Ninjin’yoeito for Impaired Oral Function in Older Adults: A Prospective, Open-Label Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical and Oral Assessment Methods
2.3. Evaluation of NYT Treatment on Symptom Severity
2.4. Evaluation of NYT Treatment Oral Function Symptoms by Physician
2.5. Evaluation of NYT Treatment on Oral Mucosal Moisture
2.6. Evaluation of NYT Treatment on Swallowing Frequency Using the Repetitive Saliva Swallowing Test
2.7. Visual Analogue Scale (VAS) for Taste
2.8. Patient-Reported Oral Function Questionnaire
2.9. Hematological and Biochemical Safety Assessment
2.10. Immunological Assessment Through Blood Tests
2.11. Dietary NYT Supplementation
2.12. Statistical Analysis
3. Results
3.1. Study Design
3.2. Changes in Primary Outcomes After NYT Treatment
3.3. Changes in Taste Function and Oral Function Questionnaire
3.4. Safety Outcomes
3.5. Immunological Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ALT | Alanine aminotransferase |
| AST | Aspartate aminotransferase |
| BUN | Blood urea nitrogen |
| Cl | Chloride |
| CRE | Creatinine |
| CRP | C-reactive protein |
| DBP | Diastolic blood pressure |
| FDR | False Discovery Rate |
| Hb | Hemoglobin |
| HDL-C | High-density lipoprotein cholesterol |
| Ht | Hematocrit |
| K | Potassium |
| LME | Linear mixed-effects (regression) |
| LDL-C | Low-density lipoprotein cholesterol |
| LDH | Lactate dehydrogenase |
| LMR | Lymphocyte-to-monocyte ratio |
| MCH | Mean corpuscular hemoglobin |
| MCHC | Mean corpuscular hemoglobin concentration |
| MCV | Mean corpuscular volume |
| Na | Sodium |
| NK | Natural killer (cells) |
| NLR | Neutrophil-to-lymphocyte ratio |
| NYT | Ninjin’yoeito |
| PBMCs | Peripheral blood mononuclear cells |
| PDW | Platelet distribution width |
| PLR | Platelet-to-lymphocyte ratio |
| PLT | Platelet count |
| RDW | Red cell distribution width |
| RSST | Repetitive saliva swallowing test |
| SBP | Systolic blood pressure |
| T-Bil | Total bilirubin |
| TG | Triglycerides |
| VAS | Visual analogue scale |
| WBC | White blood cell |
| γ-GTP | Gamma-glutamyl transpeptidase |
References
- Muto, G.; Yokoyama, K.; Endo, M. Solutions against declining birthrates confronting Japan’s aging society by supporting female workers in harmonizing work with their health and social issues: Fertility, chronic illness, and raising children. Nihon Eiseigaku Zasshi 2018, 73, 200–209. [Google Scholar] [CrossRef]
- Radwan-Oczko, M.; Bandosz, K.; Rojek, Z.; Owczarek-Drabińska, J.E. Clinical study of oral mucosal lesions in the elderly—Prevalence and distribution. Int. J. Environ. Res. Public Health 2022, 19, 2853. [Google Scholar] [CrossRef]
- Watanabe, Y.; Okada, K.; Kondo, M.; Matsushita, T.; Nakazawa, S.; Yamazaki, Y. Oral health for achieving longevity. Geriatr. Gerontol. Int. 2020, 20, 526–538. [Google Scholar] [CrossRef]
- Jensen, G.L.; McGee, M.; Binkley, J. Nutrition in the elderly. Gastroenterol. Clin. N. Am. 2001, 30, 313–334. [Google Scholar] [CrossRef]
- de Souto Barreto, P.; Cesari, M.; Morley, J.; Roberts, S.; Landi, F.; Cederholm, T.; Rolland, Y.; Vellas, B.; Fielding, R. Appetite loss and anorexia of aging in clinical care: An ICFSR task force report. J. Frailty Aging 2022, 11, 129–134. [Google Scholar] [CrossRef]
- Walls, A.; Steele, J. The relationship between oral health and nutrition in older people. Mech. Ageing Dev. 2004, 125, 853–857. [Google Scholar] [CrossRef]
