Inventory of Fatty Acid Desaturases in the Pennate Diatom Phaeodactylum tricornutum
Abstract
:1. Introduction
- -
- medium chain FAs (MC-FAs, ≤14 carbons) and long chain FAs (LC-FAs, 16–18 carbons) are neo-synthesized in the stroma of chloroplasts;
- -
- VLC-FAs (≥20 carbons) are generated in the ER/cytosol by secondary elongations;
- -
- MC-FAs, LC-FAs, and VLC-FAs are incorporated in phospholipids in the endoplasmic reticulum (ER);
- -
- MC-FAs, LC-FAs, and VLC-FAs are incorporated in non-phosphorus glycolipids in the membranes surrounding the chloroplast;
- -
- specific FA desaturations can occur after each one of these steps.
2. Results and Discussion
2.1. Origin of Molecular Diversity of Fatty Acids: General Principles
- -
- two distinct FA pools, an acyl-ACP pool in the stroma of the chloroplast, and one or multiple acyl-CoA pool(s) in the cytosol (possibly a LC-FA-CoA pool used for the bulk of TAG synthesis and a VLC-FA-CoA pool used for membrane phospholipids);
- -
- two distinct FA elongation systems, a FAS II in the chloroplast, and a FAE in the ER/cytosol;
- -
- two distinct sites of glycerolipid synthesis, phospholipid (PE, PC, etc.), betaine lipid (BL), and TAG pathways in the ER and a non-phosphorous glycerolipid (SQDG, MGDG, DGDG) and PG pathway in the chloroplast, with some possible connections at the level of the outermost chloroplast membrane.
2.2. Classification of Fatty Acid Desaturases: General Principles
- -
- -
- The second class corresponds to transmembrane enzymes, adding a double bond on acyl-glycerolipids, and in some cases, on Acyl-CoA substrates. Three electron acceptor systems have been characterized: Fd, for most chloroplast desaturases [27], Cytochrome b5 (Cytb5) for most ER desaturases [28], or a Cytb5-domain fused to the desaturase itself (Cytb5 fusion), in some enzymes located either in the ER [29] or in the plastid [30].
2.3. The Arabidopsis thaliana Reference
2.4. Census of Phaeodactylum Desaturases
2.4.1. A Soluble Palmitoyl-ACP Δ9-Desaturase in the Stroma of Chloroplasts (16:0 → 16:1Δ9)
Name | Gene ID | Subcellular Localization | Main Substrate | Main Product | |||||
---|---|---|---|---|---|---|---|---|---|
Acyl Linked to: | Carbon Number | Presence of Double Bonds | Position and Configuration of the Introduced Double Bond | Overall Structure | Overall Structure | Name of Unsaturated FA | |||
SAD | At2g43710 At5g16240 At3g02610 At5g16230 At5g16230 At3g02630 At1g43800 | Chloroplast stroma | ACP | 18 | 0 | Δ9/cis | 18:0-ACP | 18:1Δ9-ACP | Oleic acid |
ADS1 | At1g06080 | Endomembrane system | CoA | ≥18 | 0 | Δ9/cis | 18:0-CoA | 18:1Δ9-CoA | Oleic acid |
FAD2 | At3g12120 | ER | Phospholipid | 18 | 1 | Δ12 (or ω6)/cis | 18:1Δ9-PL | 18:2Δ9,12-PL | Linoleic acid |
FAD3 | At2g29980 | ER | Phospholipid | 18 | 2 | Δ15 (or ω3)/cis | 18:2Δ9,12-PL | 18:3Δ9,12,15-PL | α-Linolenic acid (ALA) |
FAD5 (ADS3) | At3g15850 | Chloroplast membranes | sn2-MGDG | 16 | 0 | Δ7 (or ω9)/cis | 16:0-sn2-MGDG | 16:1Δ7-sn2-MGDG | Palmitoleic acid |
FAD6 | At4g30950 | Chloroplast membranes | sn1/sn2-MGDG/ DGDG + SQDG | 16 or 18 | 1 | ω6/cis | 16:1Δ7-sn2-MGDG 18:1Δ9-sn1/sn2-MGDG/DGDG | 16:2Δ7,10-sn2-MGDG; 18:2Δ9,12-sn1/sn2-MGDG/DGDG | 7,10-Hexadecadienoic acid; Linoleic acid |
