee, S.-H.; Ahn, G.; Kim, K.-N.; Cha, S.-H.; Kim, S.-K.; Jeon, B.-T.; Park, P.-J.; Lee, K.-W.; Jeon, Y.-J. Effect of enzyme-assisted extract of Sargassum coreanum on induction of apoptosis in HL-60 tumor cells. J. Appl. Phycol. 2012, 24, 675–684. [Google Scholar] [CrossRef]
- Fleurence, J.; Massiani, L.; Guyader, O.; Mabeau, S. Use of enzymatic cell wall degradation for improvement of protein extraction from Chondrus crispus, Gracilaria verrucosa and Palmaria palmata. J. Appl. Phycol. 1995, 7, 393–397. [Google Scholar] [CrossRef]
- Heo, S.-J.; Park, E.-J.; Lee, K.-W.; Jeon, Y.-J. Antioxidant activities of enzymatic extracts from brown seaweeds. Bioresour. Technol. 2005, 96, 1613–1623. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-N.; Heo, S.-J.; Song, C.B.; Lee, J.; Heo, M.-S.; Yeo, I.-K.; Kang, K.A.; Hyun, J.W.; Jeon, Y.-J. Protective effect of Ecklonia cava enzymatic extracts on hydrogen peroxide-induced cell damage. Process Biochem. 2006, 41, 2393–2401. [Google Scholar] [CrossRef]
- Wang, T.; Jónsdóttir, R.; Kristinsson, H.G.; Hreggvidsson, G.O.; Jónsson, J.Ó.; Thorkelsson, G.; Ólafsdóttir, G. Enzyme-enhanced extraction of antioxidant ingredients from red algae Palmaria palmata. LWT—Food Sci. Technol. 2010, 43, 1387–1393. [Google Scholar] [CrossRef]
- Zhu, B.-W.; Qin, L.; Zhou, D.-Y.; Wu, H.-T.; Wu, J.; Yang, J.-F.; Li, D.-M.; Dong, X.-P.; Murata, Y. Extraction of lipid from sea urchin (Strongylocentrotus nudus) gonad by enzyme-assisted aqueous and supercritical carbon dioxide methods. Eur. Food Res. Technol. 2010, 230, 737–743. [Google Scholar] [CrossRef]
- Liang, K.; Zhang, Q.; Cong, W. Enzyme-assisted aqueous extraction of lipid from microalgae. J. Agric. Food Chem. 2012, 60, 11771–11776. [Google Scholar] [CrossRef] [PubMed]
- Jessop, P.G.; Heldebrant, D.J.; Li, X.; Eckert, C.A.; Liotta, C.L. Green chemistry: Reversible nonpolar-to-polar solvent. Nature 2005, 436, 1102–1102. [Google Scholar] [CrossRef] [PubMed]
- Samorì, C.; Torri, C.; Samorì, G.; Fabbri, D.; Galletti, P.; Guerrini, F.; Pistocchi, R.; Tagliavini, E. Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour. Technol. 2010, 101, 3274–3279. [Google Scholar] [CrossRef] [PubMed]
- Jessop, P.G.; Mercer, S.M.; Heldebrant, D.J. CO2-triggered switchable solvents, surfactants, and other materials. Energy Environ. Sci. 2012, 5, 7240–7253. [Google Scholar] [CrossRef]
- Boyd, A.R.; Champagne, P.; McGinn, P.J.; MacDougall, K.M.; Melanson, J.E.; Jessop, P.G. Switchable hydrophilicity solvents for lipid extraction from microalgae for biofuel production. Bioresour. Technol. 2012, 118, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Row, K.H. Recent applications of ionic liquids in separation technology. Molecules 2010, 15, 2405–2426. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Deetlefs, M.; Seddon, K.R. Assessing the greenness of some typical laboratory ionic liquid preparations. Green Chem. 2010, 12, 17–30. [Google Scholar] [CrossRef]
- Donia, M.; Hamann, M.T. Marine natural products and their potential applications as anti-infective agents. Lancet Infect. Dis. 2003, 3, 338–348. [Google Scholar] [CrossRef] [PubMed]
- Fattorusso, E.; Taglialatela-Scafati, O. Marine antimalarials. Mar. Drugs 2009, 7, 130–152. [Google Scholar] [CrossRef] [PubMed]
- El Sayed, K.A.; Bartyzel, P.; Shen, X.; Perry, T.L.; Zjawiony, J.K.; Hamann, M.T. Marine natural products as antituberculosis agents. Tetrahedron 2000, 56, 949–953. [Google Scholar] [CrossRef]
- Gochfeld, D.J.; El Sayed, K.A.; Yousaf, M.; Hu, J.F.; Bartyzel, P.; Dunbar, D.C.; Wilkins, S.P.; Zjawiony, J.K.; Schinazi, R.F.; Wirtz, S.S. Marine natural products as lead anti-HIV agents. Mini Rev. Med. Chem. 2003, 3, 401–424. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-X.; Himaya, S.; Kim, S.-K. Triterpenoids of marine origin as anti-cancer agents. Molecules 2013, 18, 7886–7909. [Google Scholar] [CrossRef] [PubMed]
