Association of Biologic/Targeted-Synthetic DMARDs with a Lower Prevalence of Hand Joint Deformity in Rheumatoid Arthritis: A Cross-Sectional Real-World Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Clinical Assessments
2.3. Assessment of Hand Joint Deformity
2.4. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Patients with RA
3.2. Characteristics of Hand Joint Deformity in Patients with RA
3.3. Clinical Characteristics of RA Patients with and Without Hand Joint Deformity
3.4. Association Between b/tsDMARDs and Hand Joint Deformity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| 28TJC | 28-joint tender joint count |
| 28SJC | 28-joint swollen joint count |
| ACPA | Anti-cyclic citrullinated peptide antibody |
| bDMARDs | Biological disease-modifying anti-rheumatic drugs |
| BMI | Body mass index |
| CDAI | Clinical disease activity index |
| CI | Confidence interval |
| CRP | C-reactive protein |
| csDMARDs | Conventional synthetic disease-modifying anti-rheumatic drugs |
| DIP | Distal interphalangeal joints |
| DMARDs | Disease-modifying anti-rheumatic drugs |
| ESR | Erythrocyte sedimentation rate |
| GCs | Glucocorticoids |
| HAQ-DI | Health assessment questionnaire disability index |
| HAQ | Health assessment questionnaire |
| IL-6i | Interleukin-6 inhibitors |
| JE | Joint erosion |
| JSN | Joint space narrowing |
| JAKi | Janus kinase inhibitors |
| mTSS | Modified total Sharp score |
| MCP | Metacarpophalangeal joints |
| OR | Odds ratio |
| PIP | Proximal interphalangeal joints |
| Pain VAS | Pain visual analogue scale |
| PrGA | Provider global assessment of disease activity |
| PtGA | Patient global assessment of disease activity |
| RA | Rheumatoid arthritis |
| RJD | Radiographic joint damage |
| RF | Rheumatoid factor |
| SD | Standard deviation |
| tsDMARDs | Targeted-synthetic disease-modifying anti-rheumatic drugs |
| TNFi | Tumor necrosis factor inhibitors |
References
- Di Matteo, A.; Bathon, J.M.; Emery, P. Rheumatoid arthritis. Lancet 2023, 402, 2019–2033. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, N.; Takayanagi, H. Mechanisms of joint destruction in rheumatoid arthritis—Immune cell-fibroblast-bone interactions. Nat. Rev. Rheumatol. 2022, 18, 415–429. [Google Scholar] [CrossRef] [PubMed]
- Arab Alkabeya, H.; Hughes, A.M.; Adams, J. Factors associated with hand and upper arm functional disability in people with rheumatoid arthritis: A systematic review. Arthritis Care Res. 2019, 71, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Cooles, F.A.; Isaacs, J.D. Pathophysiology of rheumatoid arthritis. Curr. Opin. Rheumatol. 2011, 23, 233–240. [Google Scholar] [CrossRef]
- Jahid, M.; Khan, K.U.; Rehan, U.H.; Ahmed, R.S. Overview of Rheumatoid Arthritis and Scientific Understanding of the Disease. Mediterr. J. Rheumatol. 2023, 34, 284–291. [Google Scholar] [CrossRef]
