Evaluation of Maternal Inflammatory Biomarkers in Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis
Abstract
1. Introduction
2. Material and Methods
2.1. Study Design and Registration
2.2. Literature Search Strategy
2.3. Eligibility Criteria
- -
- Population (P): Pregnant women diagnosed with PPROM before 37 weeks of gestation were included. Control groups consisted of women with intact membranes, either at term or preterm, with no clinical or histologic evidence of infection.
- -
- Intervention/Exposure (I): The primary exposure of interest was the maternal inflammatory levels, including IL-6, C-reactive protein (CRP), interleukin-8 (IL-8), tumor necrosis factor-alpha (TNF-α), and related cytokines, measured in serum, plasma, or amniotic fluid.
- -
- Comparison (C): The comparator group included women without PPROM or intra-amniotic infection, matched by gestational age where available.
- -
- Outcomes (O): The main outcomes were biomarker concentrations and their association with clinical endpoints, including chorioamnionitis, microbial invasion of the amniotic cavity, neonatal sepsis, and gestational age at delivery.
- -
- Study design: Eligible studies included observational (case–control and cohort) and interventional studies that reported quantitative biomarker data (mean ± SD or median with IQR). Case reports, reviews, conference abstracts, and animal studies were excluded.
Selection of Studies for Meta-Analysis
2.4. Data Extraction
2.5. Quality Assessment
2.6. Statistical Analysis
- (i)
- Leave-one-out influence diagnostics;
- (ii)
- Alternative estimators of τ2 (Paule–Mandel and DerSimonian–Laird);
- (iii)
- Trim-and-fill assessment for small-study effects;
- (iv)
- Robust variance estimation when multiple effect sizes originated from a single study.
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
Quality Assessment
3.3. Maternal Serum IL-6 Levels
3.4. Amniotic Fluid IL-6 Levels
3.5. Other Inflammatory Biomarkers
3.6. Heterogeneity and Publication Bias
3.7. Summary of Findings
4. Discussion
4.1. Summary of Evidence
4.2. Interpretation of Findings
4.3. Limitations
4.4. Implications and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AF | Amniotic fluid |
| CI | Confidence interval |
| CRP | C-reactive protein |
| ELISA | Enzyme-linked immunosorbent assay |
| Free β-hCG | free beta subunit of Human Chorionic Gonadotropin |
| IL-6 | Interleukin-6 |
| IL-8 | Interleukin-8 |
| MIAC | Microbial invasion of the amniotic cavity |
| NOS | Newcastle–Ottawa Scale |
| MMP-8 | matrix metalloproteinase-8 |
| PAPP-A | Pregnancy associated plasma protein-A |
| PPROM | Preterm prelabor rupture of membranes |
| REML | Restricted maximum likelihood |
| SMD | Standardized mean difference |
| TNF-α | Tumor necrosis factor-alpha |
| WoS | Web of Science |
References
- Romero, R.; Miranda, J.; Chaemsaithong, P.; Chaiworapongsa, T.; Kusanovic, J.P.; Dong, Z.; Ahmed, A.I.; Shaman, M.; Lannaman, K.; Yoon, B.H.; et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2015, 28, 1394–1409. [Google Scholar] [CrossRef]
- Yoon, B.H.; Romero, R.; Moon, J.B.; Shim, S.S.; Kim, M.; Kim, G.; Jun, J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2001, 185, 1130–1136. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Richardson, L.S.; Lappas, M. Fetal membrane architecture, aging and inflammation in pregnancy and parturition. Placenta 2019, 79, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Musilová, I.; Andrys, C.; Drahosova, M.; Soucek, O.; Stepan, M.; Bestvina, T.; Spacek, R.; Jacobsson, B.; Cobo, T.; Kacerovsky, M. Intraamniotic inflammation and umbilical cord blood interleukin-6 concentrations in pregnancies complicated by preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2017, 30, 900–910. [Google Scholar] [CrossRef]
