Establishing a Robot-Assisted Liver Surgery Program: Early Experience from University Medical Center Ljubljana
Abstract
1. Introduction
2. Materials and Methods
2.1. Development of a Robot-Assisted Liver Surgery Program at UMC Ljubljana
2.2. Standard Operative Protocol for Robot-Assisted Liver Surgery
3. Results
3.1. Perioperative Outcomes
3.2. Short-Term Oncological Outcomes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giulianotti, P.C.; Coratti, A.; Angelini, M.; Sbrana, F.; Cecconi, S.; Balestracci, T.; Caravaglios, G. Robotics in general surgery: Personal experience in a large community hospital. Arch. Surg. 2003, 138, 777–784. [Google Scholar] [CrossRef]
- Giulianotti, P.C.; Coratti, A.; Sbrana, F.; Addeo, P.; Bianco, F.M.; Buchs, N.C.; Annechiarico, M.; Benedetti, E. Robotic liver surgery: Results for 70 resections. Surgery 2011, 149, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.; Wong, P.; Warner, S.; Raoof, M.; Singh, G.; Fong, Y.; Melstrom, L. Robotic minor hepatectomy: Optimizing outcomes and cost of care. HPB 2021, 23, 700–706. [Google Scholar] [CrossRef]
- Sucandy, I.; Luberice, K.; Lippert, T.; Castro, M.; Krill, E.; Ross, S.; Rosemurgy, A. Robotic Major Hepatectomy: An Institutional Experience and Clinical Outcomes. Ann. Surg. Oncol. 2020, 27, 4970–4979. [Google Scholar] [CrossRef] [PubMed]
- Camerlo, A.; Delayre, T.; Fara, R. Robotic central hepatectomy for hepatocarcinoma by glissonean approach (with video). Surg. Oncol. 2021, 36, 82–83. [Google Scholar] [CrossRef] [PubMed]
- Rojas, A.E.; Paterakos, P.; Choi, S.H. Robotic Central Bisectionectomy for Centrally Located Hepatic Malig-nant Tumor. Ann. Surg. Oncol. 2022, 29, 4362. [Google Scholar] [CrossRef]
- Broering, D.C.; Elsheikh, Y.; Alnemary, Y.; Zidan, A.; Elsarawy, A.; Saleh, Y.; Alabbad, S.; Sturdevant, M.; Wu, Y.M.; Troisi, R.I. Robotic Versus Open Right Lobe Donor Hepatectomy for Adult Living Donor Liver Transplan-tation: A Propensity Score-Matched Analysis. Liver Transpl. 2020, 26, 1455–1464. [Google Scholar] [CrossRef]
- Liu, R.; Wakabayashi, G.; Kim, H.-J.; Choi, G.-H.; Yiengpruksawan, A.; Fong, Y.; He, J.; Boggi, U.; Troisi, R.I.; Efanov, M.; et al. International consensus statement on robotic hepatectomy surgery in 2018. World J. Gastroenterol. 2019, 25, 1432–1444. [Google Scholar] [CrossRef]
- Christodoulou, M.; Pattilachan, T.M.; Ross, S.B.; Lingamaneni, G.; Sucandy, I. A decade of experience with 530 minimally invasive robotic hepatectomies from a single tertiary hepatobiliary center: Analysis of short-term outcomes and oncologic survival. J. Gastrointest. Surg. 2024, 28, 1273–1282. [Google Scholar] [CrossRef]
- Hendrix, J.M.; Garmon, E.H. American Society of Anesthesiologists Physical Status Classification System. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Lau, W.Y. Defining the Couinaud’s Liver Segments Clinically. In Applied Anatomy in Liver Re-Section and Liver Transplantation; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Clavien, P.A.; Barkun, J.; de Oliveira, M.L.; Vauthey, J.N.; Dindo, D.; Schulick, R.D.; de Santibañes, E.; Pekolj, J.; Slankamenac, K.; Bassi, C.; et al. The Clavien-Dindo classification of surgical complications: Five-year experience. Ann. Surg. 2009, 250, 187–196. