Mass Screening Strategies for Celiac Disease in Apparently Healthy Children and Adolescents: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Inclusion Criteria
2.2.1. Population
- The review included studies involving children and adolescents (school-aged or within the broader pediatric spectrum as defined by each study), asymptomatic or without a prior diagnosis of celiac disease, recruited from the general population (e.g., schools and community-based cohorts).
2.2.2. Intervention/Exposure
- Studies examined mass or organized screening programs for celiac disease in unselected pediatric populations, including school-based and population-level initiatives.
- Eligible screening modalities comprised serological testing (anti-TGA IgA, EMA IgA, and total IgA), blood-based or point-of-care assays, as well as combinations of these approaches.
2.2.3. Comparators
- A comparator group was not required for inclusion. When studies provided comparative data, such as screening versus no screening or comparisons of different test modalities, these data were extracted and analyzed.
2.2.4. Outcomes
- Detection rate or prevalence of celiac disease identified through mass screening including serology-positive cases confirmed via biopsy or according to ESPGHAN diagnostic criteria-confirmed cases).
- Diagnostic accuracy measures of the employed tests (sensitivity, specificity, positive predictive value, and negative predictive value) against the reference standard (intestinal biopsy or ESPGHAN 2020 biopsy-free criteria).
- Rate of diagnostic confirmation (percentage of screen-positive cases proceeding to biopsy or ESPGHAN-based diagnosis).
- Proportion of children initiating a GFD after diagnosis.
- Health-related outcomes post-diagnosis (e.g., symptom resolution, growth parameters, hematological indices, and bone mineral density), where available.
- Reported harms or adverse consequences (e.g., psychosocial burden, necessary versus unnecessary biopsies, economic costs, and false-positive and false-negative classifications).
- Follow-up adherence and attrition rates.
2.2.5. Study Design
- Included study designs encompassed observational studies (cross-sectional and cohort), mass screening programs with reported outcomes, pilot or population-based initiatives, and epidemiological surveys incorporating screening data.
2.3. Exclusion Criteria
- Studies conducted exclusively in first-degree relatives, individuals with established autoimmune disorders (such as type 1 diabetes or autoimmune thyroid disease), genetic syndromes (e.g., Down or Turner syndrome), or other high-risk cohorts undergoing targeted screening were excluded.
- Case reports, small case series without defined screening methodology, and studies limited to targeted or high-risk populations, as well as reviews or meta-analyses.
- Studies published only as conference abstracts or in languages other than English were excluded, while no geographical or temporal restrictions were applied.
2.4. Data Extraction and Resolution of Disagreements
3. Results
4. Discussion
5. Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lindfors, K.; Ciacci, C.; Kurppa, K.; Lundin, K.E.; Makharia, G.K.; Mearin, M.L.; Murray, J.A.; Verdu, E.F.; Kaukinen, K. Coeliac disease. Nat. Rev. Dis. Prim. 2019, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Celiac Disease—How to Handle a Clinical Chameleon. N. Engl. J. Med. 2003, 348, 2568–2570. [Google Scholar] [CrossRef] [PubMed]
- Sahin, Y. Celiac disease in children: A review of the literature. World J. Clin. Pediatr. 2021, 10, 53. [Google Scholar] [CrossRef]
- Rodrigues, A.F.; Jenkins, H.R. Coeliac disease in children. Curr. Paediatr. 2006, 16, 317–321. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.R.; Mearin, M.L.; Phillips, A.; Shamir, R.; Troncone, R.; Giersiepen, K.; Branski, D.; Catassi, C.; et al. European Society for Pediatric Gastroenterology, Hepatology, and Nutrition guidelines for the diagnosis of coeliac disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 136–160. [Google Scholar] [CrossRef]
- Husby, S.; Koletzko, S.; Korponay-Szabó, I.; Kurppa, K.; Mearin, M.L.; Ribes-Koninckx, C.; Shamir, R.; Troncone, R.; Auricchio, R.; Castillejo, G.; et al. European Society Paediatric Gastroenterology, Hepatology and Nutrition Guidelines for Diagnosing Coeliac Disease 2020. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 141–156. [Google Scholar] [CrossRef]
- Krzewska, A.; Ben-Skowronek, I. Effect of Associated Autoimmune Diseases on Type 1 Diabetes Mellitus Incidence and Metabolic Control in Children and Adolescents. BioMed. Res. Int. 2016, 2016, 6219730. [Google Scholar] [CrossRef]
- Chou, R.; Bougatsos, C.; Blazina, I.; Mackey, K.; Grusing, S.; Selph, S. Screening for Celiac Disease: Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2017, 317, 1258–1268. [Google Scholar] [CrossRef]
- Laass, M.W.; Schmitz, R.; Uhlig, H.H.; Zimmer, K.P.; Thamm, M.; Koletzko, S. The prevalence of celiac disease in children and adolescents in Germany. Dtsch. Arztebl. Int. 2015, 112, 553–560. [Google Scholar] [CrossRef]
- Whitburn, J.; Rao, S.R.; Paul, S.P.; Sandhu, B.K. Diagnosis of celiac disease is being missed in over 80% of children particularly in those from socioeconomically deprived backgrounds. Eur. J. Pediatr. 2021, 180, 1941–1946. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Feng, Y.; Wang, M.; Wang, C.; Gao, F. Factors influencing diagnostic delays in celiac disease. World J. Gastroenterol. 2025, 31, 109585. [Google Scholar] [CrossRef] [PubMed]
- Kårhus, L.L.; Skaaby, T.; Petersen, J.; Madsen, A.L.; Thuesen, B.H.; Schwarz, P.; Rumessen, J.J.; Linneberg, A. Long-Term Consequences of Undiagnosed Celiac Seropositivity. Am. J. Gastroenterol. 2020, 115, 1681–1688. [Google Scholar] [CrossRef]
