Tetranectin and Paraoxonase-1 as Markers of Heart Failure
Abstract
1. Introduction
2. Methods
3. Tetranectin
3.1. Discovery and Characteristics
3.2. Molecular and Physiological Roles of Tetranectin
3.3. The Fibrosis-Oxidative Axis
3.4. Clinical Evidence of TN as a Biomarker in Cardiovascular Disease
4. Paraoxonase-1
4.1. Discovery and Characteristics
4.2. Molecular and Physiological Roles of Paraoxonase-1
4.3. The Fibrosis-Oxidative Axis and Heart Failure
4.4. Clinical Context Beyond Heart Failure and Major Determinants of PON1 Activity
5. Discussions
5.1. Diagnostic Utility
5.2. Positioning Relative to Established Heart Failure Biomarkers
5.3. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HF | Heart failure |
| HFpEF | Heart failure with preserved ejection fraction |
| EF | Ejection fraction |
| ECM | Extracellular matrix |
| CO2 | Carbon dioxide |
| NT-proBNP | N-terminal pro–B-type natriuretic peptide |
| EKG | Electrocardiogram |
| TN | Tetranectin |
| PON1 | Paraoxonase-1 |
| CLEC3B | C-type lectin domain family 3 member B (gene encoding TN) |
| HDL | High-density lipoprotein |
| LDL | Low-density lipoprotein |
| NO | Nitric oxide |
| ROS | Reactive oxygen species |
| MDA | Malondialdehyde |
| LOX-1 | Lectin-like oxidized low-density lipoprotein receptor-1 |
| PKCβII | Protein kinase C beta II isoform |
| eNOS | Endothelial nitric oxide synthase |
| MCP-1 | Monocyte chemoattractant protein-1 |
| IL-6 | Interleukin-6 |
| TNF-α | Tumor necrosis factor alpha |
| MPO | Myeloperoxidase |
| MACE | Major adverse cardiac events |
| ST2 | Suppression of tumorigenicity 2 (IL-33 receptor family member) |
| PI3K | Phosphoinositide 3-kinase |
| Akt | Protein kinase B |
| t-PA | Tissue-type plasminogen activator |
| C2C12 | Mouse myoblast cell line (C2C12) |
References
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Shahid, I.; Bennis, A.; Rakisheva, A.; Metra, M.; Butler, J. Global Epidemiology of Heart Failure. Nat. Rev. Cardiol. 2024, 21, 717–734. [Google Scholar] [CrossRef]
- Gu, J.; Zheng, Z.; Li, J.; Wu, S.; Sun, H.; Pang, J.; Chen, Y. Global Burden of Heart Failure in Older Adults: Trends, Socioeconomic Inequalities, and Future Projections from 1990 to 2035. Eur. Heart J.-Qual. Care Clin. Outcomes 2025, 11, 1123–1136. [Google Scholar] [CrossRef]
- Paulus, W.J.; Zile, M.R. From Systemic Inflammation to Myocardial Fibrosis: The Heart Failure With Preserved Ejection Fraction Paradigm Revisited. Circ. Res. 2021, 128, 1451–1467. [Google Scholar] [CrossRef]
- Gaggin, H.K.; Januzzi, J.L. Biomarkers and Diagnostics in Heart Failure. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2013, 1832, 2442–2450. [Google Scholar] [CrossRef]
- Stiell, I.G.; Perry, J.J.; Clement, C.M.; Brison, R.J.; Rowe, B.H.; Aaron, S.D.; McRae, A.D.; Borgundvaag, B.; Calder, L.A.; Forster, A.J.; et al. Prospective and Explicit Clinical Validation of the Ottawa Heart Failure Risk Scale, With and Without Use of Quantitative NT-pro BNP. Acad. Emerg. Med. 2017, 24, 316–327. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Kusunose, K.; Zheng, R.; Yamada, H.; Sata, M. How to Standardize the Measurement of Left Ventricular Ejection Fraction. J. Med. Ultrason. 2022, 49, 35–43. [Google Scholar] [CrossRef]
- Marwick, T.H. Ejection Fraction Pros and Cons. J. Am. Coll. Cardiol. 2018, 72, 2360–2379. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Passino, C.; Plebani, M. Obese Phenotype and Natriuretic Peptides in Patients with Heart Failure with Preserved Ejection Fraction. Clin. Chem. Lab. Med. 2018, 56, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Gergei, I.; Krämer, B.K.; Scharnagl, H.; Stojakovic, T.; März, W. Renal Function, N-Terminal Pro-B-Type Natriuretic Peptide, Propeptide Big-Endothelin and Patients with Heart Failure and Preserved Ejection Fraction. Peptides 2019, 111, 112–117. [Google Scholar] [CrossRef]