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Garden, O.J.; Padbury, R.; Brooke-Smith, M.; Crawford, M.; Adam, R.; Koch, M.; Makuuchi, M.; Dematteo, R.P.; Christophi, C.; et al. Posthepatectomy liver failure: A definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011, 149, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Garden, O.J.; Padbury, R.; Rahbari, N.N.; Adam, R.; Capussotti, L.; Fan, S.T.; Yokoyama, Y.; Crawford, M.; Makuuchi, M.; et al. Bile leakage after hepatobiliary and pancreatic surgery: A definition and grading of severity by the International Study Group of Liver Surgery. Surgery 2011, 149, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Rahbari, N.N.; Garden, O.J.; Padbury, R.; Maddern, G.; Koch, M.; Hugh, T.J.; Fan, S.T.; Nimura, Y.; Figueras, J.; Vauthey, J.N.; et al. Post-hepatectomy haemorrhage: A definition and grading by the International Study Group of Liver Surgery (ISGLS). HPB 2011, 13, 528–535. [Google Scholar] [CrossRef]
- Pang, Y.Y. The Brisbane 2000 terminology of liver anatomy and resections. resections. HPB 2000; 2:333-39. HPB 2002, 4, 99–100. [Google Scholar] [CrossRef]
- Tanaka, S.; Kawaguchi, Y.; Kubo, S.; Kanazawa, A.; Takeda, Y.; Hirokawa, F.; Nitta, H.; Nakajima, T.; Kaizu, T.; Kaibori, M.; et al. Validation of index-based IWATE criteria as an improved difficulty scoring system for laparoscopic liver resection. Surgery 2019, 165, 731–740. [Google Scholar] [CrossRef] [PubMed]
- De Gasperi, A.; Mazza, E.; Prosperi, M. Indocyanine green kinetics to assess liver function: Ready for a clini-cal dynamic assessment in major liver surgery? World J. Hepatol. 2016, 8, 355–367. [Google Scholar] [CrossRef]
- Søreide, K. A formula for survival in surgery. Patient Saf. Surg. 2023, 17, 13. [Google Scholar] [CrossRef]
- Murtha-Lemekhova, A.; Fuchs, J.; Hoffmann, K. Innovation for the Sake of Innovation? How Does Robotic Hepatectomy Compare to Laparoscopic or Open Resection for HCC-A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3359. [Google Scholar] [CrossRef]
- Hu, Y.; Guo, K.; Xu, J.; Xia, T.; Wang, T.; Liu, N.; Fu, Y. Robotic versus laparoscopic hepatectomy for malignancy: A systematic review and meta-analysis. Asian J. Surg. 2021, 44, 615–628. [Google Scholar] [CrossRef]
- Abu Hilal, M.; Hoogteijling, T.J.; Edwin, B.; Dagher, I.; D’HOndt, M.; Marques, H.P.; Swijnenburg, R.-J.; Boggi, U.; Sucandy, I.; Ferrero, A.; et al. The Brescia internationally validated European guidelines on minimally invasive liver surgery. Br. J. Surg. 2025, 112, znaf113. [Google Scholar] [CrossRef]
- Raison, N.; Harrison, P.; Abe, T.; Aydin, A.; Ahmed, K.; Dasgupta, P. Procedural virtual reality simulation train-ing for robotic surgery: A randomised controlled trial. Surg. Endosc. 2021, 35, 6897–6902. [Google Scholar] [CrossRef]
- Lefor, A.K.; Pérez, S.A.H.; Shimizu, A.; Lin, H.-C.; Witowski, J.; Mitsuishi, M. Development and Validation of a Virtual Reality Simulator for Robot-Assisted Minimally Invasive Liver Surgery Training. J. Clin. Med. 2022, 11, 4145. [Google Scholar] [CrossRef]