- Xu, F.; Laguna, L.; Sarkar, A. Aging-related changes in quantity and quality of saliva: Where do we stand in our understanding? J. Texture Stud. 2019, 50, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Mojon, P.; Budtz-Jørgensen, E.; Rapin, C.-H. Relationship between oral health and nutrition in very old people. Age Ageing 1999, 28, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Giacomello, E.; Toniolo, L. Nutrition, diet and healthy aging. Nutrients 2021, 14, 190. [Google Scholar] [CrossRef] [PubMed]
- Turnheim, K. Drug therapy in the elderly. Exp. Gerontol. 2004, 39, 1731–1738. [Google Scholar] [CrossRef]
- Buranarom, N.; Komin, O.; Matangkasombut, O. Hyposalivation, oral health, and Candida colonization in independent dentate elders. PLoS ONE 2020, 15, e0242832. [Google Scholar] [CrossRef] [PubMed]
- Namasivayam-MacDonald, A.M.; Barbon, C.E.; Steele, C.M. A review of swallow timing in the elderly. Physiol. Behav. 2018, 184, 12–26. [Google Scholar] [CrossRef]
- Montecino-Rodriguez, E.; Berent-Maoz, B.; Dorshkind, K. Causes, consequences, and reversal of immune system aging. J. Clin. Investig. 2013, 123, 958–965. [Google Scholar] [CrossRef]
- Haynes, L. Aging of the immune system: Research challenges to enhance the health span of older adults. Front. Aging 2020, 1, 602108. [Google Scholar] [CrossRef] [PubMed]
- Miyano, K.; Nonaka, M.; Uzu, M.; Ohshima, K.; Uezono, Y. Multifunctional actions of ninjinyoeito, a Japanese Kampo medicine: Accumulated scientific evidence based on experiments with cells and animal models, and clinical studies. Front. Nutr. 2018, 5, 93. [Google Scholar] [CrossRef]
- Nakae, H.; Hiroshima, Y.; Hebiguchi, M. Kampo medicines for frailty in locomotor disease. Front. Nutr. 2018, 5, 31. [Google Scholar] [CrossRef]
- Lee, H.-G.; Arai, I.; Kwon, S. A Herbal Prescription of Insamyangyeongtang as a Therapeutic Agent for Frailty in Elderly: A Narrative Review. Nutrients 2024, 16, 721. [Google Scholar] [CrossRef]
- Miyazaki, Y.; Yamada, A.; Saitou, M. Effect of Ninjin-Youei-tou on xerostomia induced by oxybutynin hydrochloride. Shinyaku Rinsho 1994, 43, 2613–2617. [Google Scholar]
- Yamaguchi, K.; Mukai, H.; Hamada, T.; Sugihara, K. Three cases report of intraoral discomforts with after cancer treatment successfully treated with Ninjinyoeito (TJ108). Pain Kampo Med. 2012, 22, 56–62. [Google Scholar]
- Kiyomi, A.; Matsuda, A.; Nara, M.; Yamazaki, K.; Imai, S.; Sugiura, M. Immunological differences in human peripheral blood mononuclear cells treated with traditional Japanese herbal medicines hochuekkito, juzentaihoto, and ninjin’yoeito from different pharmaceutical companies. Evid. Based Complement. Alternat. Med. 2021, 2021, 7605057. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Matsuura, K.; Gao, P.; Hottenbacher, L.; Tokunaga, H.; Nishimura, K.; Imazu, Y.; Reissenweber, H.; Witt, C.M. Traditional Japanese Kampo medicine: Clinical research between modernity and traditional medicine—The state of research and methodological suggestions for the future. Evid. Based Complement. Alternat. Med. 2011, 2011, 513842. [Google Scholar] [CrossRef] [PubMed]
- Takayama, S.; Michihara, S.; Kimura, Y.; Morinaga, A.; Miyakawa, K.; Tsushima, N.; Otani, K.; Jinnai, A.; Aso, Y.; Okabayashi, A.J.T.; et al. Review of frequently used Kampo prescriptions: Part 4, Ninjin’yoeito. Tradit. Kampo Med. 2023, 10, 224–252. [Google Scholar] [CrossRef]
- Japan Society for Oriental Medicine (JSOM). Evidence-Based Clinical Practice Guidelines for Kampo Medicine 2021. Available online: https://www.jsom.or.jp/medical/ebm/cpg/index.html (accessed on 13 December 2025).