- Rubio–Tapia, A.; Kyle, R.A.; Kaplan, E.L.; Johnson, D.R.; Page, W.; Erdtmann, F.; Brantner, T.L.; Kim, W.R.; Phelps, T.K.; Lahr, B.D.; et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology 2009, 137, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Gatti, S.; Rubio-Tapia, A.; Makharia, G.; Catassi, C. Patient and Community Health Global Burden in a World With More Celiac Disease. Gastroenterology 2024, 167, 23–33. [Google Scholar] [CrossRef]
- Bosi, E.; Catassi, C. Screening type 1 diabetes and celiac disease by law. Lancet Diabetes Endocrinol. 2024, 12, 12–14. [Google Scholar] [CrossRef]
- Stewart, L.A.; Clarke, M.; Rovers, M.; Riley, R.D.; Simmonds, M.; Stewart, G.; Tierney, J.F. Preferred Reporting Items for a Systematic Review and Meta-analysis of Individual Participant Data: The PRISMA-IPD Statement. JAMA 2015, 313, 1657–1665. [Google Scholar] [CrossRef]
- Alessandrini, S.; Giacomoni, E.; Muccioli, F. Mass population screening for celiac disease in children: The experience in Republic of San Marino from 1993 to 2009. Ital. J. Pediatr. 2013, 39, 67. [Google Scholar] [CrossRef] [PubMed]
- Lionetti, E.; Pjetraj, D.; Gatti, S.; Catassi, G.; Bellantoni, A.; Boffardi, M.; Cananzi, M.; Cinquetti, M.; Francavilla, R.; Malamisura, B.; et al. Prevalence and detection rate of celiac disease in Italy: Results of a SIGENP multicenter screening in school-age children. Dig. Liver Dis. 2023, 55, 608–613. [Google Scholar] [CrossRef]
- Gatti, S.; Lionetti, E.; Balanzoni, L.; Verma, A.K.; Galeazzi, T.; Gesuita, R.; Scattolo, N.; Cinquetti, M.; Fasano, A.; Catassi, C.; et al. Increased Prevalence of Celiac Disease in School-age Children in Italy. Clin. Gastroenterol. Hepatol. 2020, 18, 596–603. [Google Scholar] [CrossRef]
- Nusier, M.K.; Brodtkorb, H.K.; Rein, S.E.; Odeh, A.; Radaideh, A.M.; Klungland, H. Serological screening for celiac disease in schoolchildren in Jordan. Is height and weight affected when seropositive? Ital. J. Pediatr. 2010, 36, 16. [Google Scholar]
- Da Conceição-Machado, M.E.P.; Santana, M.L.P.; Silva, R.D.C.R.; Silva, L.R.; Pinto, E.J.; Couto, R.D.; Moraes, L.T.L.P.; Assis, A.M.O. Serologic screening of celiac disease in adolescents. Rev. Bras. Epidemiol. 2015, 18, 149–156. [Google Scholar]
- Beser, O.F.; Gulluelli, E.; Cokugras, F.C.; Erkan, T.; Kutlu, T.; Yagci, R.V.; Alp, F.E.; Ercal, G.; Kepil, N.; Kucur, M.; et al. Prevalence and Clinical Features of Celiac Disease in Healthy School-Aged Children. Dig. Dis. Sci. 2019, 64, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Al Hatlani, M.M. Prevalence of celiac disease among symptom-free children from the Eastern Province of Saudi Arabia. Saudi J. Gastroenterol. 2015, 21, 367–371. [Google Scholar] [CrossRef]
- Webb, C.; Halvarsson, B.; Norström, F.; Myléus, A.; Carlsson, A.; Danielsson, L.; Högberg, L.; Ivarsson, A.; Karlsson, E.; Stenhammar, L.; et al. Accuracy in celiac disease diagnostics by controlling the small-bowel biopsy process. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 549–553. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, N.; Demiroren, K. The prevalence of celiac disease in healthy school children in Van City, east of Turkey: A screening study using a rapid test. Med. Sci. Discov. 2016, 3, 130–133. [Google Scholar] [CrossRef]
- Magazzù, G.; Aquilina, S.; Barbara, C.; Bondin, R.; Brusca, I.; Bugeja, J.; Camilleri, M.; Cascio, D.; Costa, S.; Cuzzupè, C.; et al. Recognizing the Emergent and Submerged Iceberg of the Celiac Disease: ITAMA Project-Global Strategy Protocol. Pediatr. Rep. 2022, 14, 293–311. [Google Scholar] [CrossRef]
- Mäki, M.; Mustalahti, K.; Kokkonen, J.; Kulmala, P.; Haapalahti, M.; Karttunen, T.; Ilonen, J.; Laurila, K.; Dahlbom, I.; Hansson, T.; et al. Prevalence of Celiac Disease among Children in Finland. N. Engl. J. Med. 2003, 348, 2517–2524. [Google Scholar] [CrossRef]
- Dehghani, S.M.; Haghighat, M.; Mobayen, A.; Rezaianzadeh, A.; Geramizadeh, B. Prevalence of celiac disease in healthy Iranian school children. Ann. Saudi Med. 2013, 33, 159–161. [Google Scholar] [CrossRef]
- Rutz, R.; Ritzler, E.; Fierz, W.; Herzog, D. Prevalence of asymptomatic celiac disease in adolescents of eastern Switzerland. Swiss Med. Wkly. 2002, 132, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Fabiani, E.; Rätsch, I.; Coppa, G.; Giorgi, P.; Pierdomenico, R.; Alessandrini, S.; Iwanejko, G.; Domenici, R.; Mei, E.; et al. The coeliac iceberg in Italy. A multicentre antigliadin antibodies screening for coeliac disease in school-age subjects. Acta Paediatr. Suppl. 1996, 412, 29–35. [Google Scholar] [CrossRef]
- Comba, A.; Eren, N.B.; Demir, E. Prevalence of celiac disease among school-age children in Çorum, Turkey. Turk. J. Gastroenterol. 2018, 29, 595–600. [Google Scholar] [CrossRef]
- Dalgic, B.; Sari, S.; Basturk, B.; Ensari, A.; Egritas, O.; Bukulmez, A.; Baris, Z. Prevalence of celiac disease in healthy Turkish school children. Am. J. Gastroenterol. 2011, 106, 1512–1517. [Google Scholar] [CrossRef] [PubMed]
- Ben Hariz, M.; Kallel-Sellami, M.; Kallel, L.; Lahmer, A.; Halioui, S.; Bouraoui, S.; Laater, A.; Sliti, A.; Mahjoub, A.; Zouari, B.; et al. Prevalence of celiac disease in Tunisia: Mass-screening study in schoolchildren. Eur. J. Gastroenterol. Hepatol. 2007, 19, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Fifi, A.C.; Velasco-Benitez, C.; Saps, M. Celiac Disease in Children with Functional Constipation: A School-Based Multicity Study. J. Pediatr. 2020, 227, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Nenna, R.; Tiberti, C.; Petrarca, L.; Lucantoni, F.; Mennini, M.; Luparia, R.P.L.; Panimolle, F.; Mastrogiorgio, G.; Pietropaoli, N.; Magliocca, F.M.; et al. The celiac iceberg: Characterization of the disease in primary schoolchildren. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 416–421. [Google Scholar] [CrossRef]
