Isolation and Characterization of the Diatom Phaeodactylum Δ5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris
Abstract
:1. Introduction
2. Results
2.1. Isolation of Gene Encoding Δ5-elongase from P. tricornutum
Strain, Plasmid or Primer | Characteristic, Use and Source |
---|---|
Strains | |
E.coli Top10 | E.coli host; for DNA manipulations, Transgene (Beijing, China) |
P. pastoris GS115 | his4; Invitrogen (Invitrogen China Limited, Beijing, China) |
PHC01 | GS115 transformed by empty pHBM906 vector, as control |
PHE5.01 | GS115 carrying pHBM-PtELO5, for gene expression |
PHE5d.01 | GS115 carrying pHBM-PtELO5-Δ1, for gene expression |
PHE5d.02 | GS115 carrying pHBM-PtELO5-Δ2, for gene expression |
PAC01 | GS115 carrying pAO815, as control |
PAE5.01 | GS115 carrying PtELO5 cassette in pAO815, for expression |
PDE01 | GS115 carrying FAD4-ELO5 cascade in pAO815, for co-expression |
Plasmids | |
pMD18-T | T-cloning vector, Apr, Takara; for gene cloning |
pHBM906 | Apr, transformation vector for P. pastoris; stored in our lab |
pHBM-ELO5 | Apr, PCR fragment containing PtELO5 coding sequence, generated with primers Ptelo5-U/ Ptelo5-D, cloned into pHBM906 |
pAO815 | Apr, HIS4, P. pastoris expression vector with AOX1 promoter and terminator |
pAO-FAD4 | Apr, PCR fragment containing IsFAD4 coding sequence, generated with primers ISFAD4E-F/ ISFAD4E-R, cloned into pAO815 |
pAO-ELO5 | Apr, PCR fragment containing PtELO5 coding sequence, generated with primers PTELO5E-F/PTELO5E-R, cloned into pAO815 |
pT-ELO5 | Apr, PCR fragment containing PtELO5 coding sequence, generated with primers ELO5BGL-F/ELO5BGL-R, cloned into pMD18-T |
pAO-D4E5 | Apr, BglII digested fragment of PtELO5ORF subcloned into BamHI-digested and dephosphorylated pAO-FAD4 |
* Primers | |
Ptelo5-U1 | 5′- GGGAGACCAGATGGTCGACG-3′ |
Ptelo5-U2 | 5′- TCGCGATACCCCGAATATAT-3′ |
Ptelo5-U3 | 5′- CAGTTGTCCCTTCAGAACAGC-3′ |
Ptelo5-U4 | 5′- TCGTGTAGAAGAGCGTGGCG-3′ |
Ptelo5-D1 | 5′- GCTCTGTAATATAGTGCTCTG-3′ |
Ptelo5-U | 5′- GTCATGTGTGGTCCCACAGATACAG-3′ |
Ptelo5-D | 5′- GGCCACTACGARAGACCGGTCATC-3′ |
Ptelo5-del1F | 5′- GTCgatccacccgtgccctctct-3′ |
Ptelo5-del2F | 5′- GTCTTGCACAACTGGAAGGTTC-3′ |
ISFAD4E-F | 5′- CCGCCGGAATTCGCCATGTGCAACGCGGCAGTCG-3′ |
ISFAD4E-R | 5′- CCGCCGGAATTCTCAATCCGCCTTGAGCGTCTC-3′ |
PTELO5E-F | 5′- CCGCCGGAATTCGCCATGTGTGGTCCCACAGATAC-3′ |
PTELO5E-R | 5′- CCGCCGGAATTCCTACGAAGACCGGTCATCCC-3′ |
ELO5BGL-F | 5′- GGAAGATCTAACATCCAAAGACGAAAGG-3′ |
ELO5BGL-R | 5′- GGAAGATCTGCACAAACGAACGTCTCAC-3′ |
Co-F | 5′- GCTCATGATCAACGGGCTCTACCA-3′ |
Co-R | 5′- TCCCCACACTGCGAAGACACCTAC-3′ |
5′AOX1 | 5′- GACTGGTTCCAATTGACAAGC-3′ |
3′AOX1 | 5′- GCAAATGGCATTCTGACATCC-3′ |