- Taylor, P.C.; Alten, R.; Gomez-Reino, J.J.; Caporali, R.; Bertin, P.; Sullivan, E.; Wood, R.; Piercy, J.; Vasilescu, R.; Spurden, D.; et al. Clinical characteristics and patient-reported outcomes in patients with inadequately controlled rheumatoid arthritis despite ongoing treatment. RMD Open 2018, 4, e000615. [Google Scholar] [CrossRef]
- Burmester, G.R.; Pope, J.E. Novel treatment strategies in rheumatoid arthritis. Lancet 2017, 389, 2338–2348. [Google Scholar] [CrossRef]
- Asano, T.; Ishii, Y.; Tsuchiya, H.; Masuda, J. Efficacy of golimumab in rheumatoid arthritis patients at high risk of a poor prognosis: Post hoc analysis of GO-FORTH study using cluster analysis. Mod. Rheumatol. 2024, 34, 1125–1134. [Google Scholar] [CrossRef]
- Szekanecz, Z.; Buch, M.H.; Charles-Schoeman, C.; Galloway, J.; Karpouzas, G.A.; Kristensen, L.E.; Ytterberg, S.R.; Hamar, A.; Fleischmann, R. Efficacy and safety of JAK inhibitors in rheumatoid arthritis: Update for the practising clinician. Nat. Rev. Rheumatol. 2024, 20, 101–115. [Google Scholar] [CrossRef]
- van der Heijde, D.; Klareskog, L.; Rodriguez-Valverde, V.; Codreanu, C.; Bolosiu, H.; Melo-Gomes, J.; Tornero-Molina, J.; Wajdula, J.; Pedersen, R.; Fatenejad, S.; et al. Comparison of etanercept and methotrexate, alone and combined, in the treatment of rheumatoid arthritis: Two-year clinical and radiographic results from the TEMPO study, a double-blind, randomized trial. Arthritis Rheum. 2006, 54, 1063–1074. [Google Scholar] [CrossRef]
- Eberhardt, K.; Johnson, P.M.; Rydgren, L. The occurrence and significance of hand deformities in early rheumatoid arthritis. Br. J. Rheumatol. 1991, 30, 211–213. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 2010, 69, 1580–1588. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Z.; Liang, J.J.; Ma, J.D.; Li, Q.H.; Mo, Y.Q.; Cheng, W.M.; He, X.L.; Li, N.; Cao, M.H.; Xu, D.; et al. Myopenia is associated with joint damage in rheumatoid arthritis: A cross-sectional study. J. Cachexia Sarcopenia Muscle 2019, 10, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Z.; Liu, Y.; Ma, J.D.; Mo, Y.Q.; Chen, C.T.; Chen, L.F.; Li, Q.H.; Yang, Z.H.; Zheng, D.H.; Ling, L.; et al. Reduced skeletal muscle independently predicts 1-year aggravated joint destruction in patients with rheumatoid arthritis. Ther. Adv. Musculoskelet. Dis. 2020, 12, 1759720X20946220. [Google Scholar] [CrossRef]
- Pan, J.; Zou, Y.W.; Zhu, Y.Y.; Lin, J.Z.; Wu, T.; Yang, Z.H.; Zhang, X.P.; Zhang, Q.; Zheng, H.W.; He, X.L.; et al. Muscle mass loss is associated with physical dysfunction in patients with early rheumatoid arthritis. Front. Nutr. 2022, 9, 1007184. [Google Scholar] [CrossRef]