- Sima, P.; Vetvicka, V. Bioactive substances with anti-neoplastic efficacy from marine invertebrates: Porifera and Coelenterata. World J. Clin. Oncol. 2011, 2, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Vílchez, C.; Forján, E.; Cuaresma, M.; Bédmar, F.; Garbayo, I.; Vega, J.M. Marine carotenoids: Biological functions and commercial applications. Mar. Drugs 2011, 9, 319–333. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.H.; Lim, J.W.; Kim, H. Mechanism of β-carotene-induced apoptosis of gastric cancer cells: Involvement of ataxia-telangiectasia-mutated. Ann. N.Y. Acad. Sci. 2009, 1171, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Chew, B.P.; Park, J.S.; Wong, M.W.; Wong, T.S. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Cancer Res. 1999, 19, 1849–1853. [Google Scholar]
- Anderson, M.L. A Preliminary investigation of the enzymatic inhibition of 5α-reductase and growth of prostatic carcinoma cell line LNCap-FGC by natural astaxanthin and saw palmetto lipid extract in vitro. J. Herb. Pharmacother. 2005, 5, 17–26. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, N.; Gammone, M.A.; Gemello, E.; de Girolamo, M.; Cusenza, S.; Riccioni, G. Marine bioactives: Pharmacological properties and potential applications against inflammatory diseases. Mar. Drugs 2012, 10, 812–833. [Google Scholar] [CrossRef] [PubMed]
- Sajilata, M.G.; Bule, M.V.; Chavan, P.; Singhal, R.S.; Kamat, M.Y. Development of efficient supercritical carbon dioxide extraction methodology for zeaxanthin from dried biomass of Paracoccus zeaxanthinifaciens. Sep. Purif. Technol. 2010, 71, 173–177. [Google Scholar] [CrossRef]
- Nobre, B.; Marcelo, F.; Passos, R.; Beirão, L.; Palavra, A.; Gouveia, L.; Mendes, R. Supercritical carbon dioxide extraction of astaxanthin and other carotenoids from the microalga Haematococcus pluvialis. Eur. Food Res. Technol. 2006, 223, 787–790. [Google Scholar] [CrossRef]
- Wu, Z.; Wu, S.; Shi, X. Supercritical fluid extraction and determination of lutein in heterotrophically cultivated Chlorella pyrenoidosa. J. Food Process Eng. 2007, 30, 174–185. [Google Scholar] [CrossRef]
- Tang, G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am. J. Clin. Nutr. 2010, 91, 1468S–1473S. [Google Scholar] [CrossRef] [PubMed]
- Guerin, M.; Huntley, M.E.; Olaizola, M. Haematococcus astaxanthin: Applications for human health and nutrition. Trends Biotechnol. 2003, 21, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P. Prooxidant actions of carotenoids in biologic systems. Nutr. Rev. 1998, 56, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Okuda, R.; Lopez-Avila, V. Supercritical fluid extraction of halogenated monoterpenes from the red alga Plocamium cartilagineum. J. AOAC Int. 2001, 84, 1313–1331. [Google Scholar] [PubMed]
- Zheng, J.; Chen, Y.; Yao, F.; Chen, W.; Shi, G. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax. Mar. Drugs 2012, 10, 2634–2647. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Amagata, T.; Sashidhara, K.V.; Oliver, A.G.; Tenney, K.; Matainaho, T.; Ang, K.K.-H.; McKerrow, J.H.; Crews, P. The aignopsanes, a new class of sesquiterpenes from selected chemotypes of the sponge Cacospongia mycofijiensis. Org. Lett. 2009, 11, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Sohn, J.; Inman, W.D.; Estee, S.A.; Loveridge, S.T.; Vervoort, H.C.; Tenney, K.; Liu, J.; Ang, K.K.-H.; Ratnam, J.; et al. Natural product libraries to accelerate the high-throughput discovery of therapeutic leads. J. Nat. Prod. 2011, 74, 2545–2555. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Tenney, K.; Cichewicz, R.H.; Morinaka, B.I.; White, K.N.; Amagata, T.; Subramanian, B.; Media, J.; Mooberry, S.L.; Valeriote, F.A.; et al. The sponge-derived fijianolide polyketide class: Further evaluation of their structural and cytotoxicity properties. J. Med. Chem. 2007, 50, 3795–3803. [Google Scholar] [CrossRef] [PubMed]
