Artificial Intelligence and Machine Learning in the Diagnosis and Management of Osteoporosis: A Comprehensive Review
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Image Recognition and Radiological Data Analysis
3.2. AI-Based Decision Support and Diagnosis
3.3. Fracture Risk Prediction
3.4. Personalized Treatment and Management
4. Discussion
| Application Area | Data Sources/Inputs | AI/ML Methods Used | Reported/Potential Benefits | Critical Challenges and Considerations | References |
|---|---|---|---|---|---|
| Diagnosis | Radiological images (X-rays, DXA, CT); Clinical risk factors | Convolutional Neural Networks (CNNs); Deep learning | Improved accuracy and speed of BMD assessment; Opportunistic screening. | Image quality variability; lack of standardization; limited generalizability; most evidence from internal validation; risk of spectrum bias. | [21,22,23,24,25] |
| Fracture Risk Prediction | Demographics; Clinical history; EHR data; Imaging radiomics | Random Forests; Gradient Boosting; Deep Neural Networks | Personalized risk stratification; Often improved discrimination vs. FRAX. | Heterogeneous data; limited external validation; Poor reporting of calibration and clinical utility; direct impact on fracture outcomes unproven. | [11,30,31,32,33] |
| Personalized Treatment | Patient therapy history; Biomarkers; Wearable data | Predictive analytics; Reinforcement learning | Optimized therapeutic selection; Early ID of non-responders. | Largely exploratory; few validated models; data privacy concerns; clinical efficacy unproven. | [35,36,37] |
| Decision Support Systems | Multimodal clinical data; Imaging biomarkers | Ensemble learning; Explainable AI | Reduced clinician workload; Standardized processes. | “Black-box” problem; Legal liability; need for clinician training and acceptance. | [26,27,41] |
| Monitoring and Management | Wearables (activity, falls); Patient-reported outcomes | Time-series models; Anomaly detection | Potential for real-time adherence and fall monitoring. | Osteoporosis-specific examples are limited; data accuracy and integration challenges; privacy. | [33,38,39] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Oostwaard, M. Osteoporosis and the Nature of Fragility Fracture: An Overview. In Perspectives in Nursing Management and Care for Older Adults; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–13. [Google Scholar] [CrossRef]
- Cauley, J.A. Public health impact of osteoporosis. J. Gerontol. Ser. A 2013, 68, 1243–1251. [Google Scholar] [CrossRef]
- Pisani, P.; Renna, M.D.; Conversano, F.; Casciaro, E.; Di Paola, M.; Quarta, E.; Muratore, M.; Casciaro, S. Major osteoporotic fragility fractures: Risk factor updates and societal impact. World J. Orthop. 2016, 7, 171. [Google Scholar] [CrossRef]
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramcesundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Sozen, T.; Ozisik, L.; Basaran, N.C. An overview and management of osteoporosis. Eur. J. Rheumatol. 2016, 4, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Harvey, N.; Dennison, E.; Cooper, C. Osteoporosis: Impact on health and economics. Nat. Rev. Rheumatol. 2010, 6, 99–105. [Google Scholar] [CrossRef]
- Liang, B.; Burley, G.; Lin, S.; Shi, Y. Osteoporosis pathogenesis and treatment: Existing and emerging avenues. Cell. Mol. Biol. Lett. 2022, 27, 72. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, L.; Chen, K. Osteoporosis due to hormone imbalance: An overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int. J. Mol. Sci. 2022, 23, 1376. [Google Scholar] [CrossRef]
- Keen, M.U.; Barnett, M.J.; Anastasopoulou, C. Osteoporosis in Females. Available online: https://www.ncbi.nlm.nih.gov/books/NBK559156/ (accessed on 11 August 2025).