FAD7/ FAD8 | At3g11170 At5g05580 | Chloroplast membranes | sn1/sn2-MGDG/ DGDG + SQDG | 16 or 18 | 2 | ω3/cis | 16:2Δ7,10-sn2-MGDG 18:2Δ9,12-sn1/sn2-MGDG | 16:3Δ7,10,13-sn2-MGDG; 18:2Δ9,12,15-sn1/sn2-MGDG | 7,10,13-Hexadecatrienoic acid; α-Linolenic acid (ALA) |
FAD4 | At4g27030 | Chloroplast membranes | sn2-PG | 16 | 0 | Δ3/trans | 16:0-sn2-PG | 16:1Δ3trans-sn2-PG | Δ3-trans Hexadecanoic acid |
ADS2 ADS4 + ADS family | At2g31360 At1g06350 | Endomembrane system | CoA | ≥18 | - | Δ9, ω6, ω7, ω9/cis | VLC-FA | VLC-MUFA/PUFAs | - |
Name | Gene ID | Subcellular Localization | Main Substrate | Main Product | ||||
---|---|---|---|---|---|---|---|---|
Acyl Linked to: | Carbon Number | Presence of Double Bonds | Position and Configuration of the Introduced Double Bond | Overall Structure | Overall Structure | |||
PAD/SAD | Phatraft_9316 | Chloroplast stroma | ACP | 16 and 18 | 0 | Δ9/cis | 16:0-ACP | 16:1Δ9-ACP |
ADS | Phatr_28797 | Endomembrane system | CoA | 18? | 0 | Δ9/cis? | 18:0-CoA? | 18:1Δ9-CoA? |
FAD2 (*) | Phatr_25769 | ER | Phospholipid/ Betaine lipid? | 18 | 1 | Δ12 (or ω6)/cis | 18:1Δ9-PL (-BL?) | 18:2Δ9,12-PL (-BL?) |
ERΔ6FAD (*) | Phatr_2948 | ER | Phospholipid/ Betaine lipid? | 18 | 2 | Δ6/cis | 18:2Δ9,12-PL (-BL?) | 18:3Δ6,12,15-PL (-BL?) |
ERω3FAD (?) | ? | ER | Phospholipid/ Betaine lipid? | 18 | 3 | Δ15 (or ω3)/cis | 18:3Δ6,9,12-PL (-BL?) | 18:4Δ6,9,12,15-PL (-BL?) |
FAD6 (*) | Phatr_48423 | Chloroplast membranes | sn1/sn2-MGDG/DGDG + SQDG | 16 | 1 | Δ12/cis | 16:1Δ9-sn2-MGDG/DGDG/SQDG | 16:2Δ9,12-sn1/sn2-MGDG/DGDG/SQDG |
PlastidΔ6FAD (?) | Phatr_50443 | Chloroplast membranes | sn2-MGDG | 16 | 2 | Δ6/cis | 16:2Δ9,12-sn2-MGDG | 16:3Δ6,9,12-sn2-MGDG |
Plastidω3FAD/FAD7 (?) | Phatr_41570 | Chloroplast membranes | sn2-MGDG? | 16 | 3 | ω3/cis | 16:3Δ6,9,12-sn2-MGDG | 16:4Δ6,9,12,15-sn2-MGDG |
FAD4 | Phatr_41301 | Chloroplast membranes | sn2-PG | 16 | 0 | Δ3/trans | 16:0-sn2-PG | 16:1Δ3trans-sn2-PG |
2.4.2. Ordered Addition of Double Bonds from 16:1 to 16:2, 16:3, and 16:4
2.4.3. Absence of FAD5 Homologues and (16:1Δ9 → 16:2Δ9,12)-Desaturation by FAD6 in Chloroplasts
2.4.4. The Question of (16:2Δ9,12 → 16:3Δ6,9,12)-Desaturation in Chloroplasts by the Action of a Cytb5-Containing PlastidΔ6FAD
2.4.5. The Question of (16:3Δ6,9,12 → 16:4Δ6,9,12,15)-Desaturation in Chloroplasts by the Action of a Plastidω3FAD (or FAD7 Homologue)
2.4.6. The Specific (16:0 → 16:trans-1Δ3)-Desaturation at the sn-2 Position of Chloroplast Phosphatidylglycerol by FAD4
2.4.7. The Question of Oleoyl Δ9-Desaturation in the Chloroplast and/or the Cytosol (18:0 → 18:1Δ9)
2.4.8. Ordered Addition of Double Bonds from 18:1 to 18:2, 18:3, and 18:4
2.4.9. The (18:1Δ9 → 18:2Δ9,12)-Desaturation by FAD2 in the ER
2.4.10. The (18:2Δ9,12 → 18:3Δ6,9,12 and 18:3Δ9,12,15 → 18:3Δ6,9,12,15)-Desaturation by a Δ6 Front-End Desaturase, ERΔ6FAD (PtD6)
2.4.11. The Question of the (18:2Δ9,12 → 18:3Δ6,9,15 and 18:3Δ6,9,12 → 18:4Δ6,9,12,15)-Desaturation by a ERω3FAD
2.4.12. The (20:4Δ8,11,14,17→ 20:5Δ5,8,11,14,17)-Desaturation by a Δ5 Front-End Desaturase, ERΔ5FAD.1 (PtD5) and ERΔ5FAD.2
2.4.13. The (22:5Δ7,10,13,16,19 → 22:6Δ4,10,13,16,19)-desaturation by a Δ4 Front-End desaturase, ERΔ4FAD
2.5. Brief Overview of the Roles of Desaturases in Phaeodactylum Tricornutum
3. Experimental Section