- Kozhuharov, N.; Martin, J.; Wussler, D.; Lopez-Ayala, P.; Belkin, M.; Strebel, I.; Flores, D.; Diebold, M.; Shrestha, S.; Nowak, A.; et al. Clinical Effect of Obesity on N-terminal pro-B-type Natriuretic Peptide Cut-off Concentrations for the Diagnosis of Acute Heart Failure. Eur. J. Heart Fail. 2022, 24, 1545–1554. [Google Scholar] [CrossRef]
- Aimo, A.; Castiglione, V.; Borrelli, C.; Saccaro, L.F.; Franzini, M.; Masi, S.; Emdin, M.; Giannoni, A. Oxidative Stress and Inflammation in the Evolution of Heart Failure: From Pathophysiology to Therapeutic Strategies. Eur. J. Prev. Cardiol. 2020, 27, 494–510. [Google Scholar] [CrossRef]
- Nishikimi, T.; Nakagawa, Y. B-Type Natriuretic Peptide (BNP) Revisited—Is BNP Still a Biomarker for Heart Failure in the Angiotensin Receptor/Neprilysin Inhibitor Era? Biology 2022, 11, 1034. [Google Scholar] [CrossRef]
- Sanders-van Wijk, S.; Tromp, J.; Beussink-Nelson, L.; Hage, C.; Svedlund, S.; Saraste, A.; Swat, S.A.; Sanchez, C.; Njoroge, J.; Tan, R.-S.; et al. Proteomic Evaluation of the Comorbidity-Inflammation Paradigm in Heart Failure With Preserved Ejection Fraction: Results From the PROMIS-HFpEF Study. Circulation 2020, 142, 2029–2044. [Google Scholar] [CrossRef]
- Valero-Muñoz, M.; Saw, E.L.; Hekman, R.M.; Blum, B.C.; Hourani, Z.; Granzier, H.; Emili, A.; Sam, F. Proteomic and Phosphoproteomic Profiling in Heart Failure with Preserved Ejection Fraction (HFpEF). Front. Cardiovasc. Med. 2022, 9, 966968. [Google Scholar] [CrossRef] [PubMed]
- Barallobre-Barreiro, J.; Didangelos, A.; Schoendube, F. Proteomics Analysis of Cardiac Extracellular Matrix Remodeling in a Porcine Model of Ischemia/Reperfusion Injury. Circulation 2012, 125, 789–802. [Google Scholar] [CrossRef]
- Jani, V.P.; Yoo, E.J.; Binek, A.; Guo, A.; Kim, J.S.; Aguilan, J.; Keykhaei, M.; Jenkin, S.R.; Sidoli, S.; Sharma, K.; et al. Myocardial Proteome in Human Heart Failure With Preserved Ejection Fraction. J. Am. Heart Assoc. 2025, 14, e038945. [Google Scholar] [CrossRef] [PubMed]
- Ghazal, R.; Wang, M.; Liu, D.; Tschumperlin, D.J.; Pereira, N.L. Cardiac Fibrosis in the Multi-Omics Era: Implications for Heart Failure. Circ. Res. 2025, 136, 773–802. [Google Scholar] [CrossRef] [PubMed]
- Hage, C.; Michaëlsson, E.; Linde, C.; Donal, E.; Daubert, J.-C.; Gan, L.-M.; Lund, L.H. Inflammatory Biomarkers Predict Heart Failure Severity and Prognosis in Patients with Heart Failure with Preserved Ejection Fraction: A Holistic Proteomic Approach. Circ. Cardiovasc. Genet. 2017, 10, e001633. [Google Scholar] [CrossRef]
- Clemmensen, I.; Petersen, L.; Kluft, C. Purification and Characterization of a Novel, Oligomeric, Plasminogen Kringle 4 Binding Protein from Human Plasma: TN. Eur. J. Biochem. 1986, 156, 327–333. [Google Scholar] [CrossRef]
- Jaquinod, M.; Holtet, T.L.; Etzerodt, M.; Clemmensen, I.; Thøgersen, H.C.; Roepstorff, P. Mass Spectrometric Characterisation of Post-Translational Modification and Genetic Variation in Human TN. Biol. Chem. 1999, 380, 1307–1314. [Google Scholar] [CrossRef]
- Jensen, B.A.; McNair, P.; Hyldstrup, L.; Clemmensen, I. Plasma TN in Healthy Male and Female Individuals, Measured by Enzyme-Linked Immunosorbent Assay. J. Lab. Clin. Med. 1987, 110, 612–617. [Google Scholar] [PubMed]
- De Vries, T.J.; De Wit, P.E.J.; Clemmensen, I.; Verspaget, H.W.; Weidle, U.H.; Bröcker, E.B.; Ruiter, D.J.; Van Muijen, G.N.P. TN and Plasmin/Plasminogen Are Similarly Distributed at the Invasive Front of Cutaneous Melanoma Lesions. J. Pathol. 1996, 179, 260–265. [Google Scholar] [CrossRef]
- Christensen, L.; Clemmensen, I. TN Immunoreactivity in Normal Human Tissues: An Immunohistochemical Study of Exocrine Epithelia and Mesenchyme. Histochemistry 1989, 92, 29–35. [Google Scholar] [CrossRef]
- Kluft, C.; Los, P.; Clemmensen, I. Calcium-Dependent Binding of TN to Fibrin. Thromb. Res. 1989, 55, 233–238. [Google Scholar] [CrossRef]
- Lorentsen, R.H.; Graversen, J.H.; Caterer, N.R.; Thøgersen, H.C.; Etzerodt, M. The Heparin-Binding Site in TN Is Located in the N-Terminal Region and Binding Does Not Involve the Carbohydrate Recognition Domain. Biochem. J. 2000, 347, 83–87. [Google Scholar] [CrossRef]