- Nomura, Y.; Ishii, Y.; Chiba, Y.; Suzuki, S.; Suzuki, A.; Suzuki, S.; Morita, K.; Tanabe, J.; Yamakawa, K.; Ishiwata, Y. Structure and validity of questionnaire for oral frail screening. Healthcare 2021, 9, 45. [Google Scholar] [CrossRef]
- Lyu, W.; Tanaka, T.; Son, B.-K.; Yoshizawa, Y.; Akishita, M.; Iijima, K. Validity of a simple self-reported questionnaire “Eleven-Check” for screening of frailty in Japanese community-dwelling older adults: Kashiwa cohort study. Arch. Gerontol. Geriatr. 2024, 117, 105257. [Google Scholar] [CrossRef]
- Oguchi, K.; Saitoh, E.; Baba, M.; Kusudo, S.; Tanaka, T.; Onogi, K. The repetitive saliva swallowing test (RSST) as a screening test of functional dysphagia (2) validity of RSST. Jpn. J. Rehabil. Med. 2000, 37, 383–388. [Google Scholar] [CrossRef]
- Okada, K.-I.; Kawai, M.; Hirono, S.; Miyazawa, M.; Kitahata, Y.; Kobayashi, R.; Ueno, M.; Hayami, S.; Shimokawa, T.; Yamaue, H. Impact of Ninjin’Yoeito on fatigue in patients receiving nab-paclitaxel plus gemcitabine therapy: A prospective, single-arm, phase II open label, nonrandomized, historically-controlled study. Curr. Ther. Res. 2020, 93, 100605. [Google Scholar] [CrossRef]
- Yang, J.; Shin, K.-M.; Abu Dabrh, A.M.; Bierle, D.M.; Zhou, X.; Bauer, B.A.; Mohabbat, A.B. Ginseng for the treatment of chronic fatigue syndrome: A systematic review of clinical studies. Glob. Adv. Health Med. 2022, 11, 2164957X221079790. [Google Scholar] [CrossRef] [PubMed]
- Uehara, S.; Ogawa, K.; Arimitsu, J.; Okuyama, H. “Ninjinto”(ginseng decoction), a traditional Japanese herbal medicine, improves gastrointestinal symptoms and immune competence in patients with chronic intestinal failure. Evid. Based Complement. Alternat. Med. 2015, 2015, 462586. [Google Scholar] [CrossRef]
- Ogawa-Ochiai, K.; Kawasaki, K. Panax ginseng for frailty-related disorders: A review. Front. Nutr. 2018, 5, 140. [Google Scholar] [CrossRef]
- Ruqiao, L.; Yueli, C.; Xuelan, Z.; Huifen, L.; Xin, Z.; Danjie, Z.; Le, S.; Yanxue, Z. Rhizoma Atractylodis macrocephalae: A review of photochemistry, pharmacokinetics and pharmacology. Die Pharm. 2020, 75, 42–55. [Google Scholar]
- Kim, Y.-J.; Yoo, S.-R.; Chae, C.-K.; Jung, U.J.; Choi, M.-S. Omija fruit extract improves endurance and energy metabolism by upregulating PGC-1 α expression in the skeletal muscle of exercised rats. J. Med. Food 2014, 17, 28–35. [Google Scholar] [CrossRef]
- Chi, A.; Zhang, Y.; Kang, Y.; Shen, Z. Metabolic mechanism of a polysaccharide from Schisandra chinensis to relieve chronic fatigue syndrome. Int. J. Biol. Macromol. 2016, 93, 322–332. [Google Scholar] [CrossRef]
- Yamaguchi, K. Traditional Japanese herbal medicines for treatment of odontopathy. Front. Pharmacol. 2015, 6, 176. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Almotairy, N.; Merzo, J.J.; Wendin, K.; Rothenberg, E.; Grigoriadis, A.; Sandborgh-Englund, G.; Trulsson, M. Chewing and its influence on swallowing, gastrointestinal and nutrition-related factors: A systematic review. Crit. Rev. Food Sci. Nutr. 2023, 63, 11987–12017. [Google Scholar] [CrossRef]