3.1. Retrieval of Desaturase Candidate Gene Sequences
3.2. Prediction of Subcellular Localization
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Armbrust, E.V. The life of diatoms in the world’s oceans. Nature 2009, 459, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Scala, S.; Bowler, C. Molecular insights into the novel aspects of diatom biology. Cell. Mol. Life Sci. 2001, 58, 1666–1673. [Google Scholar] [CrossRef] [PubMed]
- Boudière, L.; Botte, C.; Saidani, N.; Lajoie, M.; Marion, J.; Bréhélin, L.; Yamaryo-Botté, Y.; Satiat-Jeunemaître, B.; Breton, C.; Girard-Egrot, A.; et al. Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells. Mol. BioSyst. 2012, 287, 22367–22376. [Google Scholar]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Damude, H.G.; Kinney, A.J. Engineering oilseed plants for a sustainable, land-based source of long chain polyunsaturated fatty acids. Lipids 2007, 42, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Li-Beisson, Y.; Shorrosh, B.; Beisson, F.; Andersson, M.X.; Arondel, V.; Bates, P.D.; Baud, S.; Bird, D.; Debono, A.; Durrett, T.P.; et al. Acyl-lipid metabolism. Arabidopsis Book 2010, 8, e0133. [Google Scholar] [CrossRef]
- Dorrell, R.G.; Smith, A.G. Do red and green make brown? Perspectives on plastid acquisitions within chromalveolates. Eukaryot. Cell 2011, 10, 856–868. [Google Scholar] [CrossRef] [PubMed]
- Petroutsos, D.; Amiar, S.; Abida, H.; Dolch, L.J.; Bastien, O.; Rebeille, F.; Jouhet, J.; Falconet, D.; Block, M.A.; McFadden, G.I.; et al. Evolution of galactoglycerolipid biosynthetic pathways—From cyanobacteria to primary plastids and from primary to secondary plastids. Prog. Lipid Res. 2014, 54, 68–85. [Google Scholar] [CrossRef]
- Kroth, P.G.; Chiovitti, A.; Gruber, A.; Martin-Jezequel, V.; Mock, T.; Parker, M.S.; Stanley, M.S.; Kaplan, A.; Caron, L.; Weber, T.; et al. A model for carbohydrate metabolism in the diatom phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS One 2008, 3, e1426. [Google Scholar] [CrossRef]
- Abida, H.; Dolch, L.J.; Mei, C.; Villanova, V.; Conte, M.; Block, M.A.; Finazzi, G.; Bastien, O.; Tirichine, L.; Bowler, C.; et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in phaeodactylum tricornutum. Plant Physiol. 2015, 167, 118–136. [Google Scholar] [CrossRef]
- Liang, Y.; Maeda, Y.; Yoshino, T.; Matsumoto, M.; Tanaka, T. Profiling of polar lipids in marine oleaginous diatom fistulifera solaris jpcc da0580: Prediction of the potential mechanism for eicosapentaenoic acid-incorporation into triacylglycerol. Mar. Drugs 2014, 12, 3218–3230. [Google Scholar] [CrossRef] [PubMed]
- Tonon, T.; Harvey, D.; Larson, T.R.; Graham, I.A. Long chain polyunsaturated fatty acid production and partitioning to triacylglycerols in four microalgae. Phytochemistry 2002, 61, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Li, H.Y.; Lu, Y.; Zheng, J.W.; Yang, W.D.; Liu, J.S. Biochemical and genetic engineering of diatoms for polyunsaturated fatty acid biosynthesis. Mar. Drugs 2014, 12, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D.; Durrett, T.P.; Ohlrogge, J.B.; Pollard, M. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 2009, 150, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Lands, W.E. Metabolism of glycerolipides; a comparison of lecithin and triglyceride synthesis. J. Biol. Chem. 1958, 231, 883–888. [Google Scholar] [PubMed]