- Graversen, J.H.; Lorentsen, R.H.; Jacobsen, C.; Moestrup, S.K.; Sigurskjold, B.W.; Thøgersen, H.C.; Etzerodt, M. The Plasminogen Binding Site of the C-Type Lectin TN Is Located in the Carbohydrate Recognition Domain, and Binding Is Sensitive to Both Calcium and Lysine. J. Biol. Chem. 1998, 273, 29241–29246. [Google Scholar] [CrossRef]
- Berglund, L.; Petersen, T.E. The Gene Structure of TN, a Plasminogen Binding Protein. FEBS Lett. 1992, 309, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Stoevring, B.; Jaliashvili, I.; Thougaard, A.V.; Ensinger, C.; Høgdall, C.K.; Rasmussen, L.S.; Sellebjerg, F.; Christiansen, M. TN in Cerebrospinal Fluid: Biochemical Characterisation and Evidence of Intrathecal Synthesis or Selective Uptake into CSF. Clin. Chim. Acta 2005, 359, 65–71. [Google Scholar] [CrossRef]
- Iram, S.; Rahman, S.; Choi, I.; Kim, J. Insight into the Function of TN in Human Diseases: A Review and Prospects for TN-Targeted Disease Treatment. Heliyon 2024, 10, e23512. [Google Scholar] [CrossRef]
- Ibaraki, K.; Kozak, C.A.; Wewer, U.M.; Albrechtsen, R.; Young, M.F. Mouse TN: cDNA Sequence, Tissue-Specific Expression, and Chromosomal Mapping. Mamm. Genome 1995, 6, 693–696. [Google Scholar] [CrossRef]
- Chen, Y.; Han, H.; Yan, X.; Ding, F.; Su, X.; Wang, H.; Chen, Q.; Lu, L.; Zhang, R.; Jin, W. TN as a Potential Biomarker for Stable Coronary Artery Disease. Sci. Rep. 2015, 5, 17632. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, B.B.; Kastrup, J.S.; Rasmussen, H.; Holtet, T.L.; Graversen, J.H.; Etzerodt, M.; Thøgersen, H.C.; Larsen, I.K. Crystal Structure of TN, a Trimeric Plasminogen-binding Protein with an A-helical Coiled Coil. FEBS Lett. 1997, 412, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, J.S.; Nielsen, B.B.; Rasmussen, H.; Holtet, T.L.; Graversen, J.H.; Etzerodt, M.; Thøgerson, H.C.; Larsen, I.K. Structure of the C-Type Lectin Carbohydrate Recognition Domain of Human TN. Acta Crystallogr. D Biol. Crystallogr. 1998, 54, 757–766. [Google Scholar] [CrossRef] [PubMed]
- Holtet, T.L.; Graversen, J.H.; Thøgersen, H.C.; Etzerodt, M.; Clemmensen, I. TN, a Trimeric Plasminogen-binding C-type Lectin. Protein Sci. 1997, 6, 1511–1515. [Google Scholar] [CrossRef]
- Mogues, T.; Etzerodt, M.; Hall, C.; Engelich, G.; Graversen, J.H.; Hartshorn, K.L. TN Binds to the Kringle 1-4 Form of Angiostatin and Modifies Its Functional Activity. BioMed Res. Int. 2004, 2004, 73–78. [Google Scholar] [CrossRef]
- Graversen, J.H.; Sigurskjold, B.W.; Thøgersen, H.C.; Etzerodt, M. TN-Binding Site on Plasminogen Kringle 4 Involves the Lysine-Binding Pocket and at Least One Additional Amino Acid Residue. Biochemistry 2000, 39, 7414–7419. [Google Scholar] [CrossRef]
- Graversen, J.H.; Jacobsen, C.; Sigurskjold, B.W.; Lorentsen, R.H.; Moestrup, S.K.; Thøgersen, H.C.; Etzerodt, M. Mutational Analysis of Affinity and Selectivity of Kringle-TN Interaction. J. Biol. Chem. 2000, 275, 37390–37396. [Google Scholar] [CrossRef]
- Christensen, L.; Johansen, N.; Jensen, B.A.; Clemmensen, I. Immunohistochemical Localization of a Novel, Human Plasma Protein, TN, in Human Endocrine Tissues. Histochemistry 1987, 87, 195–199. [Google Scholar] [CrossRef]
- Borregaard, N.; Christensen, L.; Bejerrum, O.W.; Birgens, H.S.; Clemmensen, I. Identification of a Highly Mobilizable Subset of Human Neutrophil Intracellular Vesicles That Contains TN and Latent Alkaline Phosphatase. J. Clin. Investig. 1990, 85, 408–416. [Google Scholar] [CrossRef]
- Nielsen, H.; Clemmensen, L.; Kharazmi, A. TN: A Novel Secretory Protein from Human Monocytes. Scand. J. Immunol. 1993, 37, 39–42. [Google Scholar] [CrossRef]
- Wewer, U.M.; Ibaraki, K.; Schjørring, P.; Durkin, M.E.; Young, M.F.; Albrechtsen, R. A Potential Role for TN in Mineralization during Osteogenesis. J. Cell Biol. 1994, 127, 1767–1775. [Google Scholar] [CrossRef] [PubMed]