- Coué, M.; Brenner, S.L.; Spector, I.; Korn, E.D. Inhibition of actin polymerization by latrunculin A. FEBS Lett. 1987, 213, 316–318. [Google Scholar] [CrossRef] [PubMed]
- Hattab, M.E.; Culioli, G.; Piovetti, L.; Chitour, S.E.; Valls, R. Comparison of various extraction methods for identification and determination of volatile metabolites from the brown alga Dictyopteris membranacea. J. Chromatogr. A 2007, 1143, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Rubio, B.K.; van Soest, R.W.M.; Crews, P. Extending the record of meroditerpenes from Cacospongia marine sponges. J. Nat. Prod. 2007, 70, 628–631. [Google Scholar] [CrossRef] [PubMed]
- Pasquet, V.; Chérouvrier, J.-R.; Farhat, F.; Thiéry, V.; Piot, J.-M.; Bérard, J.-B.; Kaas, R.; Serive, B.; Patrice, T.; Cadoret, J.-P.; et al. Study on the microalgal pigments extraction process: Performance of microwave assisted extraction. Process Biochem. 2011, 46, 59–67. [Google Scholar] [CrossRef]
- Kim, S.; Jung, Y.-J.; Kwon, O.-N.; Cha, K.; Um, B.-H.; Chung, D.; Pan, C.-H. A Potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol. 2012, 166, 1843–1855. [Google Scholar] [CrossRef] [PubMed]
- Macías-Sánchez, M.D.; Mantell, C.; Rodríguez, M.; Martínez de la Ossa, E.; Lubián, L.M.; Montero, O. Supercritical fluid extraction of carotenoids and chlorophyll a from Synechococcus sp. J. Supercrit. Fluids 2007, 39, 323–329. [Google Scholar] [CrossRef]
- Mezzomo, N.; Maestri, B.; dos Santos, R.L.; Maraschin, M.; Ferreira, S.R.S. Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta 2011, 85, 1383–1391. [Google Scholar] [CrossRef] [PubMed]
- Ota, M.; Watanabe, H.; Kato, Y.; Watanabe, M.; Sato, Y.; Smith, R.L.; Inomata, H. Carotenoid production from Chlorococcum littorale in photoautotrophic cultures with downstream supercritical fluid processing. J. Sep. Sci. 2009, 32, 2327–2335. [Google Scholar] [CrossRef] [PubMed]
- Macías-Sánchez, M.D.; Serrano, C.M.; Rodríguez, M.R.; Martínez de la Ossa, E. Kinetics of the supercritical fluid extraction of carotenoids from microalgae with CO2 and ethanol as cosolvent. Chem. Eng. J. 2009, 150, 104–113. [Google Scholar] [CrossRef]
- Nobre, B.P.; Villalobos, F.; Barragán, B.E.; Oliveira, A.C.; Batista, A.P.; Marques, P.A.S.S.; Mendes, R.L.; Sovová, H.; Palavra, A.F.; Gouveia, L. A biorefinery from Nannochloropsis sp. microalga—Extraction of oils and pigments. Production of biohydrogen from the leftover biomass. Bioresour. Technol. 2013, 135, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Liau, B.-C.; Hong, S.-E.; Chang, L.-P.; Shen, C.-T.; Li, Y.-C.; Wu, Y.-P.; Jong, T.-T.; Shieh, C.-J.; Hsu, S.-L.; Chang, C.-M.J. Separation of sight-protecting zeaxanthin from Nannochloropsis oculata by using supercritical fluids extraction coupled with elution chromatography. Sep. Purif. Technol. 2011, 78, 1–8. [Google Scholar] [CrossRef]
- Montero, O.; Macías-Sánchez, M.D.; Lama, C.M.; Lubián, L.M.; Mantell, C.; Rodríguez, M.; de la Ossa, E.M. Supercritical CO2 extraction of β-carotene from a marine strain of the cyanobacterium Synechococcus species. J. Agric. Food Chem. 2005, 53, 9701–9707. [Google Scholar] [CrossRef] [PubMed]
- Roh, M.-K.; Uddin, M.S.; Chun, B.-S. Extraction of fucoxanthin and polyphenol from Undaria pinnatifida using supercritical carbon dioxide with co-solvent. Biotechnol. Bioprocess Eng. 2008, 13, 724–729. [Google Scholar] [CrossRef]