- Lands, W.E. Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J. Biol. Chem. 1960, 235, 2233–2237. [Google Scholar] [PubMed]
- Lands, W.E. Lipid metabolism. Annu. Rev. Biochem. 1965, 34, 313–346. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D.; Ohlrogge, J.B.; Pollard, M. Incorporation of newly synthesized fatty acids into cytosolic glycerolipids in pea leaves occurs via acyl editing. J. Biol. Chem. 2007, 282, 31206–31216. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D.; Browse, J. The significance of different diacylgycerol synthesis pathways on plant oil composition and bioengineering. Front. Plant Sci. 2012, 3, 147. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D.; Fatihi, A.; Snapp, A.R.; Carlsson, A.S.; Browse, J.; Lu, C. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol. 2012, 160, 1530–1539. [Google Scholar] [CrossRef] [PubMed]
- Bates, P.D.; Stymne, S.; Ohlrogge, J. Biochemical pathways in seed oil synthesis. Curr. Opin. Plant Biol. 2013, 16, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Maeda, Y.; Veluchamy, A.; Tanaka, M.; Abida, H.; Marechal, E.; Bowler, C.; Muto, M.; Sunaga, Y.; Tanaka, M.; et al. Oil accumulation by the oleaginous diatom fistulifera solaris as revealed by the genome and transcriptome. Plant Cell 2015, 27, 162–176. [Google Scholar] [CrossRef]
- Shanklin, J.; Cahoon, E.B. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 611–641. [Google Scholar] [CrossRef] [PubMed]
- Lopez Alonso, D.; Garcia-Maroto, F.; Rodriguez-Ruiz, J.; Garrido, J.A.; Vilches, M.A. Evolutiuon of membrane-bound fatty acid desaturases. Biochem. Syst. Ecol. 2003, 31, 1111–1124. [Google Scholar]
- Shanklin, J.; Guy, J.E.; Mishra, G.; Lindqvist, Y. Desaturases: Emerging models for understanding functional diversification of diiron-containing enzymes. J. Biol. Chem. 2009, 284, 18559–18563. [Google Scholar] [CrossRef] [PubMed]
- Sperling, P.; Ternes, P.; Zank, T.K.; Heinz, E. The evolution of desaturases. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 73–95. [Google Scholar] [CrossRef] [PubMed]
- Hanke, G.; Mulo, P. Plant type ferredoxins and ferredoxin-dependent metabolism. Plant Cell Environ. 2013, 36, 1071–1084. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Tran, L.S.; Neelakandan, A.K.; Nguyen, H.T. Higher plant cytochrome b5 polypeptides modulate fatty acid desaturation. PLoS One 2012, 7, e31370. [Google Scholar] [CrossRef] [PubMed]
- Napier, J.A.; Michaelson, L.V.; Sayanova, O. The role of cytochrome b5 fusion desaturases in the synthesis of polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 2003, 68, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Zauner, S.; Jochum, W.; Bigorowski, T.; Benning, C. A cytochrome b5-containing plastid-located fatty acid desaturase from chlamydomonas reinhardtii. Eukaryot. Cell 2012, 11, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Domergue, F.; Spiekermann, P.; Lerchl, J.; Beckmann, C.; Kilian, O.; Kroth, P.G.; Boland, W.; Zahringer, U.; Heinz, E. New insight into phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal delta12-fatty acid desaturases. Plant Physiol. 2003, 131, 1648–1660. [Google Scholar] [CrossRef] [PubMed]