- Wewer, U.M.; Iba, K.; Durkin, M.E.; Nielsen, F.C.; Loechel, F.; Gilpin, B.J.; Kuang, W.; Engvall, E.; Albrechtsen, R. TN Is a Novel Marker for Myogenesis during Embryonic Development, Muscle Regeneration, and Muscle Cell Differentiationin Vitro. Dev. Biol. 1998, 200, 247–259. [Google Scholar] [CrossRef]
- Liu, F.; Cai, Z.; Yang, Y.; Plasko, G.; Zhao, P.; Wu, X.; Tang, C.; Li, D.; Li, T.; Hu, S.; et al. The Adipocyte-Enriched Secretory Protein TN Exacerbates Type 2 Diabetes by Inhibiting Insulin Secretion from β Cells. Sci. Adv. 2022, 8, eabq1799. [Google Scholar] [CrossRef]
- Clemmensen, I.; Lund, L.R.; Christensen, L.; Andreasen, P.A. A TN-related Protein Is Produced and Deposited in Extracellular Matrix by Human Embryonal Fibroblasts. Eur. J. Biochem. 1991, 195, 735–741. [Google Scholar] [CrossRef]
- Westergaard, U.B.; Andersen, M.H.; Heegaard, C.W.; Fedosov, S.N.; Petersen, T.E. TN Binds Hepatocyte Growth Factor and Tissue-type Plasminogen Activator. Eur. J. Biochem. 2003, 270, 1850–1854. [Google Scholar] [CrossRef]
- Lin, H.; Tang, R.; Fan, L.; Wang, E. Exogenous TN Alleviates Pre-Formed-Fibrils-Induced Synucleinopathies in SH-SY5Y Cells by Activating the Plasminogen Activation System. Neurochem. Res. 2022, 47, 3192–3201. [Google Scholar] [CrossRef] [PubMed]
- McDonald, K.; Glezeva, N.; Collier, P.; O’Reilly, J.; O’Connell, E.; Tea, I.; Russell-Hallinan, A.; Tonry, C.; Pennington, S.; Gallagher, J.; et al. TN, a Potential Novel Diagnostic Biomarker of Heart Failure, Is Expressed within the Myocardium and Associates with Cardiac Fibrosis. Sci. Rep. 2020, 10, 7507. [Google Scholar] [CrossRef] [PubMed]
- Kopeva, K.V.; Grakova, E.V.; Shilov, S.N.; Berezikova, E.N.; Bobyleva, E.T.; Teplyakov, A.T. TN as a Potential Novel Prognostic Biomarker in Anthracycline-Related Cardiac Dysfunction. Heart Vessel. 2023, 38, 1256–1266. [Google Scholar] [CrossRef]
- Zhou, B.; Tian, R. Mitochondrial Dysfunction in Pathophysiology of Heart Failure. J. Clin. Investig. 2018, 128, 3716–3726. [Google Scholar] [CrossRef]
- Mann, D.; Felker, G. Mechanisms and Models in Heart Failure: A Translational Approach. Circ. Res. 2021, 128, 1435–1450. [Google Scholar] [CrossRef] [PubMed]
- Barallobre-Barreiro, J.; Radovits, T.; Fava, M. Extracellular Matrix in Heart Failure: Role of ADAMTS5 in Proteoglycan Remodeling. Circulation 2021, 144, 2021–2034. [Google Scholar] [CrossRef] [PubMed]
- Peoples, J.N.; Saraf, A.; Ghazal, N.; Pham, T.T.; Kwong, J.Q. Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef]
- Schirone, L.; Forte, M.; Palmerio, S.; Yee, D.; Nocella, C.; Angelini, F.; Pagano, F.; Schiavon, S.; Bordin, A.; Carrizzo, A.; et al. A Review of the Molecular Mechanisms Underlying the Development and Progression of Cardiac Remodeling. Oxidative Med. Cell. Longev. 2017, 2017, 3920195. [Google Scholar] [CrossRef]
- Eckerson, H.W.; Wyte, C.M.; La Du, B.N. The Human Serum Paraoxonase/Arylesterase Polymorphism. Am. J. Hum. Genet. 1983, 35, 1126–1138. [Google Scholar] [PubMed]
- James, R.W.; Deakin, S.P. The Importance of High-Density Lipoproteins for Paraoxonase-1 Secretion, Stability, and Activity. Free Radic. Biol. Med. 2004, 37, 1986–1994. [Google Scholar] [CrossRef]
- Blatter Garin, M.-C.; Moren, X.; James, R.W. Paraoxonase-1 and Serum Concentrations of HDL-Cholesterol and apoA-I. J. Lipid Res. 2006, 47, 515–520. [Google Scholar] [CrossRef]
- Taler-Verčič, A.; Goličnik, M.; Bavec, A. The Structure and Function of Paraoxonase-1 and Its Comparison to Paraoxonase-2 and -3. Molecules 2020, 25, 5980. [Google Scholar] [CrossRef]
- Bajaj, P.; Tripathy, R.K.; Aggarwal, G.; Pande, A.H. Characterization of Human Paraoxonase 1 Variants Suggest That His Residues at 115 and 134 Positions Are Not Always Needed for the Lactonase/Arylesterase Activities of the Enzyme. Protein Sci. 2013, 22, 1799–1807. [Google Scholar] [CrossRef]