- Alarida, K.; Harown, J.; Ahmaida, A.; Marinelli, L.; Venturini, C.; Kodermaz, G.; Tozzoli, R.; Mandolesi, A.; Bearzi, I.; Catassi, C. Coeliac disease in Libyan children: A screening study based on the rapid determination of anti-transglutaminase antibodies. Dig. Liver Dis. 2011, 43, 688–691. [Google Scholar] [CrossRef]
- Dhingra, K.; Ratra, S.; Gupta, G.; Jain, M.; Bharadwaj, H.; Sharma, N.; Nijhawan, S.; Nijhawan, M.; Nijhawan, S. Redefining Celiac Iceberg in Children in North India-Do Asymptomatic Subjects Need Screening? Indian J. Pediatr. 2022, 89, 399–401. [Google Scholar]
- Korponay-Szabó, I.R.; Szabados, K.; Pusztai, J.; Uhrin, K.; Ludmány, É.; Nemes, É.; Kaukinen, K.; Kapitány, A.; Koskinen, L.; Sipka, S.; et al. Population screening for coeliac disease in primary care by district nurses using a rapid antibody test: Diagnostic accuracy and feasibility study. BMJ Br. Med. J. 2007, 335, 1244. [Google Scholar] [CrossRef]
- Primavera, G.; Aiello, A.; Grosso, C.; Trifirò, G.; Costa, S.; Grima, A.; Pallio, S.; Toumi, M.; Magazzu’, G.; Pellegrino, S.; et al. Point-of-Care test screening versus Case finding for paediatric coeliac disease: A pragmatic study in primary care. Acta Paediatr. 2021, 110, 337–339. [Google Scholar] [CrossRef]
- Costa, S.; Astarita, L.; Ben-Hariz, M.; Currò, G.; Dolinsek, J.; Kansu, A.; Magazzu, G.; Marvaso, S.; Micetic-Turku, D.; Pellegrino, S.; et al. A Point-of-Care test for facing the burden of undiagnosed celiac disease in the Mediterranean area: A pragmatic design study. BMC 2014, 14, 219. [Google Scholar] [CrossRef]
- Fasano, A.; Berti, I.; Gerarduzzi, T.; Not, T.; Colletti, R.B.; Drago, S.; Elitsur, Y.; Green, P.H.; Guandalini, S.; Hill, I.D. Prevalence of celiac disease in at-risk and not-at-risk groups in the United States: A large multicenter study. Arch. Intern. Med. 2003, 163, 286–292. [Google Scholar] [CrossRef]
- Korponay-Szabó, I.R.; Kovács, J.B.; Czinner, A.; Gorácz, G.; Vámos, A.; Szabó, T. High prevalence of silent celiac disease in preschool children screened with IgA/IgG antiendomysium antibodies. J. Pediatr. Gastroenterol. Nutr. 1999, 28, 26–30. [Google Scholar] [PubMed]
- Sood, A.; Midha, V.; Sood, N.; Avasthi, G.; Sehgal, A. Prevalence of celiac disease among school children in Punjab, North India. J. Gastroenterol. Hepatol. 2006, 21, 1622–1625. [Google Scholar] [CrossRef] [PubMed]
- Demirçeken, F.G.; Kansu, A.; Kuloğlu, Z.; Girgin, N.; Güriz, H.; Ensari, A. Human tissue transglutaminase antibody screening by immunochromatographic line immunoassay for early diagnosis of celiac disease in Turkish children. Turk. J. Gastroenterol. 2008, 19, 14–21. [Google Scholar] [CrossRef]
- Ertekin, V.; Selimoǧlu, M.A.; Kardaş, F.; Aktaş, E. Prevalence of celiac disease in Turkish children. J. Clin. Gastroenterol. 2005, 39, 689–691. [Google Scholar] [CrossRef]
- Karagiozoglou-Lampoudi, T.; Zellos, A.; Vlahavas, G.; Kafritsa, Y.; Roma, E.; Papadopoulou, A.; Fotoulaki, M.; Karyda, S.; Xinias, I.; Savvidou, A. Screening for coeliac disease in preschool Greek children: The feasibility study of a community-based project. Acta Paediatr. 2013, 102, 749–754. [Google Scholar] [CrossRef]
- Bonamico, M.; Nenna, R.; Montuori, M.; Luparia, R.P.L.; Turchetti, A.; Mennini, M.; Lucantoni, F.; Masotti, D.; Magliocca, F.M.; Culasso, F.; et al. First salivary screening of celiac disease by detection of anti-transglutaminase autoantibody radioimmunoassay in 5000 Italian primary schoolchildren. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 17–20. [Google Scholar] [CrossRef]
- Baraba Dekanić, K.; Butorac Ahel, I.; Ružman, L.; Dolinšek, J.; Dolinšek, J.; Palčevski, G. Is There a Role of Using a Rapid Finger Prick Antibody Test in Screening for Celiac Disease in Children? Gastroenterol. Res. Pract. 2019, 2019, 4504679. [Google Scholar] [CrossRef]
- Jansen, M.; van Zelm, M.; Groeneweg, M.; Jaddoe, V.; Dik, W.; Schreurs, M.; Hooijkaas, H.; Moll, H.; Escher, J. The identification of celiac disease in asymptomatic children: The Generation R Study. J. Gastroenterol. 2018, 53, 377–386. [Google Scholar] [CrossRef] [PubMed]
- Tommasini, A.; Not, T.; Kiren, V.; Baldas, V.; Santon, D.; Trevisiol, C.; Berti, I.; Neri, E.; Gerarduzzi, T.; Bruno, I. Mass screening for coeliac disease using antihuman transglutaminase antibody assay. Arch. Dis. Child. 2004, 89, 512–515. [Google Scholar] [CrossRef]
- Al-Hussaini, A.; Troncone, R.; Khormi, M.; AlTuraiki, M.; Alkhamis, W.; Alrajhi, M.; Halal, T.; Fagih, M.; Alharbi, S.; Bashir, M.S.; et al. Mass Screening for Celiac Disease among School-aged Children: Toward Exploring Celiac Iceberg in Saudi Arabia. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 646–651. [Google Scholar] [CrossRef]
- Bingley, P.J.; Norcross, A.J.; Lock, R.J.; Ness, A.R.; Jones, R.W. Undiagnosed coeliac disease at age seven: Population based prospective birth cohort study. BMJ 2004, 328, 322–323. [Google Scholar] [CrossRef]
- Zanella, S.; De Leo, L.; Nguyen-Ngoc-Quynh, L.; Nguyen-Duy, B.; Not, T.; Tran-Thi-Chi, M.; Phung-Duc, S.; Le-Thanh, H.; Malaventura, C.; Vatta, S. Cross-sectional study of coeliac autoimmunity in a population of Vietnamese children. BMJ Open 2016, 6, e011173. [Google Scholar] [CrossRef]
- Stahl, M.G.; Rasmussen, C.G.; Dong, F.; Waugh, K.; Norris, J.M.; Baxter, J.; Yu, L.; Steck, A.K.; Frohnert, B.I.; Liu, E.; et al. Mass Screening for Celiac Disease: The Autoimmunity Screening for Kids Study. Am. J. Gastroenterol. 2021, 116, 180–187. [Google Scholar] [CrossRef]
- Bhattacharya, M.M.; Dubey, A.; Mathur, N. Prevalence of celiac disease in North Indian children. Indian Pediatr. 2009, 46, 415. [Google Scholar] [PubMed]