- Domergue, F.; Lerchl, J.; Zahringer, U.; Heinz, E. Cloning and functional characterization of phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem. 2002, 269, 4105–4113. [Google Scholar] [CrossRef] [PubMed]
- Fukuchi-Mizutani, M.; Tasaka, Y.; Tanaka, Y.; Ashikari, T.; Kusumi, T.; Murata, N. Characterization of delta 9 acyl-lipid desaturase homologues from arabidopsis thaliana. Plant Cell Physiol. 1998, 39, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.A.; Dauk, M.; Ramadan, H.; Yang, H.; Seamons, L.E.; Haslam, R.P.; Beaudoin, F.; Ramirez-Erosa, I.; Forseille, L. Involvement of arabidopsis acyl-coenzyme a desaturase-like2 (at2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol. 2013, 161, 81–96. [Google Scholar] [CrossRef] [PubMed]
- Heilmann, I.; Mekhedov, S.; King, B.; Browse, J.; Shanklin, J. Identification of the arabidopsis palmitoyl-monogalactosyldiacylglycerol δ7-desaturase gene fad5, and effects of plastidial retargeting of arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol. 2004, 136, 4237–4245. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ajjawi, I.; Manoli, A.; Sawin, A.; Xu, C.; Froehlich, J.E.; Last, R.L.; Benning, C. Fatty acid desaturase4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J. 2009, 60, 832–839. [Google Scholar] [CrossRef] [PubMed]
- Gruber, A.; Rocap, G.; Kroth, P.G.; Armbrust, E.V.; Mock, T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015, 81, 519–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gschloessl, B.; Guermeur, Y.; Cock, J.M. Hectar: A method to predict subcellular targeting in heterokonts. BMC Bioinform. 2008, 9, 393. [Google Scholar] [CrossRef]
- Boudiere, L.; Michaud, M.; Petroutsos, D.; Rebeille, F.; Falconet, D.; Bastien, O.; Roy, S.; Finazzi, G.; Rolland, N.; Jouhet, J.; et al. Glycerolipids in photosynthesis: Composition, synthesis and trafficking. Biochim. Biophys. Acta 2004, 1837, 470–480. [Google Scholar]
- Moreno, V.J.; Demoreno, J.E.A.; Brenner, R.R. Biosynthesis of unsaturated fatty-acids in the diatom phaeodactylum tricornutum. Lipids 1979, 14, 15–19. [Google Scholar] [CrossRef]
- Arao, T.; Sakaki, T.; Yamada, M. Biosynthesis of polyunsaturated lipids in the diatom phaeodactylum tricornutum. Phytochemistry 1994, 36, 629–635. [Google Scholar] [CrossRef]
- Arao, T.; Yamada, M. Biosynthesis of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. Phytochemistry 1994, 35, 1177–1181. [Google Scholar] [CrossRef]
- Reed, D.W.; Schafer, U.A.; Covello, P.S. Characterization of the brassica napus extraplastidial linoleate desaturase by expression in Saccharomyces cerevisiae. Plant Physiol. 2000, 122, 715–720. [Google Scholar] [CrossRef] [PubMed]
- Khozin-Goldberg, I.; Didi-Cohen, S.; Shayakhmetova, I.; Cohen, Z. Biosynthesis of eicosapentaenoic acid (epa) in the freshwater eustigmatophyte monodus subterraneus (Eustigmatophyceae). J. Phycol. 2002, 38, 745–756. [Google Scholar] [CrossRef]