2.2. Properties of Putative Elongase PhtELO5
2.3. Functional Analysis in Yeast: Confirmation of PhtELO5’s Activity as Δ5-Elongase
Fatty Acid Composition
(% of Total Fatty Acids) | P. pastoris with Plasmids | |||||||
---|---|---|---|---|---|---|---|---|
PAC01(E) | PDE01(E) | PAC01(A) | PDE01 (A) | PAC01(EA) | PDE01(EA) | PAC01(−) | PDE01(−) | |
C14:0 | 9.75 ± 0.13 | 15.56 ± 0.23 | 9.77 ± 0.11 | 16.2 ± 0.09 | 10.12 ± 0.24 | 17.12 ± 0.23 | 8.98 ± 0.19 | 13.79 ± 0.24 |
C16:0 | 3.01 ± 0.13 | 10.08 ± 0.32 | 2.98 ± 0.15 | 9.90 ± 0.14 | 3.11 ± 0.18 | 9.29 ± 0.27 | 3.48 ± 0.12 | 9.25 ± 0.21 |
C17:0 | 1.01 ± 0.07 | 1.24 ± 0.04 | 1.23 ± 0.05 | 1.13 ± 0.15 | 1.31 ± 0.13 | 1.47 ± 0.09 | 1.36 ± 0.09 | 1.09 ± 0.04 |
C17:1 | 2.90 ± 0.18 | 1.13 ± 0.15 | 3.01 ± 0.17 | 1.13 ± 0.15 | 3.32 ± 0.14 | 1.59 ± 0.11 | 2.50 ± 0.10 | 0.81 ± 0.08 |
C18:0 | 6.89 ± 0.33 | 6.03 ± 0.39 | 7.24 ± 0.32 | 7.44 ± 0.22 | 7.54 ± 0.32 | 6.69 ± 0.23 | 6.80 ± 0.22 | 6.43 ± 0.10 |
C18:1 n-9 | 2.87 ± 0.14 | 2.31 ± 0.18 | 2.79 ± 0.12 | 2.00 ± 0.11 | 3.07 ± 0.16 | 2.90 ± 0.19 | 2.24 ± 0.16 | 1.77 ± 0.07 |
C18:1 n-7 | 42.86 ± 2.68 | 34.04 ± 2.01 | 39.13 ± 2.05 | 32.95 ± 2.92 | 38.55 ± 1.63 | 29.10 ± 1.92 | 38.14 ± 2.398 | 33.46 ± 1.73 |
C18:2 n-6 | 19.09 ± 0.75 | 21.31 ± 0.67 | 18.67 ± 0.33 | 20.28 ± 0.64 | 17.27 ± 0.47 | 17.32 ± 0.69 | 28.63 ± 1.18 | 27.22 ± 0.73 |
C18:3 n-3 | 4.62 ± 0.13 | 4.39 ± 0.19 | 4.68 ± 0.19 | 4.07 ± 0.13 | 4.16 ± 0.23 | 4.14 ± 0.16 | 6.14 ± 0.43 | 4.69 ± 0.08 |
C20:0 | 1.79 ± 0.19 | 1.32 ± 0.23 | 1.26 ± 0.23 | 1.67 ± 0.12 | 1.74 ± 0.14 | 1.66 ± 0.11 | 1.72 ± 0.08 | 1.51 ± 0.05 |
C20:4 n-6 (ARA) | ND | ND | 7.82 ± 0.23 | 0.54 ± 0.04 | 3.32 ± 0.17 | 1.56 ± 0.05 | ND | ND |
C20:5 n-3 (EPA) | 5.27 ± 0.02 | 0.26 ± 0.02 | ND | ND | 5.31 ± 0.02 | 0.30 ± 0.02 | ND | ND |
C22:4 n-6 (DTA) | ND | ND | ND | 0.24 ± 0.01 | ND | 0.30 ± 0.02 | ND | ND |
C22:5 n-6 (DPA) | ND | ND | ND | 2.44 ± 0.03 | ND | 3.00 ± 0.07 | ND | ND |
C22:5 n-3 (DPA) | ND | 0.24 ± 0.03 | ND | ND | ND | 0.34 ± 0.01 | ND | ND |
C22:6 n-3 (DHA) | ND | 2.35 ± 0.05 | ND | ND | ND | 1.82 ± 0.03 | ND | ND |
Conversation Rate (%) | ||
---|---|---|
Addition of Single Substrate | Addition of Double Substrates | |
EPA→DPA(n-3) | 90.8 | 87.9 |
DPA(n-3)→DHA | 90.8 | 84.4 |
ARA→DTA | 83.2 | 67.9 |
DTA→DPA(n-6) | 90.9 | 90.9 |
2.4. Co-expression of PhtELO5 and IsFAD4 Assembled Function of EPA and DHA Biosynthetic Pathway in Transgenic Yeast
2.5. PhtELO5’s Converting Efficiencies Varied with Substrates
3. Discussion
4. Experimental Section
4.1. Strains and Culture Conditions
4.2. Sequence Analysis
4.3. Identification and Isolation of the Δ5-Elongase cDNA from P. tricornutum