- Ney, D.M.; Weiss, J.M.; Kind, A.J.; Robbins, J. Senescent swallowing: Impact, strategies, and interventions. Nutr. Clin. Pract. 2009, 24, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Yousufuddin, M.; Young, N. Aging and ischemic stroke. Aging 2019, 11, 2542. [Google Scholar] [CrossRef] [PubMed]
- Kelly-Hayes, M. Influence of age and health behaviors on stroke risk: Lessons from longitudinal studies. J. Am. Geriatr. Soc. 2010, 58, S325–S328. [Google Scholar] [CrossRef]
- González-Fernández, M.; Ottenstein, L.; Atanelov, L.; Christian, A.B. Dysphagia after stroke: An overview. Curr. Phys. Med. Rehabil. Rep. 2013, 1, 187–196. [Google Scholar] [CrossRef]
- Allez, M.; Tieng, V.; Nakazawa, A.; Treton, X.; Pacault, V.; Dulphy, N.; Caillat–Zucman, S.; Paul, P.; Gornet, J.M.; Douay, C. CD4+ NKG2D+ T cells in Crohn’s disease mediate inflammatory and cytotoxic responses through MICA interactions. Gastroenterology 2007, 132, 2346–2358. [Google Scholar] [CrossRef]
- Waschbisch, A.; Sammet, L.; Schröder, S.; Lee, D.; Barrantes-Freer, A.; Stadelmann, C.; Linker, R.A. Analysis of CD4+ CD8+ double-positive T cells in blood, cerebrospinal fluid and multiple sclerosis lesions. Clin. Exp. Immunol. 2014, 177, 404–411. [Google Scholar] [CrossRef]
- Dunn, G.P.; Old, L.J.; Schreiber, R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004, 22, 329–360. [Google Scholar] [CrossRef]
- Alonso-Arias, R.; Moro-García, M.A.; López-Vázquez, A.; Rodrigo, L.; Baltar, J.; García, F.M.S.; Jaurrieta, J.J.S.; López-Larrea, C. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system. Age 2011, 33, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Azimi, N.; Jacobson, S.; Tanaka, Y.; Corey, L.; Groh, V.; Spies, T. Immunostimulation by induced expression of NKG2D and its MIC ligands in HTLV-1-associated neurologic disease. Immunogenetics 2006, 58, 252–258. [Google Scholar] [CrossRef]
- Duftner, C.; Goldberger, C.; Falkenbach, A.; Würzner, R.; Falkensammer, B.; Pfeiffer, K.P.; Maerker-Hermann, E.; Schirmer, M. Prevalence, clinical relevance and characterization of circulating cytotoxic CD4+ CD28-T cells in ankylosing spondylitis. Arthritis Res. Ther. 2003, 5, R292–R300. [Google Scholar] [CrossRef]
- Appay, V.; Sauce, D.; Prelog, M. The role of the thymus in immunosenescence: Lessons from the study of thymectomized individuals. Aging 2010, 2, 78. [Google Scholar] [CrossRef]
- Koch, S.; Larbi, A.; Derhovanessian, E.; Özcelik, D.; Naumova, E.; Pawelec, G. Multiparameter flow cytometric analysis of CD4 and CD8 T cell subsets in young and old people. Immun. Ageing 2008, 5, 6. [Google Scholar] [CrossRef] [PubMed]
- Groh, V.; Smythe, K.; Dai, Z.; Spies, T. Fas ligand–mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity. Nat. Immunol. 2006, 7, 755–762. [Google Scholar] [CrossRef]