- Dahaghin, S.; Bierma-Zeinstra, S.M.; Reijman, M.; Pols, H.A.; Hazes, J.M.; Koes, B.W. Prevalence and determinants of one month hand pain and hand related disability in the elderly (Rotterdam study). Ann. Rheum. Dis. 2005, 64, 99–104. [Google Scholar] [CrossRef]
- Krijbolder, D.I.; Khidir, S.J.H.; Matthijssen, X.M.E.; Ten Brinck, R.M.; van Aken, J.; Speyer, I.; van der Giesen, F.J.; van Mulligen, E.; van der Helm-van Mil, A.H.M. Hand function is already reduced before RA development and reflects subclinical tenosynovitis. RMD Open 2023, 9, e002885. [Google Scholar] [CrossRef]
- Ma, J.D.; Wei, X.N.; Zheng, D.H.; Mo, Y.Q.; Chen, L.F.; Zhang, X.; Li, J.H.; Dai, L. Continuously elevated serum matrix metalloproteinase-3 for 3~6 months predict one-year radiographic progression in rheumatoid arthritis: A prospective cohort study. Arthritis Res. Ther. 2015, 17, 289. [Google Scholar] [CrossRef]
- Baker, J.F.; George, M.; Baker, D.G.; Toedter, G.; Von Feldt, J.M.; Leonard, M.B. Associations between body mass, radiographic joint damage, adipokines and risk factors for bone loss in rheumatoid arthritis. Rheumatology 2011, 50, 2100–2107. [Google Scholar] [CrossRef]
- Chruściak, T.; Wisłowska, M. Assessment of Rheumatoid Hand Function as a Characteristic Feature of Rheumatoid Arthritis in Patients Treated with Methotrexate or Methotrexate with Biological Agents with or without Deformation of Hands. Curr. Rheumatol. Rev. 2022, 18, 212–223. [Google Scholar] [CrossRef]
- Pfanner, S.; Poggetti, A. Swan-Neck and Boutonniere Deformity in Rheumatoid Hand. Hand Clin. 2025, 41, 103–116. [Google Scholar] [CrossRef]
- Elzinga, K.; Chung, K.C. Managing Swan Neck and Boutonniere Deformities. Clin. Plast. Surg. 2019, 46, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Ridley, W.E.; Xiang, H.; Han, J.; Ridley, L.J. Swan neck deformity. J. Med. Imaging Radiat. Oncol. 2018, 62, 159–160. [Google Scholar] [CrossRef] [PubMed]
- Colonna, S.; Borghi, C. Rhizarthrosis Part I: A Literature Review. Cureus 2024, 16, e52932. [Google Scholar] [CrossRef] [PubMed]
- McCrae, R. Clinical Orthopaedic Examination, 5th ed.; Churchill Livingstone: Edinburgh, UK, 2004; p. 116. [Google Scholar]
- Erol, A.M.; Ceceli, E.; Uysal Ramadan, S.; Borman, P. Effect of rheumatoid arthritis on strength, dexterity, coordination and functional status of the hand: The relationship with magnetic resonance imaging findings. Acta Reumatol. Port. 2016, 41, 328–337. [Google Scholar]
- Belghali, S.; Ben Abderrahim, K.; Mahmoud, I.; Baccouche, K.; El Amri, N.; Zeglaoui, H.; Maaref, K.; Bouajina, E. Brief Michigan Hand Outcomes Questionnaire in rheumatoid arthritis: A cross-sectional study of 100 patients. Hand Surg. Rehabil. 2017, 36, 24–29. [Google Scholar] [CrossRef]