- Félix-Valenzuela, L.; Higuera-Ciapara, I.; Goycoolea-Valencia, F.; Argüelles-Monal, W. Supercritical CO2/ethanol extraction of astaxanthin from blue crab (Callinectes sapidus) shell waste. J. Food Process Eng. 2001, 24, 101–112. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Almeida Meireles, M.A.; Lopes, B.L.F.; Cabral, F.A. Proximate composition and extraction of carotenoids and lipids from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J. Food Eng. 2011, 102, 87–93. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Martinez-Correa, H.A.; Paviani, L.C.; Cabral, F.A. Supercritical CO2 extraction of lipids and astaxanthin from Brazilian redspotted shrimp waste (Farfantepenaeus paulensis). J. Supercrit. Fluids 2011, 56, 164–173. [Google Scholar] [CrossRef]
- Corrêa, N.C.F.; Macedo, C.S.; Moraes, J.F.C.; Machado, N.T.; de França, L.F. Characteristics of the extract of Litopenaeus vannamei shrimp obtained from the cephalothorax using pressurized CO2. J. Supercrit. Fluids 2012, 66, 176–180. [Google Scholar] [CrossRef]
- Radzali, S.A.; Baharin, B.S.; Othman, R.; Markom, M.; Rahman, R.A. Co-solvent selection for supercritical fluid extraction of astaxanthin and other carotenoids from Penaeus monodon waste. J. Oleo Sci. 2014, 63, 769–777. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Jaime, L.; Martín-Álvarez, P.J.; Cifuentes, A.; Ibáñez, E. Optimization of the extraction of antioxidants from Dunaliella salina microalga by pressurized liquids. J. Agric. Food Chem. 2006, 54, 5597–5603. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.F.; Kim, S.M.; Lee, W.J.; Um, B.-H. Pressurized liquid method for fucoxanthin extraction from Eisenia bicyclis (Kjellman) Setchell. J. Biosci. Bioeng. 2011, 111, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, Q.; Wang, L.; Xue, C. Extraction of astaxanthin from Euphausia pacific using subcritical 1,1,1,2-tetrafluoroethane. J. Ocean Univ. China 2012, 11, 562–568. [Google Scholar] [CrossRef]
- Billakanti, J.M.; Catchpole, O.; Fenton, T.; Mitchell, K. Extraction of fucoxanthin from Undaria pinnatifida using enzymatic pre-treatment followed by DME and EtOH co-solvent extraction. In 10th International Symposium on Supercritical Fluids; King, J., Ed.; CASSS: Emeryville, CA, USA, 2012. [Google Scholar]
- Wong, T.Y.; Preston, L.A.; Schiller, N.L. Alginate lyase: Review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Ann. Rev. Microbiol. 2000, 54, 289–340. [Google Scholar] [CrossRef]
- Bi, W.; Tian, M.; Zhou, J.; Row, K.H. Task-specific ionic liquid-assisted extraction and separation of astaxanthin from shrimp waste. J. Chromatogr. B 2010, 878, 2243–2248. [Google Scholar] [CrossRef]
- Gillingham, L.; Harris-Janz, S.; Jones, P.H. Dietary monounsaturated fatty acids are protective against metabolic syndrome and cardiovascular disease risk factors. Lipids 2011, 46, 209–228. [Google Scholar] [CrossRef] [PubMed]
- Sahena, F.; Zaidul, I.S.M.; Jinap, S.; Saari, N.; Jahurul, H.A.; Abbas, K.A.; Norulaini, N.A. PUFAs in fish: Extraction, fractionation, importance in health. Compr. Rev. Food Sci. Food Saf. 2009, 8, 59–74. [Google Scholar] [CrossRef]
- Rubio-Rodríguez, N.; de Diego, S.M.; Beltrán, S.; Jaime, I.; Sanz, M.T.; Rovira, J. Supercritical fluid extraction of fish oil from fish by-products: A comparison with other extraction methods. J. Food Eng. 2012, 109, 238–248. [Google Scholar] [CrossRef]
- Kris-Etherton, P.M. Monounsaturated fatty acids and risk of cardiovascular disease. Circulation 1999, 100, 1253–1258. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Pearson, T.A.; Wan, Y.; Hargrove, R.L.; Moriarty, K.; Fishell, V.; Etherton, T.D. High-monounsaturated fatty acid diets lower both plasma cholesterol and triacylglycerol concentrations. Am. J. Clin. Nutr. 1999, 70, 1009–1015. [Google Scholar] [PubMed]
- Solana, M.; Rizza, C.S.; Bertucco, A. Exploiting microalgae as a source of essential fatty acids by supercritical fluid extraction of lipids: Comparison between Scenedesmus obliquus, Chlorella protothecoides and Nannochloropsis salina. J. Supercrit. Fluids 2014, 92, 311–318. [Google Scholar] [CrossRef]