- Takaku, S.; Shimizu, M.; Takahashi, H. Japanese Kampo medicine ninjin’yoeito synergistically enhances tumor vaccine effects mediated by CD8+ T cells. Oncol. Lett. 2017, 13, 3471–3478. [Google Scholar] [CrossRef]
- Zhu, T.; Lin, Z.; Han, S.; Wei, Y.; Lu, G.; Zhang, Y.; Xiao, W.; Wang, Z.; Jia, X.; Gong, W. Low miR-16 expression induces regulatory CD4+ NKG2D+ T cells involved in colorectal cancer progression. Am. J. Cancer Res. 2021, 11, 1540. [Google Scholar] [PubMed]
- Teoh, C.X.W.; Thng, M.; Lau, S.; Taing, M.-W.; Chaw, S.Y.; Siskind, D.; Kisely, S. Dry mouth effects from drugs used for depression, anxiety, schizophrenia and bipolar mood disorder in adults: Systematic review. BJPsych Open 2023, 9, e53. [Google Scholar] [CrossRef]
- Martinez-Acitores, L.R.; de Azcarate, F.H.R.; Casañas, E.; Serrano, J.; Hernandez, G.; López-Pintor, R.M. Xerostomia and salivary flow in patients taking antihypertensive drugs. Int. J. Environ. Res. Public Health 2020, 17, 2478. [Google Scholar] [CrossRef] [PubMed]
- Teare, J.; Spedding, C.; Whitehead, M.; Greenfield, S.; Challacombe, S.; Thompson, R. Omeprazole and dry mouth. Scand. J. Gastroenterol. 1995, 30, 216–218. [Google Scholar] [CrossRef] [PubMed]





| No. | Sex | Age | Height (cm) | Comorbidities | Concomitant Medication(s) |
|---|---|---|---|---|---|
| 1 | F | 74 | 163.3 | Obstructive arteriosclerosis | Tsumura Keishibukuryogan with Yokuinin 5 g (Tsumura & Co., Tokyo, Japan), Saffron 0.8 g |
| 2 | F | 88 | 143 | Hypertension, osteoporosis, allergic rhinitis, chronic pharyngolaryngitis, postoperative left femoral fracture | Tramadol/acetaminophen (Tramacet; Janssen Pharmaceuticals, Beerse, Belgium), Eldecalcitol (Edirol; Chugai Pharmaceutical, Tokyo, Japan), Minodronate, Diclofenac, Carbocisteine, Levocetirizine (Xyzal; UCB Pharma, Brussels, Belgium), Amlodipine/Irbesartan (Aimix; Daiichi Sankyo, Tokyo, Japan), Vonoprazan (Takecab; Takeda Pharmaceutical, Tokyo, Japan), Atorvastatin, Arozein, Etizolam (Depas; Mitsubishi Tanabe Pharma, Osaka, Japan), Azunol gargle solution |
| 3 | F | 81 | 148 | Hypertension, dyslipidemia, insomnia, spinal canal stenosis | Esomeprazole (Nexium; AstraZeneca, Cambridge, UK), Etizolam (Depas; Mitsubishi Tanabe Pharma, Osaka, Japan), Amlodipine, Atorvastatin, Camia, Magnesium oxide (Magmitt; Nichi-Iko Pharmaceutical, Toyama, Japan), Ketoprofen tape, Rionsal, Acetaminophen (Calonal; Astellas Pharma, Tokyo, Japan), Neurobion, Calfina, Mornas tape |
| 4 | F | 84 | 159 | Hypertension, dyslipidemia, insomnia | Bezafibrate, Amlodipine, Olmesartan, Suvorexant (Belsomra; MSD, Kenilworth, NJ, USA), Zolpidem (Myslee; Astellas Pharma, Tokyo, Japan), Flavitan, Cinal. |
| 5 | F | 77 | 156 | None | None |
| 6 | M | 70 | 153 | Heberden’s nodes | Keishakubokuto 9 g (Tsumura & Co., Tokyo, Japan), Tsumura Bushi powder 1.5 g (Tsumura & Co., Tokyo, Japan). |