- Rizio, L.; Belsky, M.R. Finger deformities in rheumatoid arthritis. Hand Clin. 1996, 12, 531–540. [Google Scholar] [CrossRef]
- Ali, A.A.; Khalid, K.E.; Mohammed, S.E.; Akhtar, M.S.; Saeed, O.K. Association of Human Leukocyte Antigen (HLA) class II (DRB1 and DQB1) alleles and haplotypes with Rheumatoid Arthritis in Sudanese patients. Front. Immunol. 2023, 14, 1178546. [Google Scholar] [CrossRef]
- Wilson, R.L. Rheumatoid arthritis of the hand. Orthop. Clin. North. Am. 1986, 17, 313–343. [Google Scholar] [CrossRef]
- Eberhardt, K. Experiences from a prospective early rheumatoid arthritis study in southern Sweden. J. Rheumatol. Suppl. 2004, 69, 9–13. [Google Scholar]
- Escalante, A.; Haas, R.W.; del Rincón, I. A model of impairment and functional limitation in rheumatoid arthritis. BMC Musculoskelet. Disord. 2005, 6, 16. [Google Scholar] [CrossRef]
- Johnsson, P.M.; Eberhardt, K. Hand deformities are important signs of disease severity in patients with early rheumatoid arthritis. Rheumatology 2009, 48, 1398–1401. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Honkanen, P.B.; Mäkelä, S.; Konttinen, Y.T.; Lehto, M.U. Radiocarpal arthrodesis in the treatment of the rheumatoid wrist. A prospective midterm follow-up. J. Hand Surg. Eur. Vol. 2007, 32, 368–376. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, D.F.; Marshall, M.; Jayakumar, K.; Doherty, S.; Doherty, M.; Zhang, W.; Kiely, P.D.; Young, A.; Walsh, D.A. Erosive and osteoarthritic structural progression in early rheumatoid arthritis. Rheumatology 2016, 55, 1477–1488. [Google Scholar] [CrossRef] [PubMed]
- Longo, U.G.; Petrillo, S.; Denaro, V. Current Concepts in the Management of Rheumatoid Hand. Int. J. Rheumatol. 2015, 2015, 648073. [Google Scholar] [CrossRef]
- Liu, D.; Yu, G.; Yuan, N.; Nie, D. The efficacy and safety of biologic or targeted synthetic DMARDs in rheumatoid arthritis treatment: One year of review 2024. Allergol. Immunopathol. 2025, 53, 140–162. [Google Scholar] [CrossRef]
- Fleischmann, R.; Pangan, A.L.; Song, I.H.; Mysler, E.; Bessette, L.; Peterfy, C.; Durez, P.; Ostor, A.J.; Li, Y.; Zhou, Y.; et al. Upadacitinib Versus Placebo or Adalimumab in Patients with Rheumatoid Arthritis and an Inadequate Response to Methotrexate: Results of a Phase III, Double-Blind, Randomized Controlled Trial. Arthritis Rheumatol. 2019, 71, 1788–1800. [Google Scholar] [CrossRef]
- Murata, K.; Uozumi, R.; Fujii, T.; Onishi, A.; Murakami, K.; Onizawa, H.; Tanaka, M.; Morinobu, A.; Matsuda, S. Effects of IL-6, JAK, TNF inhibitors, and CTLA4-Ig on knee symptoms in patients with rheumatoid arthritis. Sci. Rep. 2024, 14, 15226. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef]



| Characteristics | All Patients (n = 1083) | Without Deformity (n = 808) | With Deformity (n = 275) | p |
|---|---|---|---|---|