- Kennedy, M.J.; Reader, S.L.; Davies, R.J. Fatty acid production characteristics of fungi with particular emphasis on gamma linolenic acid production. Biotechnol. Bioeng. 1993, 42, 625–634. [Google Scholar] [CrossRef] [PubMed]
- Couto, R.M.; Simões, P.C.; Reis, A.; da Silva, T.L.; Martins, V.H.; Sánchez-Vicente, Y. Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng. Life Sci. 2010, 10, 158–164. [Google Scholar]
- Church, M.W.; Jen, K.L.C.; Dowhan, L.M.; Adams, B.R.; Hotra, J.W. Excess and deficient omega-3 fatty acid during pregnancy and lactation cause impaired neural transmission in rat pups. Neurotoxicol. Teratol. 2008, 30, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Miles, E.A.; Calder, P.C. Influence of marine n-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br. J. Nutr. 2012, 107, S171–S184. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, M.W.; Macrides, T.A.; Kalafatis, N.; Betts, W.H.; Haynes, D.R.; Broadbent, J. Anti-inflammatory activity of a lipid fraction (lyprinol) from the NZ green-lipped mussel. Inflammopharmacolology 1997, 5, 237–246. [Google Scholar] [CrossRef]
- Li, G.; Fu, Y.; Zheng, J.; Li, D. Anti-Inflammatory activity and mechanism of a lipid extract from hard-shelled mussel (Mytilus coruscus) on chronic arthritis in rats. Mar. Drugs 2014, 12, 568–588. [Google Scholar] [CrossRef] [PubMed]
- Mendiola, J.; Torres, C.; Toré, A.; Martín-Álvarez, P.; Santoyo, S.; Arredondo, B.; Señoráns, F.J.; Cifuentes, A.; Ibáñez, E. Use of supercritical CO2 to obtain extracts with antimicrobial activity from Chaetoceros muelleri microalga. A correlation with their lipidic content. Eur. Food Res. Technol. 2007, 224, 505–510. [Google Scholar] [CrossRef]
- Sun, C.Q.; O’Connor, C.J.; Roberton, A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEMS Immunol. Med. Microbiol. 2003, 36, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y.; Kim, Y.-H.; Kim, W.-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.; Lawlor, K. Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs 2013, 11, 4544–4557. [Google Scholar] [CrossRef] [PubMed]
- Park, N.-H.; Choi, J.-S.; Hwang, S.-Y.; Kim, Y.-C.; Hong, Y.-K.; Cho, K.; Choi, I. Antimicrobial activities of stearidonic and gamma-linolenic acids from the green seaweed Enteromorpha linza against several oral pathogenic bacteria. Bot. Stud. 2013, 54, 1–9. [Google Scholar] [CrossRef]
- Mubarak, M.; Shaija, A.; Suchithra, T.V. A review on the extraction of lipid from microalgae for biodiesel production. Algal Res. 2015, 7, 117–123. [Google Scholar] [CrossRef]
- Qv, X.-Y.; Zhou, Q.-F.; Jiang, J.-G. Ultrasound-enhanced and microwave-assisted extraction of lipid from Dunaliella tertiolecta and fatty acid profile analysis. J. Sep. Sci. 2014, 37, 2991–2999. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Theegala, C. Microwave assisted lipid extraction from microalgae using biodiesel as co-solvent. Algal Res. 2013, 2, 34–42. [Google Scholar] [CrossRef]
- Teo, C.L.; Idris, A. Enhancing the various solvent extraction method via microwave irradiation for extraction of lipids from marine microalgae in biodiesel production. Bioresour. Technol. 2014, 171, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Adam, F.; Abert-Vian, M.; Peltier, G.; Chemat, F. “Solvent-free” ultrasound-assisted extraction of lipids from fresh microalgae cells: A green, clean and scalable process. Bioresour. Technol. 2012, 114, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Halim, R.; Gladman, B.; Danquah, M.K.; Webley, P.A. Oil extraction from microalgae for biodiesel production. Bioresour. Technol. 2011, 102, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Andrich, G.; Nesti, U.; Venturi, F.; Zinnai, A.; Fiorentini, R. Supercritical fluid extraction of bioactive lipids from the microalga Nannochloropsis sp. Eur. J. Lipid Sci. Technol. 2005, 107, 381–386. [Google Scholar] [CrossRef]