- Compston, J.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Slart, R.H.J.A.; Punda, M.; Ali, D.S.; Bazzocchi, A.; Bock, O.; Camacho, P.; Carey, J.J.; Colquhoun, A.; Compston, J.; Engelke, K.; et al. Updated practice guideline for dual-energy X-ray absorptiometry (DXA). Eur. J. Nucl. Med. Mol. Imaging 2024, 52, 539–563. [Google Scholar] [CrossRef] [PubMed]
- Onizuka, N.; Onizuka, T. Disparities in Osteoporosis Prevention and Care: Understanding gender, racial, and ethnic dynamics. Curr. Rev. Musculoskelet. Med. 2024, 17, 365–372. [Google Scholar] [CrossRef]
- Pouresmaeili, F.; Dehghan, B.K.; Kamarehei, M.; Meng, G.Y. A comprehensive overview on osteoporosis and its risk factors. Ther. Clin. Risk Manag. 2018, 14, 2029–2049. [Google Scholar] [CrossRef]
- Siris, E.S.; Adler, R.; Bilezikian, J.; Bolognese, M.; Dawson-Hughes, B.; Favus, M.J.; Harris, S.T.; de Beur, S.M.J.; Khosla, S.; Lane, N.E.; et al. The clinical diagnosis of osteoporosis: A position statement from the National Bone Health Alliance Working Group. Osteoporos. Int. 2014, 25, 1439–1443. [Google Scholar] [CrossRef]
- Kanis, J.A.; McCloskey, E.V.; Johansson, H.; Cooper, C.; Rizzoli, R.; Reginster, J.Y. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2013, 24, 23–57. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, N.; Sukegawa, S.; Kitamura, A.; Goto, R.; Noda, T.; Nakano, K.; Takabatake, K.; Kawai, H.; Nagatsuka, H.; Kawasaki, K.; et al. Deep Learning for Osteoporosis Classification Using Hip Radiographs and Patient Clinical Covariates. Biomolecules 2020, 10, 1534. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.; Eiken, P.; Vestergaard, P. Machine Learning Principles Can Improve Hip Fracture Prediction. Calcif. Tissue Int. 2017, 100, 348–360. [Google Scholar] [CrossRef]
- Keshtkar, A.; Karimi, A.; Atighi, F.; Yazdanpanahi, P.; Naseri, A.; Khajepour, A.; Salehi, M.; Sarikhani, Y.; Dabbaghmanesh, M.H. Artificial Intelligence Applications in Osteoporosis: A Comprehensive review of screening, diagnosis, and risk prediction. Shiraz E-Med. J. 2025; in press. [Google Scholar] [CrossRef]
- Shevroja, E.; Cafarelli, F.P.; Guglielmi, G.; Hans, D. DXA parameters, Trabecular Bone Score (TBS) and Bone Mineral Density (BMD), in fracture risk prediction in endocrine-mediated secondary osteoporosis. Endocrine 2021, 74, 20–28. [Google Scholar] [CrossRef]
- Imoto, Y.; Inui, T.; Matsui, K.; Watanabe, Y.; Igari, T.; Takeuchi, S.; Kimura, M.; Yagi, S.; Kawano, H. Deep Learning Model for Osteoporosis Screening from Chest Radiographs: A Multicenter Analysis of External Robustness and Model Calibration. Cureus 2025, 17, e89446. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, Y.; Lin, J.; Zhu, S.; Zhu, J.; Xu, Z. Deep learning in the radiologic diagnosis of osteoporosis: A literature review. J. Int. Med. Res. 2024, 52, 03000605241244754. [Google Scholar] [CrossRef]
- Sukegawa, S.; Fujimura, A.; Taguchi, A.; Yamamoto, N.; Kitamura, A.; Goto, R.; Nakano, K.; Takabatake, K.; Kawai, H.; Nagatsuka, H.; et al. Identification of osteoporosis using ensemble deep learning model with panoramic radiographs and clinical covariates. Sci. Rep. 2022, 12, 6088. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Liu, R.W.; Makmur, A.; Low, X.Z.; Sng, W.J.; Tan, J.H.; Kumar, N.; Hallinan, J.T.P.D. Artificial intelligence applications for osteoporosis classification using computed tomography. Bioengineering 2023, 10, 1364. [Google Scholar] [CrossRef]
- Que, Y.; Xia, X.; Luo, X.; Deng, Y.; Chen, M. Diagnostic performance of an artificial intelligence based software for opportunistic osteoporosis detection using chest CT. Eur. J. Radiol. Artif. Intell. 2025, 3, 100025. [Google Scholar] [CrossRef]