- Gomez-Lopez, N.; Romero, R.; Xu, Y.; Plazyo, O.; Unkel, R.; Leng, Y.; Than, N.G.; Chaiworapongsa, T.; Panaitescu, B.; Dong, Z.; et al. A role for the inflammasome in spontaneous preterm labor. Reprod. Sci. 2017, 24, 1382–1401. [Google Scholar] [CrossRef]
- Myers, K.M.; Feltovich, H.; Mazza, E.; Vink, J.; Bajka, M.; Wapner, R.J.; Hall, T.J.; House, M. The mechanical role of the cervix in pregnancy. J. Biomech. 2015, 48, 1511–1523. [Google Scholar] [CrossRef] [PubMed]
- Kacerovský, M.; Musilova, I.; Khatibi, A.; Skogstrand, K.; Hougaard, D.M.; Tambor, V.; Tosner, J.; Jacobsson, B. Intraamniotic inflammatory response to bacteria: Analysis of multiple amniotic fluid proteins in women with preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2012, 25, 2014–2019. [Google Scholar] [CrossRef]
- Cobo, T.; Kacerovsky, M.; Holst, R.M.; Hougaard, D.M.; Skogstrand, K.; Wennerholm, U.B.; Hagberg, H.; Jacobsson, B. Intra-amniotic inflammation predicts microbial invasion of the amniotic cavity but not spontaneous preterm delivery in preterm prelabor membrane rupture. Acta Obstet. Gynecol. Scand. 2012, 91, 930–935. [Google Scholar] [CrossRef]
- Kacerovský, M.; Drahosova, M.; Hornychova, H.; Pliskova, L.; Bolehovska, R.; Forstl, M.; Tosner, J.; Lesko, D.; Andrys, C. Amniotic fluid interleukin-6 levels in preterm premature rupture of membranes. Ceska Gynekol. 2009, 74, 403–410. [Google Scholar]
- Gulati, S.; Agrawal, S.; Raghunandan, C.; Bhattacharya, J.; Saili, A.; Agarwal, S.; Sharma, D. Maternal serum interleukin-6 and its association with clinicopathological infectious morFity in preterm premature rupture of membranes: A prospective cohort study. J. Matern. Fetal Neonatal Med. 2012, 25, 1428–1432. [Google Scholar] [CrossRef]
- Cobo, T.; Jacobsson, B.; Kacerovsky, M.; Hougaard, D.M.; Skogstrand, K.; Gratacós, E.; Palacio, M. Systemic and local inflammatory response in women with preterm prelabor rupture of membranes. PLoS ONE 2014, 9, e85277. [Google Scholar] [CrossRef] [PubMed]
- Buhimschi, C.S.; Zhao, G.; Solden, L.; Rood, K.; Jing, H.; Vickers, S.; Buhimschi, I. 1109: The circulating maternal bacterial microbiome in preterm prelabor rupture of membranes (PPROM). Am. J. Obstet. Gynecol. 2020, 222, S683. [Google Scholar] [CrossRef]
- Tsiartas, P.; Kacerovsky, M.; Musilova, I.; Hornychova, H.; Cobo, T.; Sävman, K.; Jacobsson, B. The association between histological chorioamnionitis, funisitis and neonatal outcome in women with preterm prelabor rupture of membranes. J. Matern.-Fetal Neonatal Med. 2013, 26, 1332–1336. [Google Scholar] [CrossRef]
- Keelan, J.A. Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J. Reprod. Immunol. 2018, 125, 89–99. [Google Scholar] [CrossRef]
- Kim, C.J.; Romero, R.; Chaemsaithong, P.; Chaiyasit, N.; Yoon, B.H.; Kim, Y.M. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 2015, 213, S29–S52. [Google Scholar] [CrossRef]
- Romero, R.; Espinoza, J.; Goncalves, L.F.; Kusanovic, J.P.; Friel, L.; Hassan, S. The role of inflammation and infection in preterm birth. Semin. Reprod. Med. 2007, 25, 21–39. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Romero, R.; Korzeniewski, S.J.; Martinez-Varea, A.; Dong, Z.; Yoon, B.H.; Hassan, S.S.; Chaiworapongsa, T.; Yeo, L. A point-of-care test for interleukin-6 in amniotic fluid in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 2016, 29, 360–367. [Google Scholar] [CrossRef]
- Goldenberg, R.L.; Culhane, J.F.; Iams, J.D.; Romero, R. Epidemiology and causes of preterm birth. Lancet 2008, 371, 75–84. [Google Scholar] [CrossRef]