| Age, years | 52.6 ± 12.4 | 52.0 ± 2.6 | 54.4 ± 11.6 | 0.006 |
| Female, n (%) | 898 (82.9) | 661 (81.8) | 237 (86.2) | 0.096 |
| Active smoking, n (%) | 142 (13.1) | 106 (13.1) | 36 (13.1) | 0.991 |
| Disease duration, years | 5 (2, 11) | 4 (1, 8) | 10 (6, 16) | <0.001 |
| Positive RF, n (%) | 728 (67.2) | 535 (66.2) | 193 (70.2) | 0.226 |
| Positive ACPA, n (%) | 717 (66.2) | 526 (65.1) | 191 (69.5) | 0.187 |
| Core disease activity indicators | ||||
| Morning stiffness time, min | 0 (0, 8) | 0 (0, 10) | 0 (0, 5) | 0.143 |
| 28TJC | 2 (0, 6) | 2 (0, 6) | 2 (0, 7) | 0.073 |
| 28SJC | 1 (0, 3) | 1 (0, 3) | 1 (0, 4) | 0.074 |
| PtGA, cm | 2 (1, 5) | 2 (0, 4) | 3 (2, 5) | <0.001 |
| PrGA, cm | 2 (1, 4) | 2 (0, 4) | 3 (1, 5) | <0.001 |
| Pain VAS, cm | 2 (1, 4) | 2 (0, 4) | 2 (1, 4) | 0.010 |
| ESR (mm/h) | 25 (14, 50) | 25 (13, 47) | 29 (16, 52) | 0.040 |
| CRP (mg/L) | 4 (3, 11) | 4 (3, 11) | 4 (3, 11) | 0.634 |
| CDAI | 9 (3, 18) | 8 (2, 17) | 11 (5, 20) | <0.001 |
| CDAI remission, n (%) | 267 (24.7) | 223 (27.6) | 44 (16.0) | <0.001 |
| Low disease activity, n (%) | 292 (27.0) | 215 (26.6) | 77 (28.0) | |
| Middle disease activity, n (%) | 315 (29.1) | 225 (27.8) | 90 (32.7) | |
| High disease activity, n (%) | 209 (19.3) | 145 (17.9) | 64 (23.3) | |
| Hand function indicators | ||||
| Decreased grip strength, n (%) | 781 (72.1) | 550 (68.1) | 231 (84.0) | <0.001 |
| HAQ hand score | 0.00 (0.00, 0.25) | 0.00 (0.00, 0.25) | 0.00 (0.00, 0.38) | 0.008 |
| HAQ hand disability, n (%) | 424 (39.2) | 300 (37.1) | 124 (45.1) | 0.019 |
| Radiographic assessment | ||||
| mTSS | 15 (4, 9) | 11 (3, 29) | 29 (11, 62) | <0.001 |
| JSN | 4 (0, 14) | 3 (0, 10) | 11 (4, 32) | <0.001 |
| JE | 9 (3, 22) | 8 (2, 18) | 15 (5, 34) | <0.001 |
| RJD, n (%) | 564 (52.1) | 367 (45.4) | 197 (71.6) | <0.001 |
| Previous medications | ||||
| Treatment naïve, n (%) | 167 (15.4) | 151 (18.7) | 16 (5.8) | <0.001 |
| Glucocorticoids, n (%) | 523 (48.3) | 365 (45.2) | 158 (57.5) | <0.001 |
| csDMARDs, n (%) | 878 (81.1) | 638 (78.2) | 246 (89.5) | <0.001 |
| methotrexate, n (%) | 746 (68.9) | 541 (67.0) | 205 (74.5) | 0.019 |
| sulfasalazine, n (%) | 53 (4.9) | 34 (4.2) | 19 (6.9) | 0.073 |
| hydroxychloroquine, n (%) | 409 (37.8) | 291 (36.0) | 118 (42.9) | 0.042 |
| leflunomide, n (%) | 420 (38.8) | 295 (36.5) | 125 (45.5) | 0.009 |
| b/tsDMARDs, n (%) | 188 (17.4) | 137 (17.1) | 51 (18.5) | 0.548 |
| IL-6i, n (%) | 42 (3.9) | 26 (3.2) | 16 (5.8) | 0.054 |
| TNFi, n (%) | 53 (4.9) | 38 (4.7) | 15 (5.5) | 0.618 |
| JAKi, n (%) | 93 (8.6) | 73 (9.0) | 20 (7.3) | 0.368 |
| Characteristics | Before Matching | After Matching | ||||
|---|---|---|---|---|---|---|
| Conventional Medicine (n = 728) | Conventional Medicine + b/ts (n = 188) | p | Conventional Medicine (n = 188) | Conventional Medicine + b/ts (n = 188) | p | |