- Mora, M.; Litwin, N.; del Carmen Toca, M.; Azcona, M.I.; Neffa, R.S.; Battiston, F.; Solaegui, M.; Ortiz, G.; Wagener, M.; Olivera, J.; et al. Prevalence of celiac disease: A multicenter trial in pediatric population from five urban districts of Argentina. Arch. Argent. Pediatr. 2012, 110, 490–496. [Google Scholar] [PubMed]
- Abu-Zekry, M.; Kryszak, D.; Diab, M.; Catassi, C.; Fasano, A. Prevalence of celiac disease in Egyptian children disputes the east-west agriculture-dependent spread of the disease. J. Pediatr. Gastroenterol. Nutr. 2008, 47, 136–140. [Google Scholar] [CrossRef] [PubMed]
- Ress, K.; Harro, M.; Maaroos, H.I.; Harro, J.; Uibo, R.; Uibo, O. High prevalence of coeliac disease: Need for increasing awareness among physicians. Dig. Liver Dis. 2007, 39, 136–139. [Google Scholar] [CrossRef]
- Farahmand, F.; Mir-Nasseri, M.M.; Shahraki, T.; Yourdkhani, F.; Ghotb, S.; Modaresi, V.; Khatami, G.R. Prevalence of occult celiac disease in healthy Iranian school age children. Arch. Iran. Med. 2012, 15, 342–345. [Google Scholar]
- Carlsson, A.K.; Axelsson, I.E.M.; Borulf, S.K.; Bredberg, A.C.A.; Ivarsson, S.A. Serological screening for celiac disease in healthy 2.5-year-old children in Sweden. Pediatrics 2001, 107, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Catassi, C.; Fanciulli, G.; D’appello, A.R.; El Asmar, R.; Rondina, C.; Fabiani, E.; Bearzi, I.; Coppa, G.V. Antiendomysium versus antigliadin antibodies in screening the general population for coeliac disease. Scand. J. Gastroenterol. 2000, 35, 732–736. [Google Scholar] [CrossRef]
- Csizmadia, C.G.D.S.; Mearin, M.L.; Von Blomberg, B.M.E.; Brand, R.; Verloove-Vanhorick, S.P. An iceberg of childhood coeliac disease in the Netherlands. Lancet 1999, 353, 813–814. [Google Scholar] [CrossRef] [PubMed]
- Kondrashova, A.; Mustalahti, K.; Kaukinen, K.; Viskari, H.; Volodicheva, V.; Haapala, A.-M.; Ilonen, J.; Knip, M.; Mäki, M.; Hyoty, H.; et al. Lower economic status and inferior hygienic environment may protect against celiac disease. Ann. Med. 2008, 40, 223–231. [Google Scholar] [CrossRef]
- Castaño, L.; Blarduni, E.; Ortiz, L.; Núñez, J.; Bilbao, J.R.; Rica, I.; Martul, P.; Vitoria, J.C. Prospective population screening for celiac disease: High prevalence in the first 3 years of life. J. Pediatr. Gastroenterol. Nutr. 2004, 39, 80–84. [Google Scholar] [PubMed]
- Almazán, M.V.; Ortega, E.; Torres, R.M.; Tovar, M.; Romero, J.; López-Casado, M.Á.; Jáimez, L.; Jiménez-Jáimez, J.; Ballesteros, A.; Caballero-Villarraso, J.; et al. Diagnostic screening for subclinical celiac disease using a rapid test in children aged 2-4. Pediatr. Res. 2015, 78, 280–285. [Google Scholar] [CrossRef]
- Ben Hariz, M.; Laadhar, L.; Kallel-Sellami, M.; Siala, N.; Bouraoui, S.; Bouziri, S.; Borgi, A.; Karouia, F.; Maherzi, A.; Makni, S. Celiac disease revealed in 3% of Swedish 12-year-olds born during an epidemic. J. Pediatr. Gastroenterol. Nutr. 2009, 49, 170–176. [Google Scholar]
- Ben Hariz, M.; Laadhar, L.; Kallel-Sellami, M.; Siala, N.; Bouraoui, S.; Bouziri, S.; Borgi, A.; Karouia, F.; Maherzi, A.; Makni, S. Celiac disease in Tunisian children: A second screening study using a “new generation” rapid test. Immunol. Invest. 2013, 42, 356–368. [Google Scholar] [CrossRef]
- Ivarsson, A.; Myléus, A.; Norström, F.; van der Pals, M.; Rosén, A.; Högberg, L.; Danielsson, L.; Halvarsson, B.; Hammarroth, S.; Hernell, O.; et al. Prevalence of childhood celiac disease and changes in infant feeding. Pediatrics 2013, 131, e687–e694. [Google Scholar] [CrossRef]
- Vijgen, S.; Alliet, P.; Gillis, P.; Declercq, P.; Mewis, A. Seroprevalence of celiac disease in Belgian children and adolescents. Acta Gastro-Enterol. Belg. 2012, 75, 325–330. [Google Scholar]
- Aljebreen, A.M.; Almadi, M.A.; Alhammad, A.; Al Faleh, F.Z. Seroprevalence of celiac disease among healthy adolescents in Saudi Arabia. World J. Gastroenterol. 2013, 19, 2374–2378. [Google Scholar] [CrossRef]
- Singh, P.; Arora, A.; Strand, T.A.; Leffler, D.A.; Catassi, C.; Green, P.H.; Kelly, C.P.; Ahuja, V.; Makharia, G.K. Global Prevalence of Celiac Disease: Systematic Review and Meta-analysis. Clin. Gastroenterol. Hepatol. 2018, 16, 823–836.e2. [Google Scholar] [CrossRef] [PubMed]
- Mpakosi, A.; Kaliouli-Antonopoulou, C.; Cholevas, V.; Cholevas, S.; Tzouvelekis, I.; Mironidou-Tzouveleki, M.; Lianou, A.; Iacovidou, N.; Tsantes, A.G.; Sokou, R. Challenges in the Pediatric Celiac Disease Diagnosis: An Up-to-Date Review. Diagnostics 2025, 15, 2392. [Google Scholar] [CrossRef] [PubMed]
- Dunford, E.K.; Miles, D.R.; Popkin, B. Food Additives in Ultra-Processed Packaged Foods: An Examination of US Household Grocery Store Purchases. J. Acad. Nutr. Diet. 2023, 123, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Lerner, A.; Benzvi, C. Microbial Transglutaminase Is a Very Frequently Used Food Additive and Is a Potential Inducer of Autoimmune/Neurodegenerative Diseases. Toxics 2021, 9, 233. [Google Scholar] [CrossRef]
- Vincentini, O.; Pricci, F.; Silano, M.; Agrimi, U.; Iacoponi, F.; Villa, M.; Porfilio, C.; Sedile, A.I.; Ulivi, F.; Catassi, C.; et al. Study protocol of D1Ce Screen: A pilot project of the Italian national screening program for type 1 diabetes and coeliac disease in the paediatric population. PLoS ONE 2025, 20, e0328624. [Google Scholar] [CrossRef]
- Stahl, M.G.; Leonard, M.M.; Liu, E.; Pinto-Sanchez, M.I.; Lack, G.; Catassi, C. Mass Screening of Celiac Disease: A Crossing Point Between Secondary and Primary Prevention? Gastroenterology 2025, 170, 240–245. [Google Scholar] [CrossRef]
- Wilson, J.; Jungner, G. Principles and Practice of Screening for Disease; WHO: Geneva, Switzerland, 1968; Volume 69, p. 1085. Available online: https://iris.who.int/bitstream/handle/10665/37650/WHO_PHP_34.pdf (accessed on 9 November 2025).