- Petrič, B.; Kunej, T.; Bavec, A. A Multi-Omics Analysis of PON1 Lactonase Activity in Relation to Human Health and Disease. OMICS A J. Integr. Biol. 2021, 25, 38–51. [Google Scholar] [CrossRef]
- Marsillach, J.; Richter, R.J.; Costa, L.G.; Furlong, C.E. Paraoxonase-1 (PON1) Status Analysis Using Non-Organophosphate Substrates. Curr. Protoc. 2021, 1, e25. [Google Scholar] [CrossRef]
- Camps, J.; Marsillach, J.; Joven, J. Measurement of Serum Paraoxonase-1 Activity in the Evaluation of Liver Function. World J. Gastroenterol. 2009, 15, 1929. [Google Scholar] [CrossRef]
- Khalil, A.; Fulop, T.; Berrougui, H. Role of Paraoxonase1 in the Regulation of High-Density Lipoprotein Functionality and in Cardiovascular Protection. Antioxid. Redox Signal. 2021, 34, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Gugliucci, A.; Menini, T. Paraoxonase 1 and HDL Maturation. Clin. Chim. Acta 2015, 439, 5–13. [Google Scholar] [CrossRef]
- Kotur-Stevuljević, J.; Vekić, J.; Stefanović, A.; Zeljković, A.; Ninić, A.; Ivanišević, J.; Miljković, M.; Sopić, M.; Munjas, J.; Mihajlović, M.; et al. Paraoxonase 1 and Atherosclerosis-related Diseases. BioFactors 2020, 46, 193–205. [Google Scholar] [CrossRef]
- Pasqualini, L.; Cortese, C.; Marchesi, S.; Siepi, D.; Pirro, M.; Vaudo, G.; Liberatoscioli, L.; Gnasso, A.; Schillaci, G.; Mannarino, E. Paraoxonase-1 Activity Modulates Endothelial Function in Patients with Peripheral Arterial Disease. Atherosclerosis 2005, 183, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Raz, B.-D.; Dimitry, C.; Andrea, S.-S. The Uptake Mechanism and Intracellular Fate of Paraoxonase-1 in Endothelial Cells. Free Radic. Biol. Med. 2020, 153, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Marín, M.; Moya, C.; Máñez, S. Mutual Influences between Nitric Oxide and Paraoxonase 1. Antioxidants 2019, 8, 619. [Google Scholar] [CrossRef]
- Jakubowski, H. The Molecular Bases of Anti-Oxidative and Anti-Inflammatory Properties of Paraoxonase 1. Antioxidants 2024, 13, 1292. [Google Scholar] [CrossRef]
- Kumon, Y.; Suehiro, T.; Ikeda, Y.; Hashimoto, K. Human Paraoxonase-1 Gene Expression by HepG2 Cells Is Downregulated by Interleukin-1β and Tumor Necrosis Factor-α, but Is Upregulated by Interleukin-6. Life Sci. 2003, 73, 2807–2815. [Google Scholar] [CrossRef]
- Aharoni, S.; Aviram, M.; Fuhrman, B. Paraoxonase 1 (PON1) Reduces Macrophage Inflammatory Responses. Atherosclerosis 2013, 228, 353–361. [Google Scholar] [CrossRef]
- Takvorian, K.S.; Wang, D.; Courchesne, P.; Vasan, R.S.; Benjamin, E.J.; Cheng, S.; Larson, M.G.; Levy, D.; Ho, J.E. The Association of Protein Biomarkers With Incident Heart Failure With Preserved and Reduced Ejection Fraction. Circ. Heart Fail. 2023, 16, e009446. [Google Scholar] [CrossRef]
- Connelly, P.W.; Yan, A.T.; Nash, M.M.; Wald, R.M.; Lok, C.; Gunaratnam, L.; Kirpalani, A.; Prasad, G.V.R. The Increase in Paraoxonase 1 Is Associated With Decrease in Left Ventricular Volume in Kidney Transplant Recipients. Front. Cardiovasc. Med. 2021, 8, 763389. [Google Scholar] [CrossRef]
- Bhattacharyya, T. Relationship of Paraoxonase 1 (PON1) Gene Polymorphisms and Functional Activity with Systemic Oxidative Stress and Cardiovascular Risk. JAMA 2008, 299, 1265. [Google Scholar] [CrossRef]
- Unal, E.; Eris, C.; Kaya, B.; Uzun, H.; Cavdar, F.; Yildar, M.; Kiziler, A.R.; Aydemir, B.; Gunes, P.; Kutanis, R.; et al. Paraoxonase and Arylesterase Activities, Lipid Profile, and Oxidative Damage in Experimental Ischemic Colitis Model. Gastroenterol. Res. Pract. 2012, 2012, 979506. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.H.W.; Wu, Y.; Mann, S.; Pepoy, M.; Shrestha, K.; Borowski, A.G.; Hazen, S.L. Diminished Antioxidant Activity of High-Density Lipoprotein–Associated Proteins in Systolic Heart Failure. Circ. Heart Fail. 2011, 4, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, J.W.; Ding, F.H.; Shen, Y.; Liu, Z.H.; Wang, F.; Zhang, R.Y.; Shen, W.F.; Lu, L.; Wang, X.Q. Relationship of High-Density Lipoprotein-Associated Arylesterase Activity to Systolic Heart Failure in Patients with and without Type 2 Diabetes. Sci. Rep. 2019, 9, 5979. [Google Scholar] [CrossRef]