- Mouahid, A.; Crampon, C.; Toudji, S.-A.A.; Badens, E. Supercritical CO2 extraction of neutral lipids from microalgae: Experiments and modelling. J. Supercrit. Fluids 2013, 77, 7–16. [Google Scholar] [CrossRef]
- Crampon, C.; Mouahid, A.; Toudji, S.-A.A.; Lépine, O.; Badens, E. Influence of pretreatment on supercritical CO2 extraction from Nannochloropsis oculata. J. Supercrit. Fluids 2013, 79, 337–344. [Google Scholar] [CrossRef]
- Bjornsson, W.J.; MacDougall, K.M.; Melanson, J.E.; O’Leary, S.J.B.; McGinn, P.J. Pilot-scale supercritical carbon dioxide extractions for the recovery of triacylglycerols from microalgae: A practical tool for algal biofuels research. J. Appl. Phycol. 2012, 24, 547–555. [Google Scholar] [CrossRef]
- Tang, S.; Qin, C.; Wang, H.; Li, S.; Tian, S. Study on supercritical extraction of lipids and enrichment of DHA from oil-rich microalgae. J. Supercrit. Fluids 2011, 57, 44–49. [Google Scholar] [CrossRef]
- Zhou, D.-Y.; Zhu, B.-W.; Tong, L.; Wu, H.-T.; Qin, L.; Tan, H.; Chi, Y.-L.; Qu, J.-Y.; Murata, Y. Extraction of lipid from scallop (Patinopecten yessoensis) viscera by enzyme-assisted solvent and supercritical carbon dioxide methods. Int. J. Food Sci. Technol. 2010, 45, 1787–1793. [Google Scholar] [CrossRef]
- Pieber, S.; Schober, S.; Mittelbach, M. Pressurized fluid extraction of polyunsaturated fatty acids from the microalga Nannochloropsis oculata. Biomass Bioenergy 2012, 47, 474–482. [Google Scholar] [CrossRef]
- Reddy, H.K.; Muppaneni, T.; Sun, Y.; Li, Y.; Ponnusamy, S.; Patil, P.D.; Dailey, P.; Schaub, T.; Holguin, F.O.; Dungan, B.; et al. Subcritical water extraction of lipids from wet algae for biodiesel production. Fuel 2014, 133, 73–81. [Google Scholar] [CrossRef]
- Golmakani, M.T.; Mendiola, J.A.; Rezaei, K.; Ibáñez, E. Pressurized limonene as an alternative bio-solvent for the extraction of lipids from marine microorganisms. J. Supercrit. Fluids 2014, 92, 1–7. [Google Scholar] [CrossRef]
- Rodríguez-Meizoso, I.; Jaime, L.; Santoyo, S.; Cifuentes, A.; García-Blairsy Reina, G.; Señoráns, F.; Ibáñez, E. Pressurized fluid extraction of bioactive compounds from Phormidium species. J. Agric. Food Chem. 2008, 56, 3517–3523. [Google Scholar] [CrossRef] [PubMed]
- Liaset, B.; Julshamn, K.; Espe, M. Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with ProtamexTM. Process Biochem. 2003, 38, 1747–1759. [Google Scholar] [CrossRef]
- Linder, M.; Fanni, J.; Parmentier, M. Proteolytic extraction of salmon oil and PUFA concentration by lipases. Mar. Biotechnol. 2005, 15, 70–76. [Google Scholar] [CrossRef]
- Converti, A.; Casazza, A.A.; Ortiz, E.Y.; Perego, P.; del Borghi, M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. Process Intensif. 2009, 48, 1146–1151. [Google Scholar] [CrossRef]
- Samori, C.; Lopez Barreiro, D.; Vet, R.; Pezzolesi, L.; Brilman, D.W.F.; Galletti, P.; Tagliavini, E. Effective lipid extraction from algae cultures using switchable solvents. Green Chem. 2013, 15, 353–356. [Google Scholar] [CrossRef]
- Hao, S.; Wei, Y.; Li, L.; Yang, X.; Cen, J.; Huang, H.; Lin, W.; Yuan, X. The effects of different extraction methods on composition and storage stability of sturgeon oil. Food Chem. 2015, 173, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.-H.; Yuan, Z.-Q.; Li, G.-K. Preparation of phytosterols and phytol from edible marine algae by microwave-assisted extraction and high-speed counter-current chromatography. Sep. Purif. Technol. 2013, 104, 284–289. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol. 2011, 22, 315–326. [Google Scholar] [CrossRef]
- Lee, Y.; Shin, K.; Kim, B.-K.; Lee, S. Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch. Pharm. Res. 2004, 27, 1120–1122. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, Y.; Jung, S.; Kang, S.; Shin, K. Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch. Pharm. Res. 2003, 26, 719–722. [Google Scholar] [CrossRef] [PubMed]