- Rosén, A.; Emmelin, M.; Carlsson, A.; Hammarroth, S.; Karlsson, E.; Ivarsson, A. Mass screening for celiac disease from the perspective of newly diagnosed adolescents and their parents: A mixed-method study. BMC Public Health 2011, 11, 822. [Google Scholar] [CrossRef]
- Hershcovici, T.; Leshno, M.; Goldin, E.; Shamir, R.; Israeli, E. Cost effectiveness of mass screening for coeliac disease is determined by time-delay to diagnosis and quality of life on a gluten-free diet. Aliment. Pharmacol. Ther. 2010, 31, 901–910. [Google Scholar] [CrossRef]
- Suasnabar, J.H.; Meijer, C.R.; Smit, L.; van Overveld, F.; Thom, H.; Keeney, E.; Mearin, M.L.; van der Akker-van Marle, M.E. Long-Term Cost-Effectiveness of Case Finding and Mass Screening for Celiac Disease in Children. Gastroenterology 2024, 167, 1129–1140. [Google Scholar] [CrossRef]
- Long, K.H.; Rubio-Tapia, A.; Wagie, A.E.; Melton Iii, L.J.; Lahr, B.D.; Van Dyke, C.T.; Murray, J.A. The economics of celiac disease: A population-based study. Aliment. Pharmacol. Ther. 2010, 32, 261. [Google Scholar] [CrossRef]
- Greco, L.; Timpone, L.; Abkari, A.; Abu-Zekry, M.; Attard, T.; Bouguerrà, F.; Cullufi, P.; Kansu, A.; Micetic-Turk, D.; Mišak, Z.; et al. Burden of celiac disease in the Mediterranean area. World J. Gastroenterol. 2011, 17, 4971. [Google Scholar] [CrossRef]
- Mearns, E.S.; Taylor, A.; Boulanger, T.; Craig, K.J.; Gerber, M.; Leffler, D.A.; Drahos, J.; Sanders, D.S.; Lebwohl, B. Systematic Literature Review of the Economic Burden of Celiac Disease. Pharmacoeconomics 2019, 37, 45–61. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, M.; Looha, M.A.; Ghehsareh, M.M.; Asri, N.; Jahani-Sherafat, S.; Tavirani, M.R.; Rostami-Nejad, M. Estimating the costs of delayed Celiac disease diagnosis. BMC Gastroenterol. 2025, 25, 673. [Google Scholar] [CrossRef] [PubMed]
- Drummond, M.; Sculpher, M.; Claxton, K.; Stoddart, G.; Torrance, G.W. Methods for the Economic Evaluation of Health Care Programmes; OUP: Oxford, UK, 2015; Available online: https://books.google.com/books?hl=en&lr=&id=yzZSCwAAQBAJ&oi=fnd&pg=PP1&ots=_cSiiE3qCO&sig=6y7Lhh5qlnHpyJLBSLWD-F5YMj0 (accessed on 11 January 2025).
- Shamir, R.; Hernell, O.; Leshno, M. Cost-effectiveness analysis of screening for celiac disease in the adult population. Med. Decis. Making 2006, 26, 282–293. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; Tsai, R.; Wang, L.; Khavari, N.; Bachrach, L.; Bass, D. Cost-effectiveness of universal serologic screening to prevent nontraumatic hip and vertebral fractures in patients with celiac disease. Clin. Gastroenterol. Hepatol. 2013, 11, 645–653. [Google Scholar] [CrossRef]
- Norström, F.; Myléus, A.; Nordyke, K.; Carlsson, A.; Högberg, L.; Sandström, O.; Stenhammar, L.; Ivarsson, A.; Lindholm, L. Is mass screening for coeliac disease a wise use of resources? A health economic evaluation. BMC Gastroenterol. 2021, 21, 159. [Google Scholar] [CrossRef]
- Gianolio, L.; Magnani, L.; Topa, M.; Poli, A.; Cocuccio, C.; Mantegazza, C.; Scaramella, L.; Marsilio, M.; Zuccotti, G.; Elli, L.; et al. Economic and organizational impact of a paediatric mass screening program for coeliac disease in Italy. Dig. Liver Dis. 2025, 57, 2339–2346. [Google Scholar] [CrossRef]
- Stahl, M.G.; Pan, Z.; Germone, M.; Nagle, S.; Mehta, P.; Shull, M.; Griffith, I.; Shuler, B.; Hoffenberg, E.; Taki, I.; et al. One-Year Outcomes Among Children Identified With Celiac Disease Through a Mass Screening Program. Clin. Gastroenterol. Hepatol. 2025, 23, 1135–1142. [Google Scholar] [CrossRef]
- Giannakopoulos, G.; Margoni, D.; Chouliaras, G.; Panayiotou, J.; Zellos, A.; Papadopoulou, A.; Liakopoulou, M.; Chrousos, G.; Kanaka-Gantenbein, C.; Kolaitis, G.; et al. Child and Parent Mental Health Problems in Pediatric Celiac Disease: A Prospective Study. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 315–320. [Google Scholar] [CrossRef]
- Coburn, S.; Rose, M.; Sady, M.; Parker, M.; Suslovic, W.; Weisbrod, V.; Kerzner, B.; Streisand, R.; Kahn, I. Mental Health Disorders and Psychosocial Distress in Pediatric Celiac Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 608–614. [Google Scholar] [CrossRef]
- Smith, L.B.; Lynch, K.F.; Kurppa, K.; Koletzko, S.; Krischer, J.; Liu, E.; Johnson, S.B.; Agardh, D.; The TEDDY Study Group. Psychological Manifestations of Celiac Disease Autoimmunity in Young Children. Pediatrics 2017, 139, e20162848. [Google Scholar] [CrossRef]
- Gunnarsdottir, S.; Albrektsson, H.; Frydebo, J.; Miron, N.; Kindblom, J.M.; Størdal, K.; Mårild, K. Celiac disease screening at a pediatric outpatient clinic: A feasibility study. Scand. J. Gastroenterol. 2022, 57, 912–920. [Google Scholar] [CrossRef] [PubMed]
- Mc Elwenspoek, M.; Thom, H.; Sheppard, A.L.; Keeney, E.; O’dOnnell, R.; Jackson, J.; Roadevin, C.; Dawson, S.; Lane, D.; Stubbs, J.; et al. Defining the optimum strategy for identifying adults and children with coeliac disease: Systematic review and economic modelling. Health Technol. Assess. 2022, 26, 1–310. [Google Scholar] [CrossRef] [PubMed]
- Shiha, M.G.; Nandi, N.; Raju, S.A.; Wild, G.; Cross, S.S.; Singh, P.; Elli, L.; Makharia, G.K.; Sanders, D.S.; Penny, H.A. Accuracy of the No-Biopsy Approach for the Diagnosis of Celiac Disease in Adults: A Systematic Review and Meta-Analysis. Gastroenterology 2024, 166, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Trovato, C.M.; Montuori, M.; Valitutti, F.; Leter, B.; Cucchiara, S.; Oliva, S. The Challenge of Treatment in Potential Celiac Disease. Gastroenterol. Res. Pract. 2019, 2019, 8974751. [Google Scholar] [CrossRef]