- Lopez-Lopez, V.; Sánchez-Esquer, I.; Kuemmerli, C.; Brusadin, R.; López-Conesa, A.; Navarro, Á.; Pastor, P.; Iniesta, M.; Carrión-Retuerto, L.O.; Robles-Campos, R. Experience-based transition to robotic surgery in an experienced program in minimally invasive hepatobiliary surgery. Surg. Endosc. 2024, 38, 7309–7318. [Google Scholar] [CrossRef] [PubMed]
- Ratti, F.; Ingallinella, S.; Catena, M.; Corallino, D.; Marino, R.; Aldrighetti, L. Learning curve in robotic liver surgery: Easily achievable, evolving from laparoscopic background and team-based. HPB 2025, 27, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Halls, M.C.; Berardi, G.; Cipriani, F.; Barkhatov, L.; Lainas, P.; Harris, S.; D’Hondt, M.; Rotellar, F.; Dagher, I.; Aldrighetti, L.; et al. Development and validation of a difficulty score to predict in-traoperative complications during laparoscopic liver resection. Br. J. Surg. 2018, 105, 1182–1191. [Google Scholar] [CrossRef]
- Sucandy, I.; Dugan, M.M.; Ross, S.B.; Syblis, C.; Crespo, K.; Kenary, P.Y.; Rosemurgy, A. Tampa Difficulty Score: A novel scoring system for difficulty of robotic hepatectomy. J. Gastrointest. Surg. 2024, 28, 685–693. [Google Scholar] [CrossRef]
- Rahimli, M.; Gumbs, A.A.; Perrakis, A.; Al-Madhi, S.; Dölling, M.; Stelter, F.; Lorenz, E.; Andric, M.; Franz, M.; Arend, J.; et al. Learning curve analysis of 100 consecutive robotic liver resec-tions. Surg. Endosc. 2025, 39, 2512–2522. [Google Scholar] [CrossRef]
- Dugan, M.M.; Christodoulou, M.; Ross, S.B.; Pattilachan, T.; Rosemurgy, A.; Sucandy, I. Learning curve analysis after 500 robotic hepatectomies. J. Gastrointest. Surg. 2024, 28, 1039–1044. [Google Scholar] [CrossRef]
- Palucci, M.; Giannone, F.; Del Angel-Millán, G.; Alagia, M.; Del Basso, C.; Lodin, M.; Monsellato, I.; Sangiuolo, F.; Cassese, G.; Panaro, F. Robotic liver parenchymal transection techniques: A comprehensive overview and classification. J. Robot. Surg. 2024, 19, 36. [Google Scholar] [CrossRef]
- Landry, J.; Jain, A.J.; Tzeng, C.-W.; Newhook, T.E.; Ikoma, N.; Chun, Y.S.; Vauthey, J.-N.; Cheah, Y.-L.; Hawksworth, J.S.; Cao, H.S.T. Robotic Hepatic Parenchymal Transection Techniques: A Choice Be-tween Imperfect Tools. Ann. Surg. Oncol. 2025, 32, 438–439. [Google Scholar] [CrossRef]
- Olthof, P.B.; E Elfrink, A.K.; Marra, E.; Belt, E.J.T.; Boezem, P.B.v.D.; Bosscha, K.; Consten, E.C.J.; Dulk, M.D.; Gobardhan, P.D.; Hagendoorn, J.; et al. Volume-outcome relationship of liver surgery: A nationwide analysis. Br. J. Surg. 2020, 107, 917–926. [Google Scholar] [CrossRef]
- Koh, Y.X.; Zhao, Y.; Tan, I.E.-H.; Tan, H.L.; Chua, D.W.; Loh, W.-L.; Tan, E.K.; Teo, J.Y.; Au, M.K.H.; Goh, B.K.P. The impact of hospital volume on liver resection: A systematic review and Bayesian network meta-analysis. Surgery 2024, 175, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Franchi, E.; Donadon, M.; Torzilli, G. Effects of volume on outcome in hepatobiliary surgery: A review with guidelines proposal. Glob. Health Med. 2020, 2, 292–297. [Google Scholar] [CrossRef]
- Lentz, C.M.; De Lind Van Wijngaarden, R.A.F.; Willeboordse, F.; Hooft, L.; van der Laan, M.J. Dedicated teams to optimize quality and safety of surgery: A systematic review. Int. J. Qual. Health Care 2022, 34, mzac078. [Google Scholar] [CrossRef]