- Becerra, M.; Boutefnouchet, S.; Córdoba, O.; Vitorina, G.P.; Brehu, L.; Lamour, I.; Laimay, F.; Efstathiou, A.; Smirlis, D.; Michel, S.; et al. Antileishmanial activity of fucosterol recovered from Lessonia vadosa Searles (Lessoniaceae) by SFE, PSE and CPC. Phytochem. Lett. 2015, 11, 418–423. [Google Scholar] [CrossRef]
- Ralifo, P.; Sanchez, L.; Gassner, N.C.; Tenney, K.; Lokey, R.S.; Holman, T.R.; Valeriote, F.A.; Crews, P. Pyrroloacridine alkaloids from Plakortis quasiamphiaster: Structures and bioactivity. J. Nat. Prod. 2007, 70, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.A.; Morgan, M.V.C.; Aratow, N.A.; Estee, S.A.; Sashidhara, K.V.; Loveridge, S.T.; Segraves, N.L.; Crews, P. Assessing pressurized liquid extraction for the high-throughput extraction of marine-sponge derived natural products. J. Nat. Prod. 2010, 73, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Anaëlle, T.; Leon, E.S.; Laurent, V.; Elena, I.; Mendiola, J.A.; Stéphane, C.; Nelly, K.; Stéphane, L.B.; Luc, M.; Valérie, S.-P. Green improved processes to extract bioactive phenolic compounds from brown macroalgae using Sargassum muticum as model. Talanta 2013, 104, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Ahn, G.; Hwang, I.; Park, E.; Kim, J.; Jeon, Y.-J.; Lee, J.; Park, J.W.; Jee, Y. Immunomodulatory effects of an enzymatic extract from Ecklonia cava on murine splenocytes. Mar. Biotechnol. 2008, 10, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Ahn, G.; Park, E.; Lee, W.-W.; Hyun, J.-W.; Lee, K.-W.; Shin, T.; Jeon, Y.-J.; Jee, Y. Enzymatic extract from Ecklonia cava induces the activation of lymphocytes by IL-2 production through the classical NF-κB pathway. Mar. Biotechnol. 2011, 13, 66–73. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.M.; Kim, K.N.; Lee, S.H.; Ahn, G.; Chan, S.H.; Kim, A.D.; Yang, X.-D.; Kang, M.-C.; Jeon, Y.-J. Antiinflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW 264.7 macrophages. Carbohydr. Polym. 2011, 85, 80–85. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kim, K.N.; Lee, K.W.; Kim, S.H.; Ha, J.H.; Song, C.B.; Lee, J.B.; Jeon, Y.-J. Optimization of hydrophilic antioxidant extraction from Hiziki fusiformis by integrating treatments of enzymes, heat and pH control. Int. J. Food Sci. Technol. 2008, 43, 587–596. [Google Scholar] [CrossRef]
- Grimi, N.; Dubois, A.; Marchal, L.; Jubeau, S.; Lebovka, N.I.; Vorobiev, E. Selective extraction from microalgae Nannochloropsis sp. using different methods of cell disruption. Bioresour. Technol. 2014, 153, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Guo, X.-Y.; Zhang, D.-N.; Wu, Y.; Wu, T.; Chen, Z.-G. Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrason. Sonochem. 2015, 24, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Rudd, D.; Benkendorff, K. Supercritical CO2 extraction of bioactive Tyrian purple precursors from hypobranchial gland of marine gastropod. J. Supercrit. Fluids 2014, 94, 1–7. [Google Scholar] [CrossRef]
- Tripoteau, L.; Bedoux, G.; Gagnon, J.; Bourgougnon, N. In vitro antiviral activities of enzymatic hydrolysates extracted from byproducts of the Atlantic holothurian Cucumaria frondosa. Process Biochem. 2015, 50, 867–875. [Google Scholar] [CrossRef]
- Hardouin, K.; Burlot, A.-S.; Umami, A.; Tanniou, A.; Stiger-Pouvreau, V.; Wildowati, I.; Bedoux, G.; Bourgougnon, N. Biochemical and antiviral activities of enzymatic hydrolysates from different invasive French seaweeds. J. Appl. Phycol. 2014, 26, 1029–1042. [Google Scholar] [CrossRef]
- He, G.; Yin, Y.; Yan, X.; Yu, Q. Optimisation extraction of chondroitin sulfate from fish bone by high intensity pulsed electric fields. Food Chem. 2014, 164, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Prado, J.M.; Prado, G.H.C.; Meireles, M.A.A. Scale-up study of supercritical fluid extraction process for clove and sugarcane residue. J. Supercrit. Fluids 2011, 56, 231–237. [Google Scholar] [CrossRef]