- Khanna, V.V.; Chadaga, K.; Sampathila, N.; Chadaga, R.; Prabhu, S.; S, S.K.; Jagdale, A.S.; Bhat, D. A decision support system for osteoporosis risk prediction using machine learning and explainable artificial intelligence. Heliyon 2023, 9, e22456. [Google Scholar] [CrossRef]
- Cabitza, F.; Rasoini, R.; Gensini, G.F. Unintended consequences of machine learning in medicine. JAMA 2017, 318, 517–518. [Google Scholar] [CrossRef]
- Löffler, M.T.; Jacob, A.; Valentinitsch, A.; Rienmüller, A.; Zimmer, C.; Ryang, Y.-M.; Baum, T.; Kirschke, J.S. Improved prediction of incident vertebral fractures using opportunistic QCT with machine learning. Eur. Radiol. 2019, 29, 4980–4989. [Google Scholar] [CrossRef]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- Hong, N.; Whittier, D.E.; Glüer, C.; Leslie, W.D. The potential role for artificial intelligence in fracture risk prediction. Lancet Diabetes Endocrinol. 2024, 12, 596–600. [Google Scholar] [CrossRef]
- Wu, Y.; Chao, J.; Bao, M.; Zhang, N. Predictive value of machine learning on fracture risk in osteoporosis: A systematic review and meta-analysis. BMJ Open 2023, 13, e071430. [Google Scholar] [CrossRef] [PubMed]
- Tu, J.; Liao, W.; Liu, W.; Gao, X. Using machine learning techniques to predict the risk of osteoporosis based on nationwide chronic disease data. Sci. Rep. 2024, 14, 5245. [Google Scholar] [CrossRef] [PubMed]
- Ulivieri, F.M.; Messina, C.; Vitale, F.M.; Rinaudo, L.; Grossi, E. Artificial intelligence for predicting the risk of bone fragility fractures in osteoporosis. Eur. Radiol. Exp. 2025, 9, 62. [Google Scholar] [CrossRef] [PubMed]
- Magrabi, F.; Ammenwerth, E.; McNair, J.B.; De Keizer, N.F.; Hyppönen, H.; Nykänen, P.; Rigby, M.; Scott, P.J.; Vehko, T.; Wong, Z.S.; et al. Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearb. Med. Inform. 2019, 28, 128–134. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kong, S.H.; Shin, C.S. Applications of Machine Learning in Bone and Mineral Research. Endocrinol. Metab. 2021, 36, 928–937. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsigelny, I.F. Artificial intelligence in drug combination therapy. Brief. Bioinform. 2018, 20, 1434–1448. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An overview of clinical decision support systems: Benefits, risks, and strategies for success. NPJ Digit. Med. 2020, 3, 17. [Google Scholar] [CrossRef] [PubMed]
- Shajari, S.; Kuruvinashetti, K.; Komeili, A.; Sundararaj, U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A review. Sensors 2023, 23, 9498. [Google Scholar] [CrossRef]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef]
- Vayena, E.; Blasimme, A.; Cohen, I.G. Machine learning in medicine: Addressing ethical challenges. PLoS Med. 2018, 15, e1002689. [Google Scholar] [CrossRef]
- Gatineau, G.; Shevroja, E.; Vendrami, C.; Gonzalez-Rodriguez, E.; Leslie, W.D.; Lamy, O.; Hans, D. Development and reporting of artificial intelligence in osteoporosis management. J. Bone Miner. Res. 2024, 39, 1553–1573. [Google Scholar] [CrossRef] [PubMed]
- Char, D.S.; Shah, N.H.; Magnus, D. Implementing machine learning in health care—Addressing ethical challenges. N. Engl. J. Med. 2018, 378, 981. [Google Scholar] [CrossRef] [PubMed]
- FDA. Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021. [Google Scholar]
| Modality | Study (Author, Year) | Sample Size (Train/Validate) | AI/ML Model | Key Performance (AUC) | Reference Standard | Validation Type and Notes |
|---|---|---|---|---|---|---|
| Various Radiographs | He et al., 2024 (Review) [22] | Literature review | Deep Learning Models (primarilsy CNNs) | AUC range 0.70–0.9987 | Various | Review summarizing wide performance ranges; underscores need for standardized reporting. |