- Estes, S.J.; Goldenberg, D.; Winder, J.S.; Juza, R.M.; Lyn-Sue, J.R. Best Practices for Robotic Surgery Pro-grams. JSLS 2017, 21, e2016.00102. [Google Scholar] [CrossRef]
- Goh, B.K.P.; Sucandy, I.; Chua, D.W.; Liu, Q.; Edwin, B.; Aghayan, D.; Millet, G.; Ratti, F.; Zhang, W.; Scatton, O.; et al. Defining Global Benchmarks for Robotic Liver Resections: An In-ternational Multicenter Study. Ann. Surg. 2025. ahead of print. [Google Scholar] [CrossRef]
- Görgec, B.; Zwart, M.; Nota, C.L.; Bijlstra, O.D.; Bosscha, K.; de Boer, M.T.; de Wilde, R.F.; Draaisma, W.A.; Gerhards, M.F.; Liem, M.S.; et al. Implementation and Outcome of Robotic Liver Surgery in the Nether-lands: A Nationwide Analysis. Ann. Surg. 2023, 277, e1269–e1277. [Google Scholar] [CrossRef]

| RLR = 50 | |
|---|---|
| Gender (male) | 26 (52%) |
| Age (years, median, range) | 65.5 (24–84) |
| BMI (kg/m2, median, range) | 27.8 (19.5–40.6) |
| ASA score | |
| 1 | 4 (8%) |
| 2 | 16 (32%) |
| 3 | 30 (60%) |
| Liver function | |
| normal | 48 (96%) |
| Child–Pough A | 2 (4%) |
| RLR = 50 | |
|---|---|
| Operative time (min, range) | 166 (85–400) |
| Blood loss (mL, range) | 200 (50–1000) |
| Conversion (n, %) | 1 (2%) |
| HDU (day, median, range) | 1 (1–5) |
| LOH (day, median, range) | 5 (3–20) |
| Transfusion rate (n, %) | 4 (8%) |
| Overall complication (n, %) | 14 (28%) |
| C-D > 3 complication (n, %) | 5 (10%) |
| 30-day rehospitalization (n, %) | 3 (6%) |
| 90-day mortality (n, %) | 0 |
| IWATE Score System | NoP | OP Time | LOH | Overall CR | C-D > 3 |
|---|---|---|---|---|---|
| L | 7 | 156 | 3 | 1/7 (14.3%) | 1/7 (14.3%) |
| I | 29 | 155 | 5 | 7/29 (24.1%) | 2/29 (6.9%) |
| A | 11 | 171 | 5.5 | 2/11 (18.2%) | 1/11 (9.1%) |
| E | 3 | 324 | 13 | 2/3 (66.7%) | 0 |
| Etiology | No. of Patients | % |
|---|---|---|
| Adenoma/BIN | 4 | 8% |
| Mb. Caroli/hepatolithiasis | 7 | 14% |
| Hepatic Echinococcosis | 3 | 6% |
| Hemangioma/cyst | 5 | 10% |
| Hepatocellular carcinoma | 11 | 22% |
| IHHCA/GBCA | 6 | 12% |
| Secondary meta (CRC, NEN) | 13 | 26% |
| Sarcomatous carcinoma | 1 | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Petrič, M.; Nardin, Ž.; Grosek, J.; Tomažič, A.; Plešnik, B.; Trotovšek, B. Establishing a Robot-Assisted Liver Surgery Program: Early Experience from University Medical Center Ljubljana. Medicina 2026, 62, 18. https://doi.org/10.3390/medicina62010018
Petrič M, Nardin Ž, Grosek J, Tomažič A, Plešnik B, Trotovšek B. Establishing a Robot-Assisted Liver Surgery Program: Early Experience from University Medical Center Ljubljana. Medicina. 2026; 62(1):18. https://doi.org/10.3390/medicina62010018
Chicago/Turabian StylePetrič, Miha, Živa Nardin, Jan Grosek, Aleš Tomažič, Boštjan Plešnik, and Blaž Trotovšek. 2026. "Establishing a Robot-Assisted Liver Surgery Program: Early Experience from University Medical Center Ljubljana" Medicina 62, no. 1: 18. https://doi.org/10.3390/medicina62010018
APA StylePetrič, M., Nardin, Ž., Grosek, J., Tomažič, A., Plešnik, B., & Trotovšek, B. (2026). Establishing a Robot-Assisted Liver Surgery Program: Early Experience from University Medical Center Ljubljana. Medicina, 62(1), 18. https://doi.org/10.3390/medicina62010018