- Barba, J.F.; Grimi, N.; Vorobiev, E. New Approaches for the Use of Non-conventional cell disruption technologies to extract potential food additives and nutraceuticals from microalgae. Food Eng. Rev. 2015, 7, 45–62. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC; LASTMODIN 32013R0517; European Union: Brussels, Belgium, 2014. [Google Scholar]
- European Union. Directive 2008/1/EC of the European Parliament and of the Council of 15 January 2008 concerning integrated pollution prevention and control. Off. J. Eur. Union 2008, L24, 8–29. [Google Scholar]
- Justino, C.I.L.; Duarte, K.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T. Classical Methodologies for Preparation of Extracts and Fraction. In Analysis of Marine Samples in Search of Bioactive Compounds; Rocha-Santos, T., Duarte, A.C., Eds.; Elsevier: Amsterdam, The Netherland, 2014; pp. 35–57. [Google Scholar]
- Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Bioactive marine drugs and marine biomaterials for brain diseases. Mar. Drugs 2014, 12, 2539–2589. [Google Scholar] [CrossRef] [PubMed]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: New York, NY, USA, 1998; p. 30. [Google Scholar]
- Andraos, J.; Dicks, A.P. Green chemistry teaching in higher education: A review of effective practices. Chem. Educ. Res. Pract. 2012, 13, 69–79. [Google Scholar] [CrossRef]
- Ibañez, E.; Herrero, M.; Jose, A.; Mendiola, J.A.; Castro-Puyana, M. Extraction and Characterization of Bioactive Compounds with Health Benefits from Marine Resources: Macro and Micro Algae, Cyanobacteria, and Invertebrates. In Marine Bioactive Compounds: Sources, Characterization and Applications; Hayes, M., Ed.; Springer Science + Business Media: New York, NY, USA, 2012; pp. 55–98. [Google Scholar]
- Lagadec, A.J.M.; Miller, D.J.; Lilke, A.L.; Hawthorne, S.B. Pilot-scale subcritical water remediation of polycyclic aromatic hydrocarbon-and pesticide contaminated soil. Environ. Sci. Technol. 2000, 34, 1542–1548. [Google Scholar] [CrossRef]
- Berna, A.; Tarrega, A.; Blasco, M.; Subirats, S. Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. J. Supercrit. Fluids 2002, 18, 227–237. [Google Scholar] [CrossRef]
- Meireles, M.A.A. Supercritical extraction from solid: Process design data (2001–2003). Curr. Opin. Solid State Mater. Sci. 2003, 7, 321–330. [Google Scholar] [CrossRef]
- Pronyk, C.; Mazza, G. Design and scale-up of pressurized fluid extractors for food and bioproducts. J. Food Eng. 2009, 95, 215–226. [Google Scholar] [CrossRef]
- Terigar, B.G.; Balasubramanian, S.; Sabliov, C.M.; Lima, M.; Boldor, D. Soybean and rice bran oil extraction in a continuous microwave system: From laboratory- to pilot-scale. J. Food Eng. 2011, 104, 208–217. [Google Scholar] [CrossRef]
- Boonkird, S.; Phisalaphong, C.; Phisalaphong, M. Ultrasound-assisted extraction of capsaicinoids from Capsicum frutescens on a lab- and pilot-plant scale. Ultrason. Sonochem. 2008, 15, 1075–1079. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosso, C.; Valentão, P.; Ferreres, F.; Andrade, P.B. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Mar. Drugs 2015, 13, 3182-3230. https://doi.org/10.3390/md13053182
Grosso C, Valentão P, Ferreres F, Andrade PB. Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Marine Drugs. 2015; 13(5):3182-3230. https://doi.org/10.3390/md13053182
Chicago/Turabian StyleGrosso, Clara, Patrícia Valentão, Federico Ferreres, and Paula B. Andrade. 2015. "Alternative and Efficient Extraction Methods for Marine-Derived Compounds" Marine Drugs 13, no. 5: 3182-3230. https://doi.org/10.3390/md13053182
APA StyleGrosso, C., Valentão, P., Ferreres, F., & Andrade, P. B. (2015). Alternative and Efficient Extraction Methods for Marine-Derived Compounds. Marine Drugs, 13(5), 3182-3230. https://doi.org/10.3390/md13053182