| Dental Panoramic X-ray | Sukegawa et al., 2022 [23] | 1179 patients | Ensemble Deep Learning (CNN + LightGBM) | AUC: 0.891 (with clinical data) | DXA | Single-center study; internal validation. Model integrates radiomic features and clinical covariates (age, gender). |
| Computed Tomography (CT) | Ong et al., 2023 (Review) [24] | Synthesis of multiple studies | Various CNNs and traditional ML | High accuracy across studies (AUC 0.70–0.99+) | DXA, QCT, Biomechanics | Systematic review; notes CT-based AI can assess BMD and bone microstructure but highlights heterogeneity in methods. |
| Chest X-ray (CXR) | Que et al., 2025 [25] | 4106 patients (3047 train/1059 test) | Commercial AI Software (DL-based) | AUC: 0.92 for osteoporosis detection | DXA | External validation cohort; demonstrates potential for opportunistic screening on routine chest CTs. |
| Study/Model (Author, Year) | Cohort and Sample Size | Predictors Used | ML Model (s) | Performance (C-Index/AUC) | Comparison to Traditional Model | Key Finding/Note |
|---|---|---|---|---|---|---|
| Hong et al., 2024 [30] | Perspective/Review | Clinical data, EHRs, imaging biomarkers | Not specified (general AI/ML) | Discusses improved accuracy over conventional methods | Positions AI as a tool to enhance, not replace, FRAX | Highlights need for large-scale trials to prove AI’s impact on fracture outcomes. |
| Tu et al., 2024 [32] | Nationwide cohort (Taiwan), N = 37,955 | 46 clinical variables from health check-ups (no BMD) | Extreme Gradient Boosting (XGBoost) | AUC: 0.861 | Outperformed logistic regression (AUC: 0.781) | Demonstrates effective risk prediction using clinical data without imaging; requires external validation. |
| Wu et al., 2023 (Meta-analysis) [31] | 53 studies (>15 million patients) | Clinical variables, BMD, imaging radiomics | Various (RF, GB, SVM, ANN, DL) | Pooled C-index: 0.75 (95% CI: 0.72–0.78) | ML models generally showed higher discrimination than traditional statistical models | Broad evidence synthesis; highlights ML’s predictive potential but notes significant heterogeneity, risk of bias in included studies, and lack of quantitative synthesis on clinical impact. |
| Ulivieri et al., 2025 (Review) [33] | Review of current evidence | Multimodal (clinical, BMD, imaging, biochemical) | AI/ML frameworks | Summarizes state-of-the-art performance, often exceeding FRAX in discrimination | Discusses integration of AI to augment FRAX | Focuses on clinical implementation pathways and remaining challenges (validation, regulation). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Conforti, A.; Ruggiero, M.; Lucchetti, L.; Cipolloni, V.; Galati, F.D.; Gentile, M.; Lo Gullo, A. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Osteoporosis: A Comprehensive Review. Medicina 2026, 62, 27. https://doi.org/10.3390/medicina62010027
Conforti A, Ruggiero M, Lucchetti L, Cipolloni V, Galati FD, Gentile M, Lo Gullo A. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Osteoporosis: A Comprehensive Review. Medicina. 2026; 62(1):27. https://doi.org/10.3390/medicina62010027
Chicago/Turabian StyleConforti, Alessandro, Marco Ruggiero, Linda Lucchetti, Valerio Cipolloni, Francesco Demostene Galati, Martina Gentile, and Alberto Lo Gullo. 2026. "Artificial Intelligence and Machine Learning in the Diagnosis and Management of Osteoporosis: A Comprehensive Review" Medicina 62, no. 1: 27. https://doi.org/10.3390/medicina62010027
APA StyleConforti, A., Ruggiero, M., Lucchetti, L., Cipolloni, V., Galati, F. D., Gentile, M., & Lo Gullo, A. (2026). Artificial Intelligence and Machine Learning in the Diagnosis and Management of Osteoporosis: A Comprehensive Review. Medicina, 62(1), 27. https://doi.org/10.3390/medicina62010027