| 7 | F | 75 | 173 | Allergic rhinitis, glaucoma, arrhythmia | Desloratadine (Desalex; Organon, Oss, Netherlands), Flecainide acetate (Sunrythm; Eisai, Tokyo, Japan) (as needed) |
| 8 | F | 72 | 153.5 | Post-right frontal subcortical hemorrhage, hypertension, reflux esophagitis, liver dysfunction, delusional disorder | Candesartan, Calnedin, Nifedipine, Lansoprazole, Magnesium oxide (Magmitt; Nichi-Iko Pharmaceutical, Toyama, Japan), Brotizolam (Lendormin; Eisai, Tokyo, Japan), Benzarin, Risperidone, Levomepromazine (Levotomin; Sumitomo Pharma, Osaka, Japan), Vapro, Purzenid |
| 9 | F | 73 | 150 | HBV carrier, rheumatoid arthritis, cranial meningioma, constipation | Methotrexate, Entecavir (Baraclude; Bristol Myers Squibb, New York, NY, USA), Magnesium oxide. |
| 10 | F | 71 | 153 | Type 2 diabetes mellitus, localized scleroderma, pulmonary MAC disease, dyslipidemia, past hepatitis B infection, coronary arteriosclerosis | Procirin, Tocopherol nicotinate, Rebamipide, Mosapride citrate tablets, Triazolam, Diazepam, Alprazolam, Bosentan (Tracleer; Actelion Pharmaceuticals, Allschwil, Switzerland), Flunitrazepam, Mitiglinide (Glufast; Sumitomo Pharma, Osaka, Japan), Eicosapentaenoic acid ethyl ester (Epadel S900; Mochida Pharmaceutical, Tokyo, Japan), Ezetimibe (Zetia; MSD, Kenilworth, NJ, USA), Atorvastatin, Linagliptin (Equa; Boehringer Ingelheim, Ingelheim am Rhein, Germany), Aspirin (Bayer; Leverkusen, Germany), Rabeprazole (Pariet; Eisai, Tokyo, Japan), Erythromycin, Carbocisteine |
| 11 | M | 75 | 166 | Diabetes mellitus, dyslipidemia, bulbar palsy, glaucoma, post-gastric polyp resection, prostatic hypertrophy, open nasal voice | Metformin (Metgluco; Sumitomo Pharma, Osaka, Japan), Atorvastatin (Lipitor; Pfizer, New York, NY, USA) |
| Component | Relative Ratio (w/w) |
|---|---|
| Panax ginseng C.A. Meyer | 3.0 |
| Angelica acutiloba Kitagawa | 4.0 |
| Paeonia lactiflora Pallas | 2.0 |
| Rehmannia glutinosa Liboschitz | 4.0 |
| Atractylodes macrocephala Koidzumi | 4.0 |
| Wolfiporia cocos Ryvarden et Gilbertson | 4.0 |
| Cinnamomum cassia Blume | 2.5 |
| Astragalus mongholicus Bunge | 1.5 |
| Citrus unshiu Marcowicz | 2.0 |
| Polygala tenuifolia Willdenow | 2.0 |
| Schisandra chinensis Baillon | 1.0 |
| Glycyrrhiza uralensis Fischer | 1.0 |
| Outcome | Coef. | SD Intercept | SD Slope | p-Value | 95% CI |
|---|---|---|---|---|---|
| Symptom severity | −0.384 | 2.35 | 0.144 | <0.001 | −0.493; −0.275 |
| Oral condition | −0.314 | 2.10 | 0.179 | <0.001 | −0.432; −0.195 |
| Oral moisture | +0.220 | 1.02 | 0.144 | <0.001 | +0.093; +0.347 |
| RSST | +0.186 | 0.98 | 0.140 | <0.001 | +0.084; +0.289 |
| VAS score for taste function (0–100) | +0.498 | 14.39 | 0.79 | 0.086 | −0.071; +1.066 |
| Oral function questionnaire (0–11) | −0.252 | 0.89 | 0.05 | <0.001 | −0.317; −0.187 |
| Baseline Mean ± SD | After Mean ± SD | Δ Mean | 95% CI | p-Value | |
|---|---|---|---|---|---|