- Riley, L.E.; Swamy, G.K. Obstetric factors associated with infections of the fetus and newborn infant. In Elsevier Obstetrics Reference; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar] [CrossRef]
- Park, J.W.; Park, K.H.; Jung, E.Y. Clinical significance of histologic chorioamnionitis with a negative amniotic fluid culture in patients with preterm labor and premature membrane rupture. PLoS ONE 2017, 12, e0173312. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.M.; Romero, R.; Park, J.W.; Kim, S.M.; Park, C.W.; Korzeniewski, S.J.; Chaiworapongsa, T.; Yoon, B.H. The clinical significance of a positive Amnisure test in women with preterm labor and intact membranes. J. Matern. Fetal Neonatal Med. 2012, 25, 1690–1698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paquette, A.G.; MacDonald, J.; Bammler, T.; Day, D.B.; Loftus, C.T.; Buth, E.; Mason, W.A.; Bush, N.R.; Lewinn, K.Z.; Marsit, C.; et al. Placental transcriptomic signatures of spontaneous preterm birth. Am. J. Obstet. Gynecol. 2023, 228, 73.e1–73.e18. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Papageorghiou, A.T.; Kennedy, S.H.; Villar, J. Novel biomarkers for the prediction of spontaneous preterm birth phenotype. BJOG 2011, 118, 1042–1054. [Google Scholar] [CrossRef]
- Madan, I.; Jackson, F.I.; Figueroa, R.; Bahado-Singh, R. Preterm prelabor rupture of membranes in singletons: Maternal and neonatal outcomes. J. Perinat. Med. 2023, 51, 787–791. [Google Scholar] [CrossRef]
- Musilová, I.; Kutová, R.; Pliskova, L.; Stepan, M.; Menon, R.; Jacobsson, B.; Kacerovsky, M. Intraamniotic Inflammation in Women with Preterm Prelabor Rupture of Membranes. PLoS ONE 2015, 10, e0133929. [Google Scholar] [CrossRef] [PubMed]
- Savasan, Z.A.; Romero, R.; Chaiworapongsa, T.; Kusanovic, J.P.; Kim, S.K.; Mazaki-Tovi, S.; Vaisbuch, E.; Mittal, P.; Ogge, G.; Madan, I.; et al. Evidence in support of a role for anti-angiogenic factors in preterm prelabor rupture of membranes. J. Matern.-Fetal Neonatal Med. 2010, 23, 828–841. [Google Scholar] [CrossRef]
- Kacerovský, M.; Stranik, J.; Matulova, J.; Chalupska, M.; Mls, J.; Faist, T.; Hornychova, H.; Kukla, R.; Bolehovska, R.; Bostik, P.; et al. Clinical characteristics of colonization of the amniotic cavity in women with preterm prelabor rupture of membranes, a retrospective study. Sci. Rep. 2022, 12, 5062. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Flores, V.; Romero, R.; Miller, D.; Xu, Y.; Done, B.; Veerapaneni, C.; Leng, Y.; Arenas-Hernandez, M.; Khan, N.; Panaitescu, B.; et al. Inflammation-induced adverse pregnancy outcomes improvement by Exendin-4. Front. Immunol. 2018, 9, 1291. [Google Scholar] [CrossRef]
- Swiercz, G.; Zmelonek-Znamirowska, A.; Szwabowicz, K.; Armanska, J.; Detka, K.; Mlodawska, M.; Mlodawski, J. Evaluating the predictive efficacy of first trimester biochemical markers (PAPP-A, fβ-hCG) in forecasting preterm delivery incidences. Sci. Rep. 2024, 14, 16206. [Google Scholar] [CrossRef]
- Chaemsaithong, P.; Romero, R.; Docheva, N.; Chaiyasit, N.; Bhatti, G.; Pacora, P.; Hassan, S.S.; Yeo, L.; Erez, O. Comparison of rapid MMP-8 and interleukin-6 point-of-care tests to identify intra-amniotic inflammation/infection and impending preterm delivery in patients with preterm labor and intact membranes. J. Matern.-Fetal Neonatal Med. 2018, 31, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Feduniw, S.; Pruc, M.; Ciebiera, M.; Zeber-Lubecka, N.; Massalska, D.; Zgliczynska, M.; Pawlowska, A.; Szarpak, L. Biomarkers for pregnancy latency prediction after PPROM: A systematic review. Int. J. Mol. Sci. 2023, 24, 8027. [Google Scholar] [CrossRef] [PubMed]