- Hammadah, M.; Kalogeropoulos, A.P.; Georgiopoulou, V.V.; Weber, M.; Wu, Y.; Hazen, S.L.; Butler, J.; Tang, W.H.W. High-density Lipoprotein-associated Paraoxonase-1 Activity for Prediction of Adverse Outcomes in Outpatients with Chronic Heart Failure. Eur. J. Heart Fail. 2017, 19, 748–755. [Google Scholar] [CrossRef] [PubMed]
- Variji, A.; Shokri, Y.; Fallahpour, S.; Zargari, M.; Bagheri, B.; Abediankenari, S.; Alizadeh, A.; Mahrooz, A. The Combined Utility of Myeloperoxidase (MPO) and Paraoxonase 1 (PON1) as Two Important HDL-Associated Enzymes in Coronary Artery Disease: Which Has a Stronger Predictive Role? Atherosclerosis 2019, 280, 7–13. [Google Scholar] [CrossRef]
- Huang, Y.; Wu, Z.; Riwanto, M.; Gao, S.; Levison, B.S.; Gu, X.; Fu, X.; Wagner, M.A.; Besler, C.; Gerstenecker, G.; et al. Myeloperoxidase, Paraoxonase-1, and HDL Form a Functional Ternary Complex. J. Clin. Investig. 2013, 123, 3815–3828. [Google Scholar] [CrossRef] [PubMed]
- Khine, H.W.; Teiber, J.F.; Haley, R.W.; Khera, A.; Ayers, C.R.; Rohatgi, A. Association of the Serum Myeloperoxidase/High-Density Lipoprotein Particle Ratio and Incident Cardiovascular Events in a Multi-Ethnic Population: Observations from the Dallas Heart Study. Atherosclerosis 2017, 263, 156–162. [Google Scholar] [CrossRef]
- Michaëlsson, E.; Lund, L.H.; Hage, C.; Shah, S.J.; Voors, A.A.; Saraste, A.; Redfors, B.; Grove, E.L.; Barasa, A.; Richards, A.M.; et al. Myeloperoxidase Inhibition Reverses Biomarker Profiles Associated With Clinical Outcomes in HFpEF. JACC Heart Fail. 2023, 11, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Vulciu, P.A.; Pilat, L.; Mot, M.-D.; Barata, P.I.; Mikos, I.D.; Ioana, M.R.S.; Alexandru, A.; Ivan, C.-S.; Varga, N.-I.; Mladin, N.C.; et al. Diagnostic and Prognostic Potential of TN in Heart Failure and Cardiovascular Disease: A Systematic Review. Med. Sci. 2025, 13, 206. [Google Scholar] [CrossRef]
- Ng, M.L.; Ang, X.; Yap, K.Y.; Ng, J.J.; Goh, E.C.H.; Khoo, B.B.J.; Richards, A.M.; Drum, C.L. Novel Oxidative Stress Biomarkers with Risk Prognosis Values in Heart Failure. Biomedicines 2023, 11, 917. [Google Scholar] [CrossRef] [PubMed]
- Biasucci, L.; Maino, A.; Grimaldi, M.; Cappannoli, L.; Aspromonte, N. Novel Biomarkers in Heart Failure: New Insight in Pathophysiology and Clinical Perspective. J. Clin. Med. 2021, 10, 2771. [Google Scholar] [CrossRef]
- Vulciu, P.A.; Pilat, L.; Mot, M.-D.; Dascau, V.; Popa, C.D.; Varga, N.-I.; Puschita, M. TN and Paraoxonase 1 in Patients with Varying Stages of Heart Failure: A Cross-Sectional Analysis. Clin. Pract. 2025, 15, 86. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, J.; Shang, L.; Tong, C.; Hu, H.; Wang, H.; Fan, D.; Yu, H. Reduced Paraoxonase 1 Activity as a Marker for Severe Coronary Artery Disease. Dis. Markers 2013, 35, 97–103. [Google Scholar] [CrossRef]
- Vulciu, P.A.; Pilat, L.; Varga, N.-I.; Dascau, V.; Popa, C.; Mot, M.-D.; Barata, P.I.; Donath Miklos, I.; Puschita, M. TN as a Potential Biomarker in Heart Failure with Ejection Fraction > 45%: A Prospective Cohort Study. Rom. J. Intern. Med. 2025, 63, 251–262. [Google Scholar] [CrossRef]
- López-Vilella, R.; Gómez-Otero, I.; Donoso Trenado, V.; García-Vega, D.; Otero-García, Ó.; Martínez Dolz, L.; González-Juanatey, J.R.; Almenar Bonet, L. NT-proBNP in Acute De Novo Heart Failure: A Key Biomarker for Predicting Myocardial Recovery—COMFE Registry. Life 2025, 15, 526. [Google Scholar] [CrossRef]
- Riccardi, M.; Myhre, P.L.; Zelniker, T.A.; Metra, M.; Januzzi, J.L.; Inciardi, R.M. Soluble ST2 in Heart Failure: A Clinical Role beyond B-Type Natriuretic Peptide. J. Cardiovasc. Dev. Dis. 2023, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Villacorta, H.; Maisel, A.S. Soluble ST2 Testing: A Promising Biomarker in the Management of Heart Failure. Arq. Bras. Cardiol. 2016, 106, 145–152. [Google Scholar] [CrossRef]