| WBC (×103/µL) | 5.33 ± 1.03 | 5.39 ± 1.21 | 0.055 | [−0.469, 0.580] | 0.818 |
| Hb (g/dL) | 13.22 ± 1.55 | 13.21 ± 1.72 | −0.009 | [−0.357, 0.339] | 0.955 |
| Hct (%) | 39.98 ± 4.36 | 40.25 ± 5.00 | 0.273 | [−0.677, 1.223] | 0.537 |
| PLT (×103/µL) | 232.00 ± 48.40 | 235.18 ± 63.35 | 3.182 | [−16.030, 22.393] | 0.720 |
| RDW (%) | 13.39 ± 0.88 | 13.51 ± 0.95 | 0.118 | [−0.142, 0.378] | 0.335 |
| Neutrophils (%) | 58.68 ± 8.28 | 59.26 ± 8.34 | 0.583 | [−2.649, 3.814] | 0.696 |
| Lymphocytes (%) | 32.41 ± 8.80 | 32.46 ± 8.68 | 0.055 | [−3.110, 3.220] | 0.970 |
| Monocytes (%) | 6.04 ± 1.77 | 5.82 ± 1.26 | −0.218 | [−1.308, 0.872] | 0.665 |
| NLR | 2.01 ± 0.85 | 2.01 ± 0.80 | −0.002 | [−0.356, 0.352] | 0.989 |
| LMR | 5.84 ± 2.36 | 5.82 ± 2.14 | −0.022 | [−0.947, 0.904] | 0.960 |
| PLR | 7.83 ± 3.63 | 7.87 ± 3.44 | 0.033 | [−0.917, 0.982] | 0.940 |
| CRP | 0.12 ± 0.14 | 0.17 ± 0.22 | 0.054 | [−0.018, 0.126] | 0.122 |
| AST | 26.82 ± 11.48 | 30.64 ± 16.79 | 3.818 | [−0.949, 8.586] | 0.105 |
| ALT | 22.36 ± 13.99 | 26.91 ± 19.16 | 4.545 | [−0.965, 10.056] | 0.096 |
| γ-GTP | 25.00 ± 26.02 | 28.45 ± 40.21 | 3.455 | [−6.361, 13.270] | 0.451 |
| T-Bil | 0.50 ± 0.15 | 0.50 ± 0.16 | −0.000 | [−0.052, 0.052] | 1.000 |
| CRE | 0.72 ± 0.17 | 0.68 ± 0.14 | −0.034 | [−0.104, 0.037] | 0.312 |
| BUN | 14.64 ± 4.88 | 14.64 ± 3.47 | 0.000 | [−1.876, 1.876] | 1.000 |
| LDL-C | 100.90 ± 28.71 | 92.80 ± 24.73 | −8.100 | [−18.659, 2.459] | 0.117 |
| HDL-C | 54.70 ± 14.01 | 56.20 ± 14.05 | 1.500 | [−0.055, 3.055] | 0.057 |
| TG | 134.00 ± 51.51 | 130.50 ± 50.25 | −3.500 | [−49.255, 42.255] | 0.866 |
| SBP | 121.64 ± 10.90 | 120.55 ± 9.16 | −1.091 | [−9.059, 6.878] | 0.767 |
| DBP | 65.73 ± 10.85 | 66.91 ± 9.58 | 1.182 | [−6.483, 8.846] | 0.738 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ngo, Q.T.; Shirai, A.; Li, H.; Takami, A.; Kawahara, A.; Liang, L.; Yoshizaki, T.; Ogawa-Ochiai, K. Ninjin’yoeito for Impaired Oral Function in Older Adults: A Prospective, Open-Label Pilot Study. Medicina 2026, 62, 48. https://doi.org/10.3390/medicina62010048
Ngo QT, Shirai A, Li H, Takami A, Kawahara A, Liang L, Yoshizaki T, Ogawa-Ochiai K. Ninjin’yoeito for Impaired Oral Function in Older Adults: A Prospective, Open-Label Pilot Study. Medicina. 2026; 62(1):48. https://doi.org/10.3390/medicina62010048
Chicago/Turabian StyleNgo, Quang Trung, Akiko Shirai, Hongyang Li, Akiyoshi Takami, Akihiro Kawahara, Lian Liang, Tomokazu Yoshizaki, and Keiko Ogawa-Ochiai. 2026. "Ninjin’yoeito for Impaired Oral Function in Older Adults: A Prospective, Open-Label Pilot Study" Medicina 62, no. 1: 48. https://doi.org/10.3390/medicina62010048
APA StyleNgo, Q. T., Shirai, A., Li, H., Takami, A., Kawahara, A., Liang, L., Yoshizaki, T., & Ogawa-Ochiai, K. (2026). Ninjin’yoeito for Impaired Oral Function in Older Adults: A Prospective, Open-Label Pilot Study. Medicina, 62(1), 48. https://doi.org/10.3390/medicina62010048