4.4. Plasmid Construction and Transformation of Yeast Cells
4.5. Heterologous Expression of PtELO5 and IsFAD4 in P. pastoris
4.6. PUFA Substrate Feeding
4.7. Fatty Acid Analysis
5. Conclusions
Abbreviations
ARA | arachidonic acid |
ALA | α-linolenic acid |
DHA | docosahexaenoic acid |
DTA | Docosatetraenoic acid |
DPA | docosapentaenoic acid |
EPA | eicosapentaenoic acid |
FA | fatty acid |
FAMEs | Fatty acid methyl esters |
FID | flame ionization detector |
GC-MS | Gas Chromatography-Mass Spectrometry |
LA | linoleic Acid |
LC | long chain |
ORF | open reading frame |
PUFA | polyunsaturated fatty acid |
Supplementary Files
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bistrian, B.R. Clinical aspects of essential fatty acid metabolism: Jonathan Rhoads Lecture. J. Parenter. Enteral. Nutr. 2003, 27, 168–175. [Google Scholar] [CrossRef]
- Leonard, A.E.; Pereira, S.L.; Sprecher, H.; Huang, Y.S. Elongation of long-chain fatty acids. Prog. Lipid Res. 2004, 43, 36–54. [Google Scholar] [CrossRef]
- Lands, B. Consequences of essential fatty acids. Nutrients 2012, 4, 1338–1357. [Google Scholar] [CrossRef]
- Agbaga, M.P.; Mandal, M.N.; Anderson, R.E. Retinal very long-chain PUFAs: New insights from studies on ELOVL4 protein. J. Lipid Res. 2010, 51, 1624–1642. [Google Scholar] [CrossRef]
- Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2012, 152, 387–395. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H. (n-3) fatty acids and cardiovascular health: Are effects of EPA and DHA shared or complementary? J. Nutr. 2012, 142, 614S–625S. [Google Scholar] [CrossRef]
- Nevejan, N.; Saez, I.; Gajardo, G.; Sorgeloos, P. Supplementation of EPA and DHA emulsions to a Dunaliella tertiolecta diet: Effect on growth and lipid composition of scallop larvae, Argopecten purpuratus (Lamarck, 1819). Aquaculture 2003, 217, 613–632. [Google Scholar] [CrossRef]
- Williams, C.M.; Burdge, G. Long-chain n-3 PUFA: Plant v. marine sources. Proc. Nutr. Soc. 2006, 65, 42–50. [Google Scholar] [CrossRef]
- Sayanova, O.; Napier, J.A. Transgenic oilseed crops as an alternative to fish oils. Prostaglandins Leukot. Essent. Fatty Acids 2011, 85, 253–260. [Google Scholar] [CrossRef]
- Sandager, L. Storage lipid synthesis is non-essential in yeast. J. Biol. Chem. 2002, 277, 6478–6482. [Google Scholar] [CrossRef]
- Tonon, T.; Harvey, D.; Larson, T.R.; Graham, I.A. Identification of a very long chain polyunsaturated fatty acid Delta4-desaturase from the microalga Pavlova lutheri. FEBS Lett. 2003, 553, 440–444. [Google Scholar] [CrossRef]