- Botte, C.Y.; Yamaryo-Botte, Y.; Janouskovec, J.; Rupasinghe, T.; Keeling, P.J.; Crellin, P.; Coppel, R.L.; Marechal, E.; McConville, M.J.; McFadden, G.I. Identification of plant-like galactolipids in chromera velia, a photosynthetic relative of malaria parasites. J. Biol. Chem. 2011, 286, 29893–29903. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, M.L.; Haslam, R.P.; Napier, J.A.; Sayanova, O. Metabolic engineering of phaeodactylum tricornutum for the enhanced accumulation of omega-3 long chain polyunsaturated fatty acids. Metab. Eng. 2014, 22, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.M.; Gao, K.S. Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae). J. Phycol. 2004, 40, 651–654. [Google Scholar] [CrossRef]
- Pinot, M.; Vanni, S.; Pagnotta, S.; Lacas-Gervais, S.; Payet, L.A.; Ferreira, T.; Gautier, R.; Goud, B.; Antonny, B.; Barelli, H. Lipid cell biology. Polyunsaturated phospholipids facilitate membrane deformation and fission by endocytic proteins. Science 2014, 345, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Meiser, A.; Schmid-Staiger, U.; Trosch, W. Optimization of eicosapentaenoic acid production by phaeodactylum tricornutum in the flat panel airlift (fpa) reactor. J. Appl. Phycol. 2004, 16, 215–225. [Google Scholar] [CrossRef]
- Leflaive, J.; Ten-Hage, L. Chemical interactions in diatoms: Role of polyunsaturated aldehydes and precursors. New Phytol. 2009, 184, 794–805. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Smith, V.J. Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol. 2010, 85, 1629–1642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joint Genome Institute. Available online: http://genome.jgi-psf.org/Phatr2/Phatr2.home.html (accessed on 15 December 2014).
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Multalin. Available online: http://multalin.toulouse.inra.fr/multalin/ (accessed on 15 December 2014).
- Terrapon, N.; Gascuel, O.; Marechal, E.; Breehelin, L. Detection of new protein domains using co-occurrence: Application to plasmodium falciparum. Bioinformatics 2009, 25, 3077–3083. [Google Scholar] [CrossRef] [PubMed]
- Interpro. Available online: http://www.ebi.ac.uk/interpro/ (accessed on 15 December 2014).
- Asafind. Available online: http://rocaplab.ocean.washington.edu/tools/asafind (accessed on 15 January 2015).
- Hectar. Available online: http://www.sb-roscoff.fr/hectar/ (accessed on 15 December 2014).
- Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using targetp, signalp and related tools. Nat. Protoc. 2007, 2, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Petersen, T.N.; Brunak, S.; von Heijne, G.; Nielsen, H. Signalp 4.0: Discriminating signal peptides from transmembrane regions. Nat. Methods 2011, 8, 785–786. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolch, L.-J.; Maréchal, E. Inventory of Fatty Acid Desaturases in the Pennate Diatom Phaeodactylum tricornutum. Mar. Drugs 2015, 13, 1317-1339. https://doi.org/10.3390/md13031317
Dolch L-J, Maréchal E. Inventory of Fatty Acid Desaturases in the Pennate Diatom Phaeodactylum tricornutum. Marine Drugs. 2015; 13(3):1317-1339. https://doi.org/10.3390/md13031317
Chicago/Turabian StyleDolch, Lina-Juana, and Eric Maréchal. 2015. "Inventory of Fatty Acid Desaturases in the Pennate Diatom Phaeodactylum tricornutum" Marine Drugs 13, no. 3: 1317-1339. https://doi.org/10.3390/md13031317
APA StyleDolch, L. -J., & Maréchal, E. (2015). Inventory of Fatty Acid Desaturases in the Pennate Diatom Phaeodactylum tricornutum. Marine Drugs, 13(3), 1317-1339. https://doi.org/10.3390/md13031317