| Age, years | 53.1 ± 12.2 | 49.6 ± 12.5 | 0.001 | 49.9 ± 12.8 | 49.6 ± 12.5 | 0.810 a |
| Female, n (%) | 606 (83.2) | 161 (85.6) | 0.427 | 160 (85.1) | 161 (85.6) | 0.884 b |
| Disease duration, years | 6 (2, 11) | 5 (2, 11) | 0.732 | 7 (3, 12) | 5 (2, 11) | 0.331 c |
| Positive RF, n (%) | 476 (65.4) | 134 (71.3) | 0.127 | 122 (64.9) | 134 (71.3) | 0.184 |
| Positive ACPA, n (%) | 475 (65.2) | 137 (72.9) | 0.048 | 133 (70.7) | 137 (72.9) | 0.647 |
| ESR (mm/h) | 25 (14, 46) | 25 (11, 45) | 0.643 | 26 (16, 50) | 25 (11, 45) | 0.239 |
| CRP (mg/L) | 3 (3, 10) | 3 (3, 9) | 0.618 | 3 (3, 10) | 3 (3, 9) | 0.947 |
| CDAI | 8 (2, 16) | 8 (3, 14) | 0.421 | 8 (3, 16) | 8 (3, 14) | 0.923 |
| CDAI remission, n (%) | 216 (29.7) | 40 (21.3) | 0.022 | 45 (23.9) | 40 (21.3) | 0.538 |
| Decreased grip strength, n (%) | 508 (69.8) | 138 (73.4) | 0.331 | 130 (69.1) | 138 (73.4) | 0.362 |
| HAQ hand score | 0.00 (0.00, 0.13) | 0.00 (0.00, 0.13) | 0.896 | 0.00 (0.00, 0.13) | 0.00 (0.00, 0.13) | 0.732 |
| HAQ hand disability, n (%) | 252 (34.6) | 66 (35.1) | 0.900 | 68 (36.2) | 66 (35.1) | 0.829 |
| RJD, n (%) | 372 (51.1) | 108 (57.4) | 0.037 | 108 (57.4) | 108 (57.4) | 0.438 |
| Hand joint deformity, n(%) | 208 (28.6) | 51 (27.1) | 0.695 | 116 (61.7) | 51 (27.1) | <0.001 |
| Type of deformity | ||||||
| Boutonniere fingers II-V, n (%) | 57 (7.8) | 13 (6.9) | 0.674 | 27 (14.4) | 13 (6.9) | 0.019 |
| Swan neck fingers II-V, n (%) | 56 (7.7) | 13 (6.9) | 0.719 | 30 (16.0) | 13 (6.9) | 0.006 |
| Z deformity of thumb, n (%) | 23 (3.2) | 6 (3.2) | 0.982 | 9 (4.8) | 6 (3.2) | 0.429 |
| Ulnar deviation of MCP II-V, n (%) | 63 (8.7) | 15 (8.0) | 0.767 | 36 (19.1) | 15 (8.0) | 0.002 |
| Hyperflexion of MCP I, n (%) | 11 (1.5) | 2 (1.1) | 0.633 | 5 (2.7) | 2 (1.1) | 0.245 |
| Hyperflexion of PIP I, n (%) | 8 (1.1) | 3 (1.6) | 0.590 | 3 (1.6) | 3 (1.6) | - |
| Hyperflexion of PIP II-V, n (%) | 54 (7.4) | 7 (3.7) | 0.070 | 33 (17.6) | 7 (3.7) | <0.001 |
| Hyperextension of PIP II-V, n (%) | 4 (0.5) | 1 (0.5) | 0.977 | 3 (1.6) | 1 (0.5) | 0.304 |
| Subluxation of PIP II-V, n (%) | 27 (3.7) | 9 (4.8) | 0.498 | 18 (9.6) | 9 (4.8) | 0.072 |
| Hyperflexion of DIP II-V, n (%) | 16 (2.2) | 3 (1.6) | 0.594 | 7 (3.7) | 3 (1.6) | 0.200 |
| Hyperextension of DIP II-V, n (%) | 5 (0.7) | 0 (0) | 0.129 | 4 (2.1) | 0 (0) | 0.018 |
| Subluxation of DIP II-V, n (%) | 9 (1.2) | 2 (1.1) | 0.844 | 5 (2.7) | 2 (1.1) | 0.245 |
| Model | b/tsDMARDs | TNFi | IL-6i | JAKi | ||||
|---|---|---|---|---|---|---|---|---|
| OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | OR (95% CI) | p | |
| Crude Model | 0.231 (0.149–0.357) | <0.001 | 0.252 (0.129–0.491) | <0.001 | 0.382 (0.192–0.761) | 0.006 | 0.175 (0.098–0.311) | <0.001 |