| Region | Years of Study | Studied Population | Type of Study | Screening Method | Seropositive | Prevalence of CD | Ref. | |
|---|---|---|---|---|---|---|---|---|
| 1 | Rep. of San Marino | 1993–2009 | 5092 schoolchildren aged 6, 10, and 14 years | Mass screening study | AGA IgA/IgG tTG IgA followed by EMA IgA | AGA 0.70% tTG 1.80% | 0.82% | [17] |
| 2 | Italy | 2017–2020 | 4438 schoolchildren aged 5–11 years | Multicenter nationwide cross-sectional study (SIGENP study) | HLA-DQ2 and DQ8 (rapid test) followed by serum tTG IgA and total serum IgA | 42.2%: HLA test + Seropositive: 4.28%. Prevalence of CD (in HLA+ children): 2.98% | 1.65% | [18] |
| 3 | Italy | 2015–2016 | 4570 schoolchildren aged 5–11 years | Screening study | HLA-DQ2 and DQ8 (rapid test) followed by total serum IgA, tTG IgA or DGP IgG and EMA IgA | 43%: HLA test + Seropositive: 5.62%. Prevalence of CD (in HLA+ children): 5.62% | 1.58% | [19] |
| 4 | Jordan | 2006 | 1985 schoolchildren aged 5.5–9.5 years | Collaborative study between the Norwegian University and the Jordan University | tTG IgA followed by EMA IgA | tTG IgA 1.5% confirmation by EMA IgA 0.80% | 0.80% No biopsy reported | [20] |
| 5 | Brazil | 2009 | 1213 schoolchildren aged 11–17 years | Cross-sectional study | tTG IgA | 0.49% | 0.49% No biopsy reported | [21] |
| 6 | Northern region of Cyprus | 2015–2016 | 3792 schoolchildren aged 6–10 years | Screening study | Total IgA tTG IgA/IgG EMA IgA | 1% | 0.39% | [22] |
| 7 | Saudi Arabia | 2012–2014 | 1141 schoolchildren aged 6–18 years | Screening study | tTG IgA/IgG | 2.80% | 0.87% | [23] |
| 8 | Sweden | 2005–2006 | 7567 schoolchildren, median age 12 years | Multicenter screening study (ETICS study phase I) | tTG IgA/IgG total IgA followed by EMA IgA/IgG | 2.60% | 3% | [24] |
| 9 | Turkey | 2016 (date of publication) | 1003 schoolchildren aged 5–18 years | Screening study | tTG IgA and total IgA (rapid test) | Rapid test was positive in 0.20% | 0.30% | [25] |
| 10 | Malta | 2020–2022 | 19,721 schoolchildren aged 3–13 years | Italia—Malta Cooperation Project (ITAMA project) | tTG IgM, IgA and IgG (rapid test) followed by total serum IgA, tTG IgA and EMA test | Rapid test was positive in 0.68% A final diagnosis of CD was made, according to the ESPGHAN guidelines, in 0.53% children who underwent screening by rapid test | 0.42% | [26] |
| 11 | Finland | 1994 | 3654 schoolchildren aged 7–16 years | Screening study | tTG IgA/IgG and EMA IgA/IgG followed by HLA-DQ | 1.49% | 1.01% | [27] |
| 12 | Iran | 2013 (date of publication) | 1500 schoolchildren aged 6–12 years | Cross-sectional screening study | tTG IgA total IgA | 2% | 0.60% | [28] |
| 13 | Switzerland | 1999–2000 | 1450 schoolchildren aged 11–18 years | Screening study | Total IgA tTG IgA EMA IgA | 0.75% | 0.55% | [29] |
| 14 | Italy | 1993–1995 | 17,201 schoolchildren aged 6–15 years | Multicenter screening study | AGA IgA/IgG EMA | 7.50% (first-level test) | 0.54% | [30] |
| 15 | Turkey | 2016–2017 | 1730 schoolchildren aged 9–17 years | Screening study | tTG IgA and total IgA (rapid test) followed by tTG IgA/IgG EMA IgA/IgG | 0.46% | 0.46% | [31] |
| 16 | Turkey | 2006–2008 | 20,190 schoolchildren aged 6–17 years | Screening study | tTG IgA/IgG EMA IgA/IgG | 2.42% | 0.47% | [32] |
| 17 | Tunisia | 2003–2005 | 6284 schoolchildren | Screening study | tTG IgA and total IgA followed by EMA IgA | 2.22% (initial screening test) | 0.63% | [33] |
| 18 | Colombia | 2015–2017 | 1402 schoolchildren aged 4–18 years | Cross-sectional multicity study | tTG IgA and total IgA (rapid test) followed by HLA-DQ | 2.41% (initial screening test) | 0.60% | [34] |
| 19 | Italy | 2007–2010 | 5733 schoolchildren aged 5–8 years | Screening study | Salivary samples were tested for tTG IgA (fluid-phase radioimmunoassay) followed by serum tTG and EMA | 0.73% | 1.20% | [35] |
| 20 | Libya | 2011 (date of publication) | 2920 schoolchildren | Screening study | tTG IgA (rapid test) followed by serum tTG IgA | Rapid test positive 1.70% | 0.69% | [36] |
| 21 | India | 2022 (date of publication) | 575 school-aged children | Cross-sectional study | tTG IgA | 1.04% | 1.04% | [37] |
| 22 | Hungary | 2005 | 2690 children, median age 6 years (general population) | Screening study | tTG IgA (rapid test) followed by serum tTG IgA and EMA IgA/IgG | Rapid test positive 1.05% | 1.38% | [38] |
| 23 | Italy | 2021 (date of publication) | 3307 children aged 1–14 years | Prospective study | tTG IgA (rapid test) followed by serum tTG IgA/IgG and total IgA | Rapid test positive 1.028% | 0.33% children detected by rapid test | [39] |
| 24 | Mediterranean area (Italy, Slovenia, Turkey) | 2014 (date of publication) | Italy: 3559 children (1–14 years), Slovenia: 1480 children (14–23 years), Turkey: 771 children (1–18 years) | Pragmatic study | tTG IgA (rapid test) followed by serology | Rapid test positive Italy: 3.11%, Slovenia: 1.21%, Turkey: 0.25% | Italy: 0.53%, Slovenia: 0.47%, Turkey: 0.12% | [40] |
| 25 | United States | 1996–2001 | 1281 children aged 2–18 years | Multicenter study | AGA IgA/IgG EMA IgA tTG IgA | 0.31% | 0.15% | [41] |
| 26 | Hungary | 1999 (date of publication) | 427 preschool children aged 3–6 years | Screening study | EMA IgA/IgG | 1.17% | 1.17% | [42] |
| 27 | India | 2003–2004 | 4347 schoolchildren aged 3–17 years | Screening study | tTG IgA | 0.48% | 0.32% | [43] |
| 28 | Germany | 2003–2006 | 12741 children aged 1–17 years | Screening study (KIGGS study) | tTG IgA/IgG total IgA | 0.80% | 0.90% | [9] |