- Zaborska, B.; Sikora-Frąc, M.; Smarż, K.; Pilichowska-Paszkiet, E.; Budaj, A.; Sitkiewicz, D.; Sygitowicz, G. The Role of Galectin-3 in Heart Failure—The Diagnostic, Prognostic and Therapeutic Potential—Where Do We Stand? Int. J. Mol. Sci. 2023, 24, 13111. [Google Scholar] [CrossRef]
- Hara, A.; Niwa, M.; Kanayama, T.; Noguchi, K.; Niwa, A.; Matsuo, M.; Kuroda, T.; Hatano, Y.; Okada, H.; Tomita, H. Galectin-3: A Potential Prognostic and Diagnostic Marker for Heart Disease and Detection of Early Stage Pathology. Biomolecules 2020, 10, 1277. [Google Scholar] [CrossRef]
- Hernández-Díaz, Y.; Tovilla-Zárate, C.A.; Juárez-Rojop, I.E.; González-Castro, T.B.; Rodríguez-Pérez, C.; López-Narváez, M.L.; Rodríguez-Pérez, J.M.; Cámara-Álvarez, J.F. Effects of Paraoxonase 1 Gene Polymorphisms on Heart Diseases: Systematic Review and Meta-Analysis of 64 Case-Control Studies. Medicine 2016, 95, e5298. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, M.; Cai, Z.; Zahid, R.; Zhang, W.; Ma, D.; Li, D.; Liang, Y.; Zha, L.; Zhou, Y.; et al. Pathogenic Epitope-Specific Monoclonal Antibody-Based Immunoassay for Accurate Diagnosis and Monitoring of TN in Sepsis. Int. Immunopharmacol. 2024, 143, 113473. [Google Scholar] [CrossRef]
- Kluft, C.; Los, P.; Clemmensen, I.; Brommer, E.J.P.; Gevers Leuven, J.A.; Boks, A.L.; Vellenga, E. Quantitation of Plasma Levels of TN-Effects of Oral Contraceptives, Pregnancy, Treatment with L-Asparaginase and Liver Cirrhosis. Thromb. Haemost. 1989, 62, 792–796. [Google Scholar] [CrossRef] [PubMed]
- Høgdall, C.K.; Sölétormos, G.; Nielsen, D.; Nørgaard-Pedersen, B.; Dombernowsky, P.; Clemmensen, I. Prognostic Value of Serum TN in Patients with Metastatic Breast Cancer. Acta Oncol. 1993, 32, 631–636. [Google Scholar] [CrossRef]
- Heeran, M.C.; Rask, L.; Høgdall, C.K.; Kjaer, S.K.; Christensen, L.; Jensen, A.; Blaakaer, J.; Jarle Christensen, I.; Høgdall, E.V.S. TN Positive Expression in Tumour Tissue Leads to Longer Survival in Danish Women with Ovarian Cancer. Results from the ‘Malova’ Ovarian Cancer Study. APMIS 2015, 123, 401–409. [Google Scholar] [CrossRef]
- Li, Y.; Zhai, R.; Li, H.; Mei, X.; Qiu, G. Prognostic Value of Serum Paraoxonase and Arylesterase Activity in Patients with Sepsis. J. Int. Med. Res. 2013, 41, 681–687. [Google Scholar] [CrossRef]
- Bednarz-Misa, I.; Mierzchala-Pasierb, M.; Lesnik, P.; Placzkowska, S.; Kedzior, K.; Gamian, A.; Krzystek-Korpacka, M. Cardiovascular Insufficiency, Abdominal Sepsis, and Patients’ Age Are Associated with Decreased Paraoxonase-1 (PON1) Activity in Critically Ill Patients with Multiple Organ Dysfunction Syndrome (MODS). Dis. Markers 2019, 2019, 1314623. [Google Scholar] [CrossRef] [PubMed]
- Adiga, U.; Banawalikar, N.; Menambath, D.T. Association of Paraoxonase 1 Activity and Insulin Resistance Models in Type 2 Diabetes Mellitus: Cross-Sectional Study. J. Chin. Med. Assoc. 2022, 85, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Gu, Q. Protective Effect of Paraoxonase 1 of High-density Lipoprotein in Type 2 Diabetic Patients with Nephropathy. Nephrology 2009, 14, 514–520. [Google Scholar] [CrossRef]
- Samouilidou, E.C.; Liaouri, A.; Kostopoulos, V.; Nikas, D.; Grapsa, E. The Importance of Paraoxonase 1 Activity in Chronic Kidney Disease. Ren. Fail. 2024, 46, 2376930. [Google Scholar] [CrossRef] [PubMed]
- Khalaf, F.K.; Mohammed, C.J.; Dube, P.; Connolly, J.A.; Lad, A.; Ashraf, U.M.; Breidenbach, J.D.; Su, R.C.; Kleinhenz, A.L.; Malhotra, D.; et al. Paraoxonase-1 Regulation of Renal Inflammation and Fibrosis in Chronic Kidney Disease. Antioxidants 2022, 11, 900. [Google Scholar] [CrossRef]
- Sztanek, F.; Seres, I.; Harangi, M.; Lőcsey, L.; Padra, J.; Paragh, G.J.R.; Asztalos, L.; Paragh, G. Decreased Paraoxonase 1 (PON1) Lactonase Activity in Hemodialyzed and Renal Transplanted Patients. A Novel Cardiovascular Biomarker in End-Stage Renal Disease. Nephrol. Dial. Transplant. 2012, 27, 2866–2872. [Google Scholar] [CrossRef]