- Meyer, A.; Kirsch, H.; Domergue, F.; Abbadi, A.; Sperling, P.; Bauer, J.; Cirpus, P.; Zank, T.K.; Moreau, H.; Roscoe, T.J.; et al. Novel fatty acid elongases and their use for the reconstitution of docosahexaenoic acid biosynthesis. J. Lipid Res. 2004, 45, 1899–1909. [Google Scholar] [CrossRef]
- Hsiao, T.Y.; Holmes, B.; Blanch, H.W. Identification and functional analysis of a delta-6 desaturase from the marine microalga Glossomastix chrysoplasta. Mar. Biotechnol. 2007, 9, 154–165. [Google Scholar] [CrossRef]
- Lu, Y.; Chi, X.; Yang, Q.; Li, Z.; Liu, S.; Gan, Q.; Qin, S. Molecular cloning and stress-dependent expression of a gene encoding Delta(12)-fatty acid desaturase in the Antarctic microalga Chlorella vulgaris NJ-7. Extremophiles 2009, 13, 875–884. [Google Scholar] [CrossRef]
- Domergue, F.; Lerchl, J.; Zähringer, U.; Heinz, E. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem. 2002, 269, 4105–4113. [Google Scholar] [CrossRef]
- Wan, X.; Zhang, Y.; Wang, P.; Jiang, M. Molecular cloning and expression analysis of a delta 6-fatty acid desaturase gene from Rhizopus stolonifer strain YF6 which can accumulate high levels of gamma-linolenic acid. J. Microbiol. 2011, 49, 151–154. [Google Scholar] [CrossRef]
- Magny, S.; Thomassen, D.R.; Berge, G.M.; Ostbye, T.K.; Ruyter, B. High dietary EPA does not inhibit Δ5 and Δ6 desaturases in Atlantic salmon (Salmo salar L.) fed rapeseed oil diets. Aquaculture 2012, 360, 78–85. [Google Scholar]
- Guo, B.; Jiang, M.; Wan, X.; Gong, Y.; Liang, Z.; Hu, C. Identification and Heterologous Expression of a Δ4-Fatty Acid Desaturase Gene from Isochrysis sphaerica. J. Microbiol. Biotechnol. 2013, 23, 1413–1421. [Google Scholar] [CrossRef]
- Yamato, K.T.; Sakai, Y.; Fukuzawa, H.; Ohyama, K.; Kohchi, T. Isolation and functional characterization of fatty acid delta5-elongase gene from the liverwort Marchantia polymorpha L. FEBS Lett. 2006, 580, 149–154. [Google Scholar] [CrossRef]
- Robert, S.S.; Petrie, J.R.; Zhou, X.R.; Mansour, M.P.; Blackburn, S.I.; Green, A.G.; Singh, S.P.; Nichols, P.D. Isolation and characterisation of a delta5-fatty acid elongase from the marine microalga Pavlova salina. Mar. Biotechnol. 2009, 11, 410–418. [Google Scholar] [CrossRef]
- Petrie, J.R.; Liu, Q.; Mackenzie, A.M.; Shrestha, P.; Mansour, M.P.; Robert, S.S.; Frampton, D.F.; Blackburn, S.I.; Nichols, P.D.; Singh, S.P. Isolation and characterisation of a high-efficiency desaturase and elongases from microalgae for transgenic LC-PUFA production. Mar. Biotechnol. 2010, 12, 430–438. [Google Scholar] [CrossRef]
- Ohara, J.; Sakaguchi, K.; Okita, Y.; Okino, N.; Ito, M. Two fatty acid elongases possessing C18-Δ6/C18-Δ9/C20-Δ5 or C16-Δ9 elongase activity in Thraustochytrium sp. ATCC 26185. Mar. Biotechnol. 2013, 15, 476–486. [Google Scholar] [CrossRef]