| 29 | Turkey | 2008 (date of publication) | 1000 children aged 2–18 years | Prospective study | tTG IgA and AGA (rapid test) followed by serum tTG IgA and EMA IgA | 1% | 0.90% | [44] |
| 30 | Turkey | 2005 (date of publication) | 1263 schoolchildren aged 6–17 years | Screening study | tTG IgA | 0.87% | 0.63% | [45] |
| 31 | Greece | 2009 | 1080 preschool children aged 2–6 years | Multicity, multicenter study | tTG IgA and total IgA (rapid test) followed by serum tTG IgA and EMA IgA | 0.65% | 0.65% | [46] |
| 32 | Italy | 2007 | 4048 schoolchildren aged 6–8 years | Screening study | Salivary samples were tested for tTG IgA (fluid-phase radioimmunoprecipitation method) followed by serum tTG IgA and EMA IgA | 0.79% | 1.16% | [47] |
| 33 | Croatia | 2018–2019 | 1478 schoolchildren, median age 6 years | Screening study | tTG IgA (rapid test) followed by serum tTG IgA and total IgA | No child with a positive rapid test | No confirmed cases of CD | [48] |
| 34 | The Netherlands | 2010–2013 | 4593 children, median age 6 years | Prospective study | tTG IgA followed by EMA IgA HLA DQ 2,2/2,5/8 | 1.35% | 0.69% | [49] |
| 35 | Italy | 1999–2000 | 3188 schoolchildren aged 6–12 years | Cross-sectional study | tTG IgA EMA IgA HLA DQ | 1.50% | 1% | [50] |
| 36 | Saudi Arabia | 2014–2016 | 7930 schoolchildren aged 6–15 years | Prospective study | tTG IgA followed by EMA IgA | 2.80% | 1.50% | [51] |
| 37 | United Kingdom | 2004 (date of publication) | 5470 children, median age 7.5 years | Prospective study (ALSPAC study) | tTG IgA followed by EMA IgA | 1% | 1% (based on IgA-EMA test). Confirmatory biopsy was not possible | [52] |
| 38 | Vietnam | 2015 | 1961 children aged 2–18 years | Screening study | tTG IgA followed by EMA IgA HLA DQ | 1% | 0.036% Confirmatory biopsy was not possible | [53] |
| 39 | United States | 2017–2018 | 9973 children aged 1–17 years | Screening study (ASK study) | tTG IgA by two methods: radiobinding and electrochemiluminescence assay | 2.42% | 1.50% | [54] |
| 40 | India | 2004 | 400 children aged 6 months–12 years | Screening study | tTG IgA | 1.25% | 1% | [55] |
| 41 | Argentina | 2008–2009 | 2219 children aged 3–16 years | Cross-sectional study | tTG IgA followed by EMA IgA | 1.30% | 1.26% | [56] |
| 42 | Egypt | 2001–2004 | 1500 children aged 7 months–18 years | Screening study | tTG IgA followed by EMA IgA total IgA tTG IgG | 0.93% | 0.53% | [57] |
| 43 | Estonia | 1998–1999 | 1160 schoolchildren aged 9–15 years | Cross-sectional study | tTG IgA | 0.43% | 0.34% | [58] |
| 44 | Iran | 2006–2008 | 634 schoolchildren aged 12–17 years | Cross-sectional study | tTG IgA total IgA | 0.50% | 0.50% | [59] |
| 45 | Sweden | 1995–1996 | 690 children aged 2.5 years | Screening study | AGA IgA EMA IgA | 0.86% both antibodies positive, 1.01% only EMA positive | 1.30% | [60] |
| 46 | Italy | 1997–1998 | 2096 schoolchildren aged 11–15 years | Screening study | AGA IgA/IgG EMA IgA Total IgA | 0.57% AGA 0.76% EMA | 0.91% | [61] |
| 47 | The Netherlands | 1997–1998 | 6127 children aged 2–4 years | Screening study | EMA IgA | 1.22% | 0.50% | [62] |
| 48 | Russia Finland | 1997–2001 | 1988 schoolchildren from Russia with a mean age of 11.6 years. 3654 schoolchildren from Finland with a mean age of 11.7 years | Cohort study | tTG IgA HLA DQ | 0.60% Russia 1.40% Finland | 0.20% Russia 0.93% Finland | [63] |
| 49 | Spain | 2000–2002 | 830 children (First visit: 613 children aged 1.5 years. Second visit: 484 children aged 2.5%) | Prospective study | tTG IgA | First visit: 0% Second visit: 1.85% | 1.44% (biopsy-proven CD at the second visit) | [64] |
| 50 | Spain | 2009–2012 | 198 children aged 2–4 years | Cross-sectional study | AGA IgA and tTG IgA/IgG (rapid test) | 3% | 3% | [65] |
| 51 | Sweden | 2005–2006 | 7567 schoolchildren aged 12 years | Screening study | tTG IgA/IgG total IgA followed by EMA IgA/IgG | 2.60% | 3% | [66] |
| 52 | Tunisia | 2009 | 2064 schoolchildren | Screening study | tTG IgA and total IgA (rapid test) followed by serum tTG IgA and EMA IgA | 0.34% | 0.24% | [67] |
| 53 | Sweden | 2005–2006 2009–2010 | 13,279 (7567 and 5712) schoolchildren aged 12 years | 2-phase cross-sectional screening study (ETICS study) | tTG IgA/IgG total IgA followed by EMA IgA/IgG | In the 1993 cohort: 2.60% In the 1997 cohort: 1.90% | In the 1993 cohort: 3% In the 1997 cohort: 2.20% | [68] |
| 54 | Belgium | 2006 | 1159 children and adolescents aged 1–19 years | Screening study | tTG IgA total IgA followed by EMA IgA/IgG DGP IgG | 0.87% | No biopsy reported. Prevalence data of CD are not available | [69] |
| 55 | Saudi Arabia | 2007–2008 | 1167 schoolchildren aged 16–18 years | Screening study | EMA IgA/IgG | 2.20% | No biopsy reported. Prevalence data of CD are not available | [70] |
| Diagnostic Accuracy of Tests According to the Studies Included in the Review | |||
|---|---|---|---|
| Sensitivity | Specificity | Ref. | |
| Biocard | Ranged from 78.1% to 97.8% | Ranged from >93% to 100% | [31,34,38,40,48] |
| Biohit | >99% | 98.90% | [26] |
| Operon | CD 1WB 16.6%/CD 2WB 100% | 89% | [65] |
| Salivary test | 94.50% | 98.20% | [47] |
| RBA | 91–93% | 98–100% | [54] |
| tTG IgA (ELISA) | 90–99% | 94–100% | [5] |
| Assay | Cost According to the Studies Included in the Review |
|---|---|
| Rapid test (Biocard) | 12.86 euros (15 USD) [34] |
| Rapid test (Biocard) | 10 euros (11.65 USD) [38] |
| tTG IgA (ELISA) | 15 euros (17.46 USD) [17] |
| EMA IgA | 25 euros (29.10 USD) [17] |
| AGA IgG plus IgA | 11.40 euros (12.81 USD) [17] |