| Model 1 | 0.232 (0.150–0.359) | <0.001 | 0.264 (0.128–0.545) | <0.001 | 0.330 (0.157–0.693) | 0.003 | 0.149 (0.080–0.277) | <0.001 |
| Model 2 | 0.229 (0.147–0.355) | <0.001 | 0.260 (0.126–0.536) | <0.001 | 0.323 (0.153–0.684) | 0.003 | 0.149 (0.080–0.278) | <0.001 |
| Model 3 | 0.224 (0.143–0.349) | <0.001 | 0.236 (0.111–0.500) | <0.001 | 0.339 (0.159–0.725) | 0.005 | 0.145 (0.077–0.273) | <0.001 |
| Model 4 | 0.211 (0.129–0.345) | <0.001 | 0.216 (0.096–0.487) | <0.001 | 0.338 (0.154–0.742) | 0.007 | 0.162 (0.084–0.311) | <0.001 |
| Subgroups | Multivariable Logistic Regression * | |
|---|---|---|
| OR (95% CI) | p | |
| b/tsDMARDs | ||
| <5 years | 0.409 (0.182–0.920) | 0.031 |
| ≥5 years | 0.110 (0.054–0.222) | <0.001 |
| Interaction (b/tsDMARDs × disease duration) | 0.929 (0.890–0.969) | 0.001 |
| TNFi | ||
| <5 years | 0.305 (0.078–1.194) | 0.088 |
| ≥5 years | 0.150 (0.047–0.479) | 0.001 |
| Interaction (TNFi × disease duration) | 0.934 (0.872–1.001) | 0.054 |
| IL-6i | ||
| <5 years | 0.773 (0.199–2.995) | 0.709 |
| ≥5 years | 0.174 (0.059–0.510) | 0.001 |
| Interaction (IL-6i × disease duration) | 0.915 (0.852–0.981) | 0.013 |
| JAKi | ||
| <5 years | 0.319 (0.100–1.024) | 0.055 |
| ≥5 years | 0.080 (0.033–0.194) | <0.001 |
| Interaction (JAKi × disease duration) | 0.884 (0.828–0.943) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Yang, Y.; Lin, J.-Z.; Zou, Y.-W.; Cao, Y.-N.; Wu, T.; Lin, P.-Y.; Shi, R.; Ouyang, Z.-M.; Yang, K.-M.; Yang, Z.-H.; et al. Association of Biologic/Targeted-Synthetic DMARDs with a Lower Prevalence of Hand Joint Deformity in Rheumatoid Arthritis: A Cross-Sectional Real-World Study. Medicina 2026, 62, 241. https://doi.org/10.3390/medicina62020241
Yang Y, Lin J-Z, Zou Y-W, Cao Y-N, Wu T, Lin P-Y, Shi R, Ouyang Z-M, Yang K-M, Yang Z-H, et al. Association of Biologic/Targeted-Synthetic DMARDs with a Lower Prevalence of Hand Joint Deformity in Rheumatoid Arthritis: A Cross-Sectional Real-World Study. Medicina. 2026; 62(2):241. https://doi.org/10.3390/medicina62020241
Chicago/Turabian StyleYang, Ying, Jian-Zi Lin, Yao-Wei Zou, Ya-Nan Cao, Tao Wu, Pei-Yu Lin, Ran Shi, Zhi-Ming Ouyang, Kui-Min Yang, Ze-Hong Yang, and et al. 2026. "Association of Biologic/Targeted-Synthetic DMARDs with a Lower Prevalence of Hand Joint Deformity in Rheumatoid Arthritis: A Cross-Sectional Real-World Study" Medicina 62, no. 2: 241. https://doi.org/10.3390/medicina62020241
APA StyleYang, Y., Lin, J.-Z., Zou, Y.-W., Cao, Y.-N., Wu, T., Lin, P.-Y., Shi, R., Ouyang, Z.-M., Yang, K.-M., Yang, Z.-H., Ma, J.-D., & Dai, L. (2026). Association of Biologic/Targeted-Synthetic DMARDs with a Lower Prevalence of Hand Joint Deformity in Rheumatoid Arthritis: A Cross-Sectional Real-World Study. Medicina, 62(2), 241. https://doi.org/10.3390/medicina62020241