- Vasilescu, D.I.; Dan, A.M.; Gogoncea, A.R.; Vasilescu, S.L.; Cîrstoiu, M.M. The Predictive Value of Umbilical Cord Interleukin-6: Implications for Neonatal Care—A Narrative Review of Current Evidence and Future Perspectives. Life 2025, 15, 1727. [Google Scholar] [CrossRef]
- Behram, M.; Oglak, S.C.; Baskiran, Y.; Suzen Caypinar, S.; Akgol, S.; Tunc, S. Maternal serum IL-22 concentrations in PPROM. Ginekol. Pol. 2021, 92, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Swiercz, G.; Zmelonek-Znamirowska, A.; Szwabowicz, K.; Armanska, J.; Detka, K.; Mlodawska, M.; Mlodawski, J. Navigating Uncertain Waters: First-Trimester Screening’s Role in Identifying Neonatal Complications. J. Clin. Med. 2024, 13, 1982. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]


| Database | Search Strategy (Example) | Hits/Records Retrieved |
|---|---|---|
| PubMed/MEDLINE | (“preterm prelabor rupture of membranes” [Title/Abstract] OR “preterm premature rupture of membranes” [Title/Abstract] OR “PPROM” [Title/Abstract]) AND (“interleukin-6” [Title/Abstract] OR “IL-6” [Title/Abstract] OR “inflammatory marker” [Title/Abstract] OR “biomarker” [Title/Abstract]) AND (“maternal” [Title/Abstract] OR “serum” [Title/Abstract] OR “amniotic” [Title/Abstract] OR “plasma” [Title/Abstract]) | 238 |
| Scopus | TITLE-ABS-KEY (“preterm prelabor rupture of membranes” OR “preterm premature rupture of membranes” OR “PPROM”) AND TITLE-ABS-KEY (“interleukin-6” OR “IL-6” OR “biomarker” OR “inflammatory marker”) AND TITLE-ABS-KEY (“maternal” OR “serum” OR “amniotic” OR “plasma”) | 183 |
| Web of Science (WoS) | TS = (“preterm prelabor rupture of membranes” OR “preterm premature rupture of membranes” OR “PPROM”) AND TS = (“interleukin-6” OR “IL-6” OR “inflammatory marker” OR “biomarker”) AND TS = (“maternal” OR “serum” OR “amniotic” OR “plasma”) | 156 |
| Study (Year) | Population (P) | Index Biomarker (I) | Comparator (C) | Outcomes (O) | Study Design | Sample Size (PPROM/ Control) |
|---|---|---|---|---|---|---|
| Romero 2015 [1] | PPROM | AF IL-6 | Term controls | Inflammation | Case–control | 180(90/90) |
| Yoon 2001 [2] | PPROM | Serum IL-6 | Preterm labor w/o rupture | MIAC | Case–control | 160(80/80) |
| Menon 2019 [3] | PPROM | Serum inflammatory markers | Term controls | Molecular inflammation | Case–control | 96(48/48) |
| Musilová 2017 [4] | PPROM 24–34 wks | AF IL-6 | Term intact membranes | MIAC, chorioamnonitis | Case–control | 220(110/110) |
| Vink 2015 [6] | PPROM | Serum markers | Term controls | Cervical inflammation | Cohort | 112 |
| Kacerovský 2012 [7] | PPROM | AF IL-6 | Term controls | Cytokine levels | Case–control | 130(65/65) |
| Cobo 2012 [8] | PPROM | AF IL-6 | Term controls | Adverse outcomes | Cohort | 110(55/55) |
| Kacerovský 2009 [9] | PPROM 22–34 wks | AF IL-6 | Term controls | MIAC | Cohort | 185(PPROM only) |
| Cobo 2014 [11] | PPROM | AF cytokines incl. IL-6 | Term + pre-term controls | Infection, neonatal outcomes | Case–control | 95 |
| Buhimschi 2020 [12] | PPROM | Serum + AF cytokines | Term controls | Inflammation pathways | Cohort | 102(51/51) |
| Tsiartas 2013 [13] | PPROM | Serum IL-6, CRP | Term controls | IA infection | Cohort | 210(105/105) |
| Keelan 2018 [14] | PPROM | Serum cytokines | Uncomplicated pregnancies | Cytokine profile | Case–control | 88 |
| Kim 2015 [15] | PPROM | AF IL-6 | Term controls | Histologic chorioamni-onitis | Case–control | 140(70/70) |
| Chaemsaithong 2016 [17] | PPROM | AF IL-6, AF biomarkers | Term controls | Intra-amniotic infection | Cohort | 146(73/73) |
| Goldenberg 2008 [18] | PPROM | Serum biomarkers | Term pregnancies | Infection markers | Case–control | 134(67/67) |