| HLA test | 300 euros (349.30 USD) [17] |
| Endoscopy | 200 euros (232.87 USD) [17] |
| Total IgA | 5 euros (5.82 USD) [17] |
| Region | Detected by Rapid Test | Positive Rapid Test (According to the Study) | Prevalence of CD (According to the Study) | Ref. |
|---|---|---|---|---|
| Italy | HLA DQ2 and DQ8 | 42.20% | 1.65% | [18] |
| Italy | HLA DQ2 and DQ8 | 43% | 1.58% | [19] |
| Turkey | tTG IgA and total IgA (Biocard) | 0.20% | 0.30% | [25] |
| Malta | tTG IgM, IgA and IgG (Biohit) | 0.68% | 0.42% | [26] |
| Libya | tTG IgA | 1.70% | 0.69% | [36] |
| Hungary | tTG IgA and total IgA (Biocard) | 1.05% | 1.38% | [38] |
| Italy | tTG IgA and total IgA (Biocard) | 1.03% | 0.33% children detected by rapid test | [39] |
| Italy | tTG IgA and total IgA (Biocard) | 3.11% | 0.53% | [40] |
| Slovenia | tTG IgAand total IgA (Biocard) | 1.21% | 0.47% | [40] |
| Turkey | tTG IgA and total IgA (Biocard) | 0.25% | 0.12% | [40] |
| Turkey | tTG IgA and AGA IgA | 1% | 0.90% | [44] |
| Greece | tTG IgA and total IgA | 0.65% | 0.65% | [46] |
| Croatia | tTG IgA and total IgA (Biocard) | 0% | No confirmed cases of CD | [48] |
| Turkey | tTG IgA and total IgA (Biocard) | 0.46% | 0.46% | [31] |
| Colombia | tTG IgA and total IgA (Biocard) | 2.41% | 0.60% | [34] |
| Tunisia | tTG IgA and total IgA | 0.34% | 0.24% | [67] |
| Spain | tTG IgA/IgG and AGA IgA (Operon) | 3% | 3% | [65] |
| Advantages (According to the Studies Included in the Review) |
| Simplicity |
| Ease of performing the test even by non-medical personnel outside the hospital |
| Speed and immediacy of results |
| Improving the quality of life of patients due to early diagnosis |
| It is recommended for screening strategies in countries with limited resources |
| Much cheaper than the HLA test and biopsy |
| It is recommended for screening in specific social groups, such as the rural population and schoolchildren |
| More acceptable to parents and children than testing that requires venous blood draw |
| Allows immediate detection of positive cases, shortening the time to biopsy and treatment, reducing morbidity and mortality |
| Ideal method for mass screening strategies of asymptomatic, apparently healthy individuals |
| The unreliability of results due to time spent transporting or storing samples in laboratories is eliminated |
| Ease of repeating the test in case of an accident during the procedure or due to a doubtful result |
| Higher compliance of asymptomatic children in participating in mass screening using a rapid test compared to using a conventional TGA-IgA serological test |
| Useful as a screening tool for CD, especially in isolated areas without access to hospitals and laboratory tests |
| A mass screening strategy that uses a rapid test to screen asymptomatic children is a more convenient and efficient option than a symptom-based case-finding strategy |
| Additional costs of doctor visits, transportation costs, and loss of salary for parents if they have to take their child for a venous blood sample at a laboratory are avoided |
| Additional costs of exporting and delivering results are avoided |
| In the case of conducting the rapid test in schools, the loss of school days for children or workdays for parents is avoided |
| Early diagnosis offers social benefits, such as improving patients’ quality of life and reducing the insurance burden |
| Disadvantages (According to the Studies Included in the Review) |
| False-positive and false-negative results are not excluded, and confirmation of the diagnosis should always be followed |
| Since the test is qualitative, there is a possibility of unintentional error |
| The cost of purchasing rapid testing equipment and consumables |
| When calculating the cost of rapid testing per patient, the additional cost from possible repeat procedures, in case of an accident during the procedure or due to a doubtful result, must be added |
| Different interpretation of faint test lines may lead to different PPVs |
| In order to minimize the costs caused by false-positive results, it is advisable for the procedure to be supervised by a pediatric gastroenterologist with experience in these tests |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mpakosi, A.; Cholevas, V.; Tsantes, A.G.; Pastrikou, A.; Fragkiadaki, A.; Zhgabi, S.; Mougiou, V.; Iacovidou, N.; Sokou, R. Mass Screening Strategies for Celiac Disease in Apparently Healthy Children and Adolescents: A Systematic Review. Medicina 2026, 62, 246. https://doi.org/10.3390/medicina62020246
Mpakosi A, Cholevas V, Tsantes AG, Pastrikou A, Fragkiadaki A, Zhgabi S, Mougiou V, Iacovidou N, Sokou R. Mass Screening Strategies for Celiac Disease in Apparently Healthy Children and Adolescents: A Systematic Review. Medicina. 2026; 62(2):246. https://doi.org/10.3390/medicina62020246
Chicago/Turabian StyleMpakosi, Alexandra, Vasileios Cholevas, Andreas G. Tsantes, Argyro Pastrikou, Aikaterini Fragkiadaki, Sofia Zhgabi, Vasiliki Mougiou, Nicoletta Iacovidou, and Rozeta Sokou. 2026. "Mass Screening Strategies for Celiac Disease in Apparently Healthy Children and Adolescents: A Systematic Review" Medicina 62, no. 2: 246. https://doi.org/10.3390/medicina62020246
APA StyleMpakosi, A., Cholevas, V., Tsantes, A. G., Pastrikou, A., Fragkiadaki, A., Zhgabi, S., Mougiou, V., Iacovidou, N., & Sokou, R. (2026). Mass Screening Strategies for Celiac Disease in Apparently Healthy Children and Adolescents: A Systematic Review. Medicina, 62(2), 246. https://doi.org/10.3390/medicina62020246