- Novak, F.; Vavrova, L.; Kodydkova, J.; Novak, F.; Hynkova, M.; Zak, A.; Novakova, O. Decreased Paraoxonase Activity in Critically Ill Patients with Sepsis. Clin. Exp. Med. 2010, 10, 21–25. [Google Scholar] [CrossRef]
- Castiglione, V.; Aimo, A.; Vergaro, G.; Saccaro, L.; Passino, C.; Emdin, M. Biomarkers for the Diagnosis and Management of Heart Failure. Heart Fail. Rev. 2022, 27, 625–643. [Google Scholar] [CrossRef]
- Wettersten, N. Biomarkers in Acute Heart Failure: Diagnosis, Prognosis, and Treatment. Int. J. Heart Fail. 2021, 3, 81. [Google Scholar] [CrossRef]
- De Boer, R.A.; Yu, L.; Van Veldhuisen, D.J. Galectin-3 in Cardiac Remodeling and Heart Failure. Curr. Heart Fail. Rep. 2010, 7, 1–8. [Google Scholar] [CrossRef]


| Biomarker | Dominant Domain Captured | Typical Current Clinical Role in HF | Key Confounders/Limitations | Where TN/PON1 May Add Complementary Value |
|---|---|---|---|---|
| BNP/NT-proBNP | Hemodynamic wall stress/congestion | Diagnosis support, prognosis, therapy monitoring | Affected by age, obesity, renal dysfunction, atrial fibrillation; reflects consequence rather than upstream drivers | TN/PON1 aim to add upstream biology (remodeling + oxidative/inflammatory milieu) when NP interpretation is challenging |
| High-sensitivity troponin | Myocardial injury | Risk stratification; identifies ongoing injury | Elevated in CKD, sepsis, tachyarrhythmias; not specific to remodeling mechanism | TN (remodeling) + PON1 (oxidative milieu) may contextualize injury-driven progression |
| sST2 | Stress/inflammation; remodeling signaling | Prognosis/risk stratification | Influenced by systemic inflammation; assay/platform differences | TN may provide ECM/remodeling-related signal; PON1 adds oxidative/HDL-linked antioxidant domain |
| Galectin-3 | Fibrosis/macrophage activation | Prognosis; fibrosis-related risk enrichment | Influenced by renal dysfunction and systemic fibrotic/inflammatory states | TN provides an alternative remodeling-related marker; pairing with PON1 adds oxidative–inflammatory component |
| Tetranectin (TN) | ECM turnover/remodeling (fibrosis-related) | Emerging: phenotyping/risk enrichment in remodeling-dominant HF | Not cardiac-specific; influenced by liver function and malignancy; assay availability/harmonization | Structural/remodeling axis component—potentially complements hemodynamic and injury markers |
| Paraoxonase-1 (PON1) activity | Oxidative stress/inflammatory milieu (HDL-linked antioxidant function) | Emerging: risk enrichment, oxidative/inflammatory profiling | Strongly affected by diabetes/metabolic status, renal dysfunction, liver function, genotype, and assay substrate choice | Functional/oxidative axis component—potentially complements TN (structure) and natriuretic peptides (hemodynamics) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vulciu, P.A.; Valea, N.C.; Zdremtan, D.; Alexandru, C.; Varga, N.-I.; Donath-Miklos, I.; Mot, M.-D.; Puschita, M. Tetranectin and Paraoxonase-1 as Markers of Heart Failure. Medicina 2026, 62, 284. https://doi.org/10.3390/medicina62020284
Vulciu PA, Valea NC, Zdremtan D, Alexandru C, Varga N-I, Donath-Miklos I, Mot M-D, Puschita M. Tetranectin and Paraoxonase-1 as Markers of Heart Failure. Medicina. 2026; 62(2):284. https://doi.org/10.3390/medicina62020284
Chicago/Turabian StyleVulciu, Paula Alexandra, Nicolae Catalin Valea, Dana Zdremtan, Chioreanu Alexandru, Norberth-Istvan Varga, Imola Donath-Miklos, Maria-Daniela Mot, and Maria Puschita. 2026. "Tetranectin and Paraoxonase-1 as Markers of Heart Failure" Medicina 62, no. 2: 284. https://doi.org/10.3390/medicina62020284
APA StyleVulciu, P. A., Valea, N. C., Zdremtan, D., Alexandru, C., Varga, N.-I., Donath-Miklos, I., Mot, M.-D., & Puschita, M. (2026). Tetranectin and Paraoxonase-1 as Markers of Heart Failure. Medicina, 62(2), 284. https://doi.org/10.3390/medicina62020284