| Park 2017 [20] | PPROM | Serum IL-6 | Healthy controls | MIAC prediction | Case–control | 178 (89/89) |
| Lee 2012 [21] | PPROM | Serum cyto- kines | Term controls | Diagnostic accuracy | Case–control | 120(60/60) |
| Paquette 2023 [22] | PPROM | IL-6 + biomarker panel | Term controls | Prediction modeling | Cohort | 152(76/76) |
| Conde-Agudelo 2011 [23] | PPROM | Serum IL-6 | Healthy controls | Preterm birth risk | Case–control | 165 |
| Madan 2023 [24] | PPROM | Serum CRP + IL-6 | Term controls | Systemic inflammation | Case–control | 118 |
| Musilová 2015 [25] | PPROM | AF IL-6 | Term labor | MIAC | Cohort | 160(80/80) |
| Savasan 2010 [26] | PPROM | Serum IL-6 | High-risk pregnancies | Predictive value | Cohort | 143 |
| Kacerovský 2022 [27] | PPROM | IL-6 + IL-8 | Term intact membranes | Infection | Cohort | 121 |
| Study | Selection (0–4) | Comparability (0–2) | Outcome/Exposure (0–3) | Total (0–9) |
|---|---|---|---|---|
| Romero et al., 2015 [1] | 4 | 1 | 3 | 8 |
| Yoon et al., 2001 [2] | 3 | 2 | 3 | 8 |
| Menon et al., 2019 [3] | 4 | 1 | 2 | 7 |
| Musilová et al., 2017 [4] | 4 | 1 | 3 | 8 |
| Vink et al., 2015 [6] | 3 | 1 | 3 | 7 |
| Kacerovský et al., 2012 [7] | 4 | 1 | 3 | 8 |
| Cobo et al., 2012 [8] | 3 | 1 | 3 | 7 |
| Kacerovský et al., 2009 [9] | 3 | 1 | 3 | 7 |
| Cobo et al., 2014 [11] | 3 | 1 | 3 | 7 |
| Buhimschi et al., 2020 [12] | 3 | 2 | 3 | 8 |
| Tsiartas et al., 2013 [13] | 3 | 1 | 3 | 7 |
| Keelan et al., 2018 [14] | 3 | 1 | 3 | 7 |
| Kim et al., 2015 [15] | 3 | 1 | 3 | 7 |
| Chaemsaithong et al., 2016 [17] | 3 | 2 | 3 | 8 |
| Goldenberg et al., 2008 [18] | 4 | 1 | 3 | 8 |
| Park et al., 2017 [20] | 3 | 2 | 3 | 8 |
| Lee et al., 2012 [21] | 3 | 1 | 3 | 7 |
| Paquette et al., 2023 [22] | 3 | 2 | 3 | 8 |
| Conde-Agudelo et al., 2011 [23] | 3 | 2 | 3 | 8 |
| Madan et al., 2023 [24] | 3 | 1 | 3 | 7 |
| Musilová et al., 2015 [25] | 3 | 1 | 3 | 7 |
| Savasan et al., 2010 [26] | 3 | 1 | 3 | 7 |
| Kacerovský et al., 2022 [27] | 3 | 2 | 3 | 8 |
| Biomarker | Specimen Type | No. of Studies | Pooled SMD (95% CI) | p-Value | I2 (%) |
|---|---|---|---|---|---|
| IL-6 | Serum | 15 | 1.72 (1.15–2.29) | <0.001 | 68 |
| IL-6 | Amniotic fluid | 8 | 2.84 (2.01–3.67) | <0.001 | 79 |
| CRP | Serum | 10 | 0.98 (0.61–1.36) | <0.001 | 63 |
| IL-8 | Serum | 5 | 0.45(0.12–1.03) | 0.02 | 58 |
| TNF-α | Serum | 4 | 0.32(0.05–0.69) | 0.04 | 50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Neamțu, S.I.; Sava, M.; Bereanu, A.S.; Bădilă, R.M.; Codru, I.R.; Vintilă, B.I.; Mustățea, S.; Stoia, O.; Chicea, R. Evaluation of Maternal Inflammatory Biomarkers in Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis. Medicina 2026, 62, 20. https://doi.org/10.3390/medicina62010020
Neamțu SI, Sava M, Bereanu AS, Bădilă RM, Codru IR, Vintilă BI, Mustățea S, Stoia O, Chicea R. Evaluation of Maternal Inflammatory Biomarkers in Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis. Medicina. 2026; 62(1):20. https://doi.org/10.3390/medicina62010020
Chicago/Turabian StyleNeamțu, Sandra Ioana, Mihai Sava, Alina Simona Bereanu, Raluca Maria Bădilă, Ioana Roxana Codru, Bogdan Ioan Vintilă, Simina Mustățea, Oana Stoia, and Radu Chicea. 2026. "Evaluation of Maternal Inflammatory Biomarkers in Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis" Medicina 62, no. 1: 20. https://doi.org/10.3390/medicina62010020
APA StyleNeamțu, S. I., Sava, M., Bereanu, A. S., Bădilă, R. M., Codru, I. R., Vintilă, B. I., Mustățea, S., Stoia, O., & Chicea, R. (2026). Evaluation of Maternal Inflammatory Biomarkers in Preterm Prelabor Rupture of Membranes: A Systematic Review and Meta-Analysis. Medicina, 62(1), 20. https://doi.org/10.3390/medicina62010020