- Tavares, S.; Grotkjær, T.; Obsen, T.; Haslam, R.P.; Napier, J.A.; Gunnarsson, N. Metabolic engineering of Saccharomyces cerevisiae for production of Eicosapentaenoic Acid, using a novel Δ5-Desaturase from Paramecium tetraurelia. Appl. Environ. Microbiol. 2011, 77, 1854–1861. [Google Scholar] [CrossRef]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef]
- Mühlroth, A.; Li, K.; Røkke, G.; Winge, P.; Olsen, Y.; Hohmann-Marriott, M.F.; Vadstein, O.; Bones, A.M. Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista. Mar. Drugs 2013, 11, 4662–4697. [Google Scholar] [CrossRef]
- Li, Y.T.; Li, M.T.; Fu, C.H.; Zhou, P.P.; Liu, J.M.; Yu, L.J. Improvement of arachidonic acid and eicosapentaenoic acid production by increasing the copy number of the genes encoding fatty acid desaturase and elongase into Pichia pastoris. Biotechnol. Lett. 2009, 31, 1011–1017. [Google Scholar] [CrossRef]
- Halpin, C. Gene stacking in transgenic plants—the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 2005, 3, 141–155. [Google Scholar] [CrossRef]
- Zhu, S.; Li, Y.; Vossen, J.H.; Visser, R.G.; Jacobsen, E. Functional stacking of three resistance genes against Phytophthora infestans in potato. Transgenic Res. 2012, 21, 89–99. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Huang, Y.S.; Chaudhary, S.; Thurmond, J.M.; Bobik, E.G.; Yuan, L.; Chan, G.M. Cloning of Δ12- and Δ6-Desaturases from Mortierella alpina and recombinant production of γ-linolenic acid in Saccharomyces cerevisiae. Lipids 1999, 34, 649–659. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Jiang, M.; Guo, B.; Wan, X.; Gong, Y.; Zhang, Y.; Hu, C. Isolation and Characterization of the Diatom Phaeodactylum Δ5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris. Mar. Drugs 2014, 12, 1317-1334. https://doi.org/10.3390/md12031317
Jiang M, Guo B, Wan X, Gong Y, Zhang Y, Hu C. Isolation and Characterization of the Diatom Phaeodactylum Δ5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris. Marine Drugs. 2014; 12(3):1317-1334. https://doi.org/10.3390/md12031317
Chicago/Turabian StyleJiang, Mulan, Bing Guo, Xia Wan, Yangmin Gong, Yinbo Zhang, and Chuanjiong Hu. 2014. "Isolation and Characterization of the Diatom Phaeodactylum Δ5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris" Marine Drugs 12, no. 3: 1317-1334. https://doi.org/10.3390/md12031317
APA StyleJiang, M., Guo, B., Wan, X., Gong, Y., Zhang, Y., & Hu, C. (2014). Isolation and Characterization of the Diatom Phaeodactylum Δ5-Elongase Gene for Transgenic LC-PUFA Production in Pichia pastoris. Marine Drugs, 12(3), 1317-1334. https://doi.org/10.3390/md12